Flow Algorithms for Parallel
Query Optimization

Amol Deshpande, University of Maryland

Lisa Hellerstein, Polytechnic University, Brooklyn

Introduction and Motivation

e Motivation: Parallel Query Processing

— Increasing parallelism in computing

e Shared-nothing clusters, multi-core technology, Grid, P2P...

— Two ways to exploit parallelism:

e Partitioned parallelism
— Operator copies run in parallel on partitions of data
— Harder to set up, more communication overheads

e Pipelined Parallelism
— Each operator run on a different processor
— Better cache locality, easier to reason about
— May be the only option in some scenarios
— Cannot exploit the parallelism fully

Motivation: Parallel Query Processing

Example query R2 A pipelined query plan sel = 0.1
select * ol = 0.1 /J><l\
from R1, R2,R3, R4, R5 Rta=Rea /J><1.\ RS
where R1.a = R2.a and R1 R3 sel =0.1 R4

R1.b =R3.b and /Pq\

R1l.c =R4.cand RIc=RACY e REd sel = 0.1 R3

R4.d =R5.d R4 R5

R1 R2

Tuple Throughput = 1000 tuples/sec

Driver relation

g Processor 1 Processor 2 Processor 3 Processor 4
R1 R1D><]R2 R1><]|R3 R1D<IR4 R4D<]IR5
1000/sec 100/sec 10/sec 1/sec

R2 R3 R4 R5

Motivation: Parallel Query Processing

Example query R2 A pipelined query plan sel = 0.1
select * om0 /JX]'\
from R1,R2, R3,R4,R5 Rta=kza ' /J><l\ R5
where R1.a = R2.a and R1 R3 sel = 0.1 hy

R1.b = R3.b and /Pq\

R1l.c =R4.c and Ric=Racl oy i=Rsd sel = 0.1 R3

R4.d = R5.d R4 R5

R1 R2

Tuple Throughput = 1000 tuples/sec

Processor 1 Processor 2 Processor 3 Processor 4
R1DX R2 R1DXI R3 R1D<}I R4 R4DXIR5

100/sec 10/sec 1/sec

R1
1000/sec

Proposed Solution: Interleaving Plans

Example query Plan 1 (50%) /Jxl\ Plan 2 (50%)/J><l\
select * R5
from R1, R2, R3, R4, R5 /JX]'\ /pq\ R2
where R1.a = R2.a and /J><]\ R4 R3
R1.b=R3.band /JX]'\
R1.c = R4.c and /Pq\ R3 /JX].\ RS

R4.d =R5.d R1 R2 R1 R4

Tuple Throughput = 1998 tuples/sec (max = 2790 tuples/sec)

Processor 2 Processor 3 Processor 4

Processor 1
R1DX< R4 R4DXIR5

R1DX R2 R1DXIR3

ﬁ

Introduction and Motivation

e Motivation: Selection ordering with precedence constraints

Given a driver relation, choosing a left-deep pipelined plan for a multi-way
Join query is equivalent to precedence-constrained selection ordering

- \C2, p2
Exrmtpie query 02 =R1XI R2
selec \)
from R1, R2, R3, R4, R5 / r 1D \C3, p3
where R1.a = R2.a and R1 ! QS IR RE)
R1.b =R3.b and ¢4, p4 c5, p5
R1l.c = R4.c and 04 =R1P] R4 '[05 = R4[X R5]

R4.d = R5.d /

R1 tuples need to join with R4 before joining with RS

Cost of O4: ¢4 = average per-tuple cost of the join R1P<{] R4

Selectivity of O4: p4 = fanout of R1DX] R4
= average number of R4 matches for an R1 tuple (may be > 1)

Introduction and Motivation

e Motivation: Selection ordering with precedence constraints

e Motivation: Query Processing over Web Services
— Increasing abundance of web services and standardized APIs for
querying them
e Shopping, Web Search, Housing etc. ...
— Similar issues as pipelined query processing

e Each web service == a processor
e Typically limited number of requests allowed per minute

e Motivation: Similar to many problems in other domains
— Sequential testing (e.g. for fault detection) [SF'01, K'01]
— Learning with attribute costs [KKM’05]

Prior Related Work

e Rich literature on parallel and distributed query processing

— Didn’t consider interleaving plans

e |nterleaving Plans for Selection Ordering [Condon et al., 2006]
— Simpler types of queries
— 0(n?) algorithm for computing the optimal plan

e Query Optimization over Web Services [Srivastava et al.,2006]
— Algorithm for choosing an optimal serial (single) plan
— Considered cyclic queries and a larger plan space

e Eddies [Avnur and Hellerstein, 2000] ?

— Interleaving plans are not adaptive

— Distributed eddies [Tian and DeWitt, 2006]: Similar metrics, but they focus on
adaptivity

Outline

e Introduction and Motivation

e Problem Definition

e Algorithms for finding Optimal Interleaving Plans
— Selective operators
— Non-selective operators

e Experimental Results

Parallel Execution Model

e Each operator runs on a different processor

Example query \C2, p2

02 =R1X R2

select * {)

from R1, R2, R3, R4, R5 4 \C3, p3
03 =R1X R3

where R1.a = R2.a and R1 |

R1.b =R3.b and \ \c4, p4 c5, p5
04 = R1D R4 —{ 05 = R4 R5J

R1.c=R4.c and
R4.d =R5.d

Processor Processor Processor Processor

(0 O3 O4 (0]

o P2 I3 P3 Iy, Py I's, Ps

r; = rate limit of operator O,
= Number of tuples it can process
per unit time
(also called capacity)

Can be computed using ¢;

Interleaving Plans

e An interleaving pla

n defined by:

— A set of permutations of the operators

— A weight w; for each permutation (2 w, = 1)

O,

03 O4 O5

Interleaving plan: 02 > O3 204 - O5, w=0.5
04 >05->203->02,w=0.5

Problem Definition

e Given:
— n selection operators O, ..., O,
— selectivity p; and rate r; for each operator O,
— a precedence graph G over the operators

Find the optimal interleaving plan that maximizes the
tuple throughput (and hence total completion time)

e Definition: O; is called selective if p;< 1

e We assume tree-structured precedence constraints
(correspond to queries with no cycles)

Outline

e Introduction and Motivation

e Problem Definition

e Algorithms for finding Optimal Interleaving Plans
— Selective operators
— Non-selective operators

e Experimental Results

Overview of Approach

e View an interleaving plan as a collection of tuple flows
e Definition: An operator is saturated if it is processing at its rate limit

e Lemma: Saturation = Optimality

— |If all operators are saturated, we have an optimal solution
e Algorithm for when G is a forest of chains
e Recursively reduce the general case to forests of chains

e Combine the solutions for sub-problems

Saturated Suffix Lemma [CDHW'06]

e Given an interleaving plan, IF:
— A set of operators is saturated (processing at their rate limit), and
— No flow from a saturated operator to an unsaturated operator

THEN the plan is optimal.
e The actual permutations used irrelevant

e However not necessary when there are precedence constraints

prec. constraint

£ DN
o o
01 02 03 On 01 02
ry, Py Iy, P rs, P3 Iny Pn r, = 1000 r,=1000

Steady state with saturated suffix p,=0.1 P>

Overview of Approach

e View an interleaving plan as a collection of tuple flows
e Definition: An operator is saturated if it is processing at its rate limit

e Lemma: Saturation = Optimality
— If all operators are saturated, we have an optimal solution

e Algorithm for when G is a forest of chains
e Recursively reduce the general case to forests of chains

e Combine the solutions for sub-problems

Algorithm: G = forest of chains

Example query i 1
select * 02=R1DJR2
from R1, R2, R3, R4, R5 /) !
where R1.a = R2.a and R1 03 =R1[XR3

R1.b =R3.b and

R1.c=R4.c and \(N
R4.d = R5.d 04 = R1 XIR4 —{05=R4[><]R5 J

. J

prec. constraint
/ \‘
0, o, 0, O;
r, =900 r,=900 ry =900 rs=225
p,=0.5 p,=0.5 p5=0.5 ps=0.5

Algorithm: G = forest of chains

e Sortin non-increasing order by rate
e Start adding flow from left-to-right till:

— Cond 1: A parent can exactly saturate a child (merge and recurse)

— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

e Merging two operators:
O,is merged into O, > O, is applied immediately after O,
0, 0,

012
r, = 1000 r2=500 ro= 1000
p1=0.5 p2=0-5 p12=0.25

O, exactly saturates O

Merge

Algorithm: G = forest of chains

e Sortin non-increasing order by rate
e Start adding flow from left-to-right till:

— Cond 1: A parent can exactly saturate a child (merge and recurse)

— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

Step 1:
Send 600 units along

04 -5 02 >03 > 05

Cond 1 satisfied for O4 and O5
Merge OS5 into O4

Cond 2 satisfied for O2 and O4
Merge O4 into O2

Algorithm: G = forest of chains

e Sortin non-increasing order by rate
e Start adding flow from left-to-right till:

— Cond 1: A parent can exactly saturate a child (merge and recurse)

— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

Step 2:
Send 240 units along

02 > 04 505> 03

Cond 2 satisfied for O3 and 0245
Merge 0245 into O3

Algorithm: G = forest of chains

e Sortin non-increasing order by rate

e Start adding flow from left-to-right till:
— Cond 1: A parent can exactly saturate a child (merge and recurse)
— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

Step 3:
Send 720 units along O3245
03 > 02 >04 > 05 Fapes = 720

p;=0.0625
Cond 3 satisfied for O3245

All operators are saturated
- Optimality

Algorithm: G = forest of chains

e Sortin non-increasing order by rate

e Start adding flow from left-to-right till:
— Cond 1: A parent can exactly saturate a child (merge and recurse)
— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

Final Interleaving Plan:

_ 600 0 0 o, 0;
04 -5 02 >03 > 05, w=1=%x 4 2
’ 1560 r, = 900 r,=900 ry =900 rs=225
p,=0.5 p,=0.5 p,=0.5 p=0.5

02 > 04 505> 03, w=sr
03> 02304 05 w =
,» W =7560

Algorithm: G = forest of chains

e Sortin non-increasing order by rate
e Start adding flow from left-to-right till:

— Cond 1: A parent can exactly saturate a child (merge and recurse)

— Cond 2: A node can exactly saturate its predecessor (merge and recurse)
— Cond 3: No more flow can be added (= saturation = optimality)

e Theorem: The algorithm runs in O(n? log n) time and finds an
interleaving plan with at most 4n — 3 distinct permutations.

Overview of Approach

e View an interleaving plan as a collection of tuple flows
e Definition: An operator is saturated if it is processing at its rate limit

e Lemma: Saturation = Optimality
— If all operators are saturated, we have an optimal solution

e Algorithm for when G is a forest of chains
e Recursively reduce the general case to forests of chains

e Combine the solutions for sub-problems

General Case

Eliminate one fork at a time using the Chains algorithm

d

atpbr O,

056

Apply chains algoritim on [chains
Os O
078

) Say {O,, O} are tyrated
Construct super-operator Ogg

General Case

Combine the solutions found for the sub-problems and
the recursive problem

071 770,70370, 705057 07

_’
05 ™ Og
0; 0,70370;,705 0,70z
010,057 05705 2075704
_____________________ — — e o e = = e = — — — — — —
O — 05
0; 0370, 055 0, 0z 07 0370, 0705; 0,70y

General Case

e Theorem: The algorithm runs in O(n?) time and
finds an interleaving plan with at most 4n distinct
permutations.

Outline

e Introduction and Motivation

e Problem Definition

e Algorithms for finding Optimal Interleaving Plans
— Selective operators
— Non-selective operators

e Experimental Results

Non-selective Operators

e The saturated suffix lemma does not hold:

— Saturation does not imply optimality

e Summary of results:

— All non-selective operators and tree-structured precedence
constraints

e Can be solved using the same algorithm
— Mixture of selective and non-selective operators
e 0(n?log n) algorithm for when G is a forest of chains

— General case still open

e Known to be polynomial

Outline

e Introduction and Motivation

e Problem Definition

e Algorithms for finding Optimal Interleaving Plans
— Selective operators
— Non-selective operators

e Experimental Results

Performance Study

e Compared Techniques:
— OPT-SEQ: Serial plan found using rank ordering

e Optimal for centralized case

— BOTTLENECK [Srivastava et al.; 2006]

e Optimal serial plan for parallel execution

— MTTC: Proposed algorithm
e Setup:
— Synthetic datasets: costs and selectivities chosen randomly

— Different query types: star, path, random

e Comparison metrics:
— Response time (total time to execute the query)
— Total work (across all processors)

Performance Study

e Star queries (1)

8 O Opt-Seq
@ Bottleneck
m MTTC

Avg Norm. Response Time
I
1

4 6 8 10 12 14 16
Number of Relations

(i) Selin [0, 1], Costs in [1, 1]

Avg Norm. Total Work

3 - O Opt-Seq
1 @ Bottleneck
] m MTTC

2

1]

0 -

4 6 8 10 12 14 16
Number of Relations

(i) Sel in [0, 1], Costs in [1, 1]

Performance Study

e Star queries (2)

8 — 0 Bottleneck, Costs in [1,1] 15 - & Opt-Seq, sel in [0.9, 1]
GE) | m Bottleneck, Costs in [1, 5] GEJ 1 m Bottleneck, sel in [0.9, 1]

i 2 Bottleneck, Costs in [1, 20]] i= | I3 Opt-Seq, sel in [0, 0.1]
@ 6| B Bottleneck, Costs in [1, 50]] © | m Bottleneck, sel in [0, 0.1] !
c f c 10 - ’
o o ’
=1 / S /
Cat> 4 4 C“t’ /
: 4 : /
£ / € 5- /
S 24 , Al S] f
/ 4l f /
2 W f u, S / /
< 0 — [| / | | /i < 0 _- ' 4 | d
4 6 8 10 12 14 16 4 6 8 10 12 14 16

Number of Relations Number of Relations

(i) Selin [0, 1] (ii) Costs in [1, 1]

Performance Study

e Path queries, randomly generated query graphs

3 2 Opt-Seq, sel in [0, 1] 5 2 Opt-Seq, sel in [0, 1]
GE) . B Bottleneck, sel in [0, 1] OE) M Bottleneck, sel in [0, 1]
i] 3 Opt-Seq, sel in [0, 0.1] = M Opt-Seq, sel in [0, 0.1]
o . @ Bottleneck, sel in [0, 0.1] o @ Bottleneck, sel in [0, 0.1]
c 24 - c i
o] " ’ / 8-
2 7| 2 :
i : il Wl v f
SEN NN 1 ,
(@) N’ / ’ o ’
=z] / / ’ prd /
o] 4] ! / ’ o /
> 1 Wl 7 v >

4 6 8 10 12 14 16

Number of Relations Number of Relations
(i) Path Queries (i) Random Queries

Conclusions and Future Work

e Proposed interleaving plans to fully exploit parallelism in a
database system

e Fast algorithms for finding optimal interleaving plans

— Use few permutations, so easy to deploy

e Open questions:
— Cyclic precedence constraints
— Correlated predicates
— Other types of queries (Bushy plans, MJoins)

e Thank you !!

Reduction

e Given a multi-way join query and a driver relation, choosing a left-

deep plan is equivalent to precedence-constrained selection
ordering

()

Example query 02 =R1XR2
select * A g
from R1, R2, R3, R4, R5 f)

where R1.a = R2.a and R1 | 03 =R1[XR3)
RLb = R3.b and \ \
R1l.c =R4.c and 04 = R1 XIR4 {O5=R4[X]R5]

R4.d = R5.d \ J

Q2 = R1 XIR2 J

RS 4’[Q4=R4[><]R5 |—’| Q1 =R4 X|R1

[Q3=R1[><]R3J

Algorithms for finding serial plans

e Rank ordering: Order the operators in the increasing order
of rank = ci/(1 — pi)
— Optimal in a centralized scenario
— Oblivious to the parallelization

e Bottleneck [Srivastava et al.; 2006]: Order the operators in
the decreasing order of ri

— Finds the optimal serial plan in the parallel setting for selective
operators

— Different plan space considered for non-selective operators

Saturation =2 Optimality

e (Case: Full Saturation
— All operators are processing at their rate limit
— Precedence constraints irrelevant

e Proof:
If throughput equal to K,

s~gjected in unit time

Protzd $spke in unit time
Rejectg (3 p 1| fupfos

O O o0 o

01 02 03 On
Iy, Py I P2 rs, P3 r., P,

Saturated steady state — Throughput K

