Flow Algorithms for Parallel Query Optimization

Amol Deshpande, University of Maryland

Lisa Hellerstein, Polytechnic University, Brooklyn

Introduction and Motivation

- Motivation: Parallel Query Processing
 - Increasing parallelism in computing
 - Shared-nothing clusters, multi-core technology, Grid, P2P...
 - Two ways to exploit parallelism:
 - Partitioned parallelism
 - Operator copies run in parallel on partitions of data
 - Harder to set up, more communication overheads
 - Pipelined Parallelism
 - Each operator run on a different processor
 - Better cache locality, easier to reason about
 - May be the only option in some scenarios
 - Cannot exploit the parallelism fully

Motivation: Parallel Query Processing

sel = 0.1A pipelined query plan 🖂 **Example query** R2 select * sel = 0.1R5 R1.a = R2.afrom R1, R2, R3, R4, R5 R1.b = R3.bwhere R1.a = R2.a and sel = 0.1R1 — R3 R4 R1.b = R3.b and R1.c = R4.csel = 0.1R1.c = R4.c and R3 R4.d = R5.dR4.d = R5.dR4 ____ R5 R2 R1

Tuple Throughput = 1000 tuples/sec

Driver relation

Motivation: Parallel Query Processing

sel = 0.1A pipelined query plan ⋈ **Example query** R2 select * sel = 0.1R5 R1.a = R2.afrom R1, R2, R3, R4, R5 R1.b = R3.bwhere R1.a = R2.a and sel = 0.1R1 — R3 R4 R1.b = R3.b and R1.c = R4.csel = 0.1R3 R1.c = R4.c and R4.d = R5.dR4.d = R5.dR4 ____ R5 R2 R1

Tuple Throughput = 1000 tuples/sec

Proposed Solution: Interleaving Plans

Example query

select * from R1, R2, R3, R4, R5 where R1.a = R2.a and R1.b = R3.b and R1.c = R4.c and R4.d = R5.d

R2

R3

R5

Tuple Throughput \approx 1998 tuples/sec (max = 2790 tuples/sec)

Introduction and Motivation

Motivation: Selection ordering with precedence constraints

Given a driver relation, choosing a left-deep pipelined plan for a multi-way join query is equivalent to precedence-constrained selection ordering

Example query

```
select *
from R1, R2, R3, R4, R5
where R1.a = R2.a and
R1.b = R3.b and
R1.c = R4.c and
R4.d = R5.d
```


R1 tuples need to join with R4 before joining with R5

Cost of O4: $c4 = average per-tuple cost of the join R1 \bowtie R4$

Selectivity of O4: $p4 = fanout \ of \ R1 \bowtie R4$

= average number of R4 matches for an R1 tuple (may be > 1)

Introduction and Motivation

- Motivation: Selection ordering with precedence constraints
- Motivation: Query Processing over Web Services
 - Increasing abundance of web services and standardized APIs for querying them
 - Shopping, Web Search, Housing etc. ...
 - Similar issues as pipelined query processing
 - Each web service == a processor
 - Typically limited number of requests allowed per minute
- Motivation: Similar to many problems in other domains
 - Sequential testing (e.g. for fault detection) [SF'01, K'01]
 - Learning with attribute costs [KKM'05]

Prior Related Work

- Rich literature on parallel and distributed query processing
 - Didn't consider interleaving plans
- Interleaving Plans for Selection Ordering [Condon et al., 2006]
 - Simpler types of queries
 - $-O(n^2)$ algorithm for computing the optimal plan
- Query Optimization over Web Services [Srivastava et al.,2006]
 - Algorithm for choosing an optimal serial (single) plan
 - Considered cyclic queries and a larger plan space
- Eddies [Avnur and Hellerstein, 2000]?
 - Interleaving plans are not adaptive
 - Distributed eddies [Tian and DeWitt, 2006]: Similar metrics, but they focus on adaptivity

Outline

Introduction and Motivation

Problem Definition

- Algorithms for finding Optimal Interleaving Plans
 - Selective operators
 - Non-selective operators

Experimental Results

Parallel Execution Model

Each operator runs on a different processor

Example query select *

from R1, R2, R3, R4, R5 where R1.a = R2.a and R1.b = R3.b and

R1.c = R4.c and

R4.d = R5.d

Processor **Processor Processor** Processor 04 05 03 02 r_4 , p_4 r_2 , p_2 r_5, p_5 r_3, p_3 r_i = rate limit of operator O_i = Number of tuples it can process per unit time (also called *capacity*) Can be computed using c_i

Interleaving Plans

- An interleaving plan defined by:
 - A set of permutations of the operators
 - A weight w_i for each permutation ($\Sigma w_i = 1$)

Interleaving plan: $O2 \rightarrow O3 \rightarrow O4 \rightarrow O5$, w = 0.5

 $O4 \rightarrow O5 \rightarrow O3 \rightarrow O2$, w = 0.5

Problem Definition

Given:

- n selection operators O_1 , ..., O_n
- selectivity p_i and rate r_i for each operator O_i ,
- a precedence graph G over the operators

Find the optimal interleaving plan that maximizes the tuple throughput (and hence total completion time)

- Definition: O_i is called selective if $p_i < 1$
- We assume tree-structured precedence constraints (correspond to queries with no cycles)

Outline

Introduction and Motivation

Problem Definition

- Algorithms for finding Optimal Interleaving Plans
 - Selective operators
 - Non-selective operators

• Experimental Results

Overview of Approach

- View an interleaving plan as a collection of tuple flows
- Definition: An operator is saturated if it is processing at its rate limit
- Lemma: Saturation → Optimality
 - If all operators are saturated, we have an optimal solution
- Algorithm for when G is a forest of chains
- Recursively reduce the general case to forests of chains
- Combine the solutions for sub-problems

Saturated Suffix Lemma [CDHW'06]

- Given an interleaving plan, IF:
 - A set of operators is saturated (processing at their rate limit), and
 - No flow from a saturated operator to an unsaturated operator
 THEN the plan is optimal.
- The actual permutations used irrelevant
- However not necessary when there are precedence constraints

Overview of Approach

- View an interleaving plan as a collection of tuple flows
- Definition: An operator is *saturated* if it is processing at its rate limit
- Lemma: Saturation → Optimality
 - If all operators are saturated, we have an optimal solution
- Algorithm for when G is a forest of chains
- Recursively reduce the general case to forests of chains
- Combine the solutions for sub-problems

Example query

select *
from R1, R2, R3, R4, R5
where R1.a = R2.a and
R1.b = R3.b and
R1.c = R4.c and
R4.d = R5.d

prec. constraint O_4 O_2 O_3 O_5 $r_4 = 900$ $p_2 = 900$ $p_3 = 900$ $p_4 = 0.5$ $p_2 = 0.5$ $p_3 = 0.5$ $p_5 = 0.5$

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (\rightarrow saturation \rightarrow optimality)
- Merging two operators:

 O_2 is merged into $O_1 \rightarrow O_2$ is applied immediately after O_1

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (→ saturation → optimality)

Step 1:

Send 600 units along $04 \rightarrow 02 \rightarrow 03 \rightarrow 05$

Cond 1 satisfied for O4 and O5

Merge O5 into O4

Cond 2 satisfied for O2 and O4

Merge O4 into O2

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (\rightarrow saturation \rightarrow optimality)

Step 2:

Send 240 units along $02 \rightarrow 04 \rightarrow 05 \rightarrow 03$

Cond 2 satisfied for O₃ and O₂₄₅ *Merge O₂₄₅ into O₃*

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (\rightarrow saturation \rightarrow optimality)

Step 3:

Send 720 units along $O3 \rightarrow O2 \rightarrow O4 \rightarrow O5$

Cond 3 satisfied for O₃₂₄₅

All operators are saturated
→ Optimality

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (\rightarrow saturation \rightarrow optimality)

Final Interleaving Plan:

$$O4 \rightarrow O2 \rightarrow O3 \rightarrow O5$$
, $w = \frac{600}{1560}$

$$O2 \rightarrow O4 \rightarrow O5 \rightarrow O3$$
, $w = \frac{240}{1560}$

$$O3 \rightarrow O2 \rightarrow O4 \rightarrow O5$$
, $w = \frac{720}{1560}$

- Sort in non-increasing order by rate
- Start adding flow from left-to-right till:
 - Cond 1: A parent can exactly saturate a child (merge and recurse)
 - Cond 2: A node can exactly saturate its predecessor (merge and recurse)
 - Cond 3: No more flow can be added (\rightarrow saturation \rightarrow optimality)
- Theorem: The algorithm runs in $O(n^2 \log n)$ time and finds an interleaving plan with at most 4n 3 distinct permutations.

Overview of Approach

- View an interleaving plan as a collection of tuple flows
- Definition: An operator is *saturated* if it is processing at its rate limit
- Lemma: Saturation → Optimality
 - If all operators are saturated, we have an optimal solution
- Algorithm for when G is a forest of chains
- Recursively reduce the general case to forests of chains
- Combine the solutions for sub-problems

General Case

Eliminate one fork at a time using the Chains algorithm

General Case

Combine the solutions found for the sub-problems and the recursive problem

General Case

• Theorem: The algorithm runs in $O(n^3)$ time and finds an interleaving plan with at most 4n distinct permutations.

Outline

Introduction and Motivation

Problem Definition

- Algorithms for finding Optimal Interleaving Plans
 - Selective operators
 - Non-selective operators

Experimental Results

Non-selective Operators

- The saturated suffix lemma does not hold:
 - Saturation does not imply optimality
- Summary of results:
 - All non-selective operators and tree-structured precedence constraints
 - Can be solved using the same algorithm
 - Mixture of selective and non-selective operators
 - $O(n^2 \log n)$ algorithm for when G is a forest of chains
 - General case still open
 - Known to be polynomial

Outline

Introduction and Motivation

Problem Definition

- Algorithms for finding Optimal Interleaving Plans
 - Selective operators
 - Non-selective operators

Experimental Results

- Compared Techniques:
 - OPT-SEQ: Serial plan found using rank ordering
 - Optimal for centralized case
 - BOTTLENECK [Srivastava et al.; 2006]
 - Optimal serial plan for parallel execution
 - MTTC: Proposed algorithm
- Setup:
 - Synthetic datasets: costs and selectivities chosen randomly
 - Different query types: star, path, random
- Comparison metrics:
 - Response time (total time to execute the query)
 - Total work (across all processors)

• Star queries (1)

Opt-Seq
Bottleneck
MTTC

Avg Norm

Avg Norm

Bottleneck

MTTC

Number of Relations

(ii) Sel in [0, 1], Costs in [1, 1]

• Star queries (2)

Path queries, randomly generated query graphs

Conclusions and Future Work

- Proposed interleaving plans to fully exploit parallelism in a database system
- Fast algorithms for finding optimal interleaving plans
 - Use few permutations, so easy to deploy
- Open questions:
 - Cyclic precedence constraints
 - Correlated predicates
 - Other types of queries (Bushy plans, MJoins)
- Thank you !!

Reduction

 Given a multi-way join query and a driver relation, choosing a leftdeep plan is equivalent to precedence-constrained selection ordering

Example query

select *
from R1, R2, R3, R4, R5
where R1.a = R2.a and
R1.b = R3.b and
R1.c = R4.c and
R4.d = R5.d

Algorithms for finding serial plans

- Rank ordering: Order the operators in the increasing order of rank = ci/(1 - pi)
 - Optimal in a centralized scenario
 - Oblivious to the parallelization
- Bottleneck [Srivastava et al.; 2006]: Order the operators in the decreasing order of ri
 - Finds the optimal serial plan in the parallel setting for selective operators
 - Different plan space considered for non-selective operators

Saturation → Optimality

- Case: Full Saturation
 - All operators are processing at their rate limit
 - Precedence constraints irrelevant
- Proof:

<u>Saturated steady state – Throughput K</u>