# Increasing the Representational Power and Scaling Reasoning in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal, Jian Li, and Prithviraj Sen)

#### Motivation

- Increasing amounts of real-world uncertain data
  - Sensor networks, Scientific databases
    - Imprecise data, data with confidence or accuracy bounds
    - Widespread use of statistical and probabilistic models
  - Data integration
    - Noisy data sources, automatically derived schema mappings
    - Reputation/trust/staleness issues
  - Information extraction
    - Automatically extracted knowledge from text
  - Social networks, biological networks
    - Noisy, error-prone observations
    - Ubiquitous use of entity resolution, link prediction, function prediction ...
- Need to develop database systems for efficiently representing and managing uncertainty

#### **Probabilistic Databases**

- "Probability theory" a strong foundation to reason about the uncertainty
- Goal of Probabilistic Databases: Managing and querying large volumes of data annotated with probabilities
- Much work in recent years, leading up to many systems

Mystiq (University of Washington)MCDB (Univ. of Florida, IBM)Trio (Stanford)Orion (Purdue University)MayBMS (Cornell, Oxford)BayesStore (Berkeley)

<u>PrDB (Maryland)</u>
Lahar (University of Washington)

Other work on approximations, ranking, indexing, summarization etc.

But, many challenges still remain...

#### Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

## Probabilistic Databases

- Types of uncertainties typically supported
  - Tuple-existence uncertainty
    - A tuple may or may not exist in the database
    - e.g. a sensor may detect a bird, but not 100% sure
  - Attribute-value uncertainty
    - The value of an attribute not known precisely
    - Instead a distribution over possible values is provided
    - e.g. a sensor detects a bird for sure, but it may be a sparrow or a dove or something else
- Most systems assume discrete probability distributions, but some support continuous distributions as well
- Largely based on the possible worlds semantics

## An Example Probabilistic Database

- Example from Dalvi and Suciu [2004]
- Assume independent tuples

| S  | Α   | В | prob |
|----|-----|---|------|
| s1 | 'm' | 1 | 0.6  |
| s2 | 'n' | 1 | 0.5  |

Interpret as a distribution over a set of deterministic possible worlds

| T         | В | С   | prob |
|-----------|---|-----|------|
| <i>t1</i> | 1 | ʻp' | 0.4  |

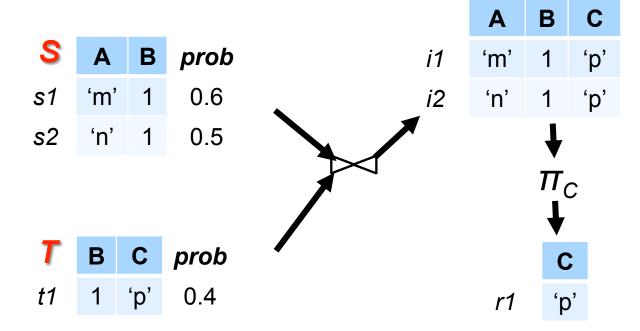
| p(s1) * p(t1) * (1-p(s2)) |
|---------------------------|
| = 0.6 * 0.4 * 0.5         |
| = 0.12                    |

#### Possible worlds

| instance     | probability |
|--------------|-------------|
| {s1, s2, t1} | 0.12        |
| {s1, s2}     | 0.18        |
| {s1, t1}     | 0.12        |
| {s1}         | 0.18        |
| {s2, t1}     | 0.08        |
| {s2}         | 0.12        |
| {t1}         | 0.08        |
| {}           | 0.12        |

## **Query Processing Semantics**

- Evaluate on each possible world and combine results
- Example Query:  $\pi_c(S \bowtie_B T)$



## **Query Processing Semantics**

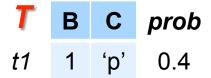
Evaluate on each possible world and combine results

{}

• Example Query:  $\pi_{C}(S \bowtie_{B} T)$ 

| S  | Α   | В | prob |
|----|-----|---|------|
| s1 | 'm' | 1 | 0.6  |
| s2 | 'n' | 1 | 0.5  |
|    |     |   |      |





| Possible worlds | Query | <u> Result</u> |
|-----------------|-------|----------------|
|                 |       |                |

0.1

| instance     | prob   | result      |              |      |       |
|--------------|--------|-------------|--------------|------|-------|
| {s1, s2, t1} | 0.12   | {'p'}       |              |      |       |
| {s1, s2}     | 0.18   | {}          |              |      |       |
| {s1, t1}     | 0.12   | {'p'}       |              | C    | prob  |
| {s1}         | 0.18   | {}          | <u> </u>     | ʻp'  | 0.32  |
| {s2, t1}     | 0.08   | {'p'}       |              |      |       |
| {s2}         | 0.12   | {}          |              |      |       |
| {t1}         | 0.0 No | t clear how | to do this i | n ge | neral |

Not clear how to do this in general e.g. ranking ??

Consensus Answers [PODS'09]

## **Query Processing**

- Several approaches proposed in recent years in DB literature
  - Typically make strong independence assumptions
  - Limited support for attribute-value uncertainty
  - In spite of that, query evaluation known to be #P-Hard [DS'04]
    - For very simple 3-relation queries

#### Our Goals:

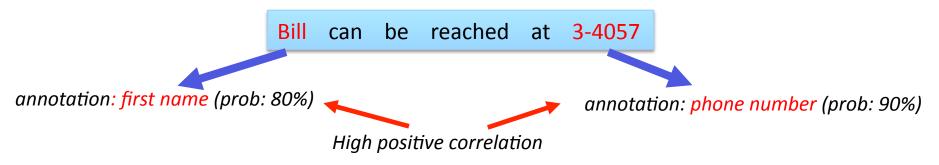
- Increase representation power to support:
  - Correlations among the data items
  - Uncertainties at different abstraction levels and granularities
- Scale reasoning and querying to large-scale uncertain data while supporting the above

#### Correlations in Uncertain Data

- Most application domains generate correlated data
  - Data Integration
    - Conflicting information best captured using "mutual exclusivity"
    - Data from the same source may all be valid or may all be invalid

|      | Name | Salary |      |        |      |           |
|------|------|--------|------|--------|------|-----------|
| DB1: | John | \$1200 | Name | Salary | prob | _         |
|      |      | ,      | John | \$1200 | 0.3  | Mutually  |
| DB2: | John | \$1600 | John | \$1600 | 0.7  | exclusive |

- Information extraction
  - Annotations on consecutive text segments strongly correlated



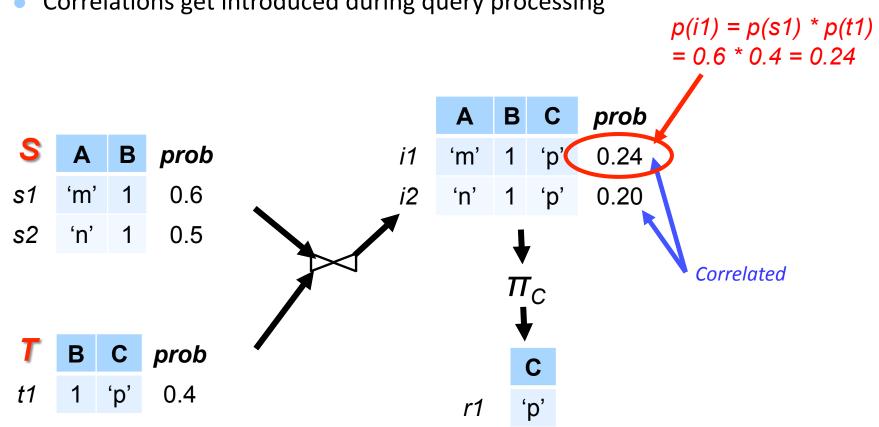
## Correlations in Uncertain Data

- Most application domains generate correlated data
  - Data Integration
    - Conflicting information best captured using "mutual exclusivity"
    - Data from the same source may all be valid or may all be invalid
  - Information extraction
    - Annotations on consecutive text segments strongly correlated
  - Social networks
    - Attributes of neighboring nodes often highly correlated
    - Predicted links, class labels likely to be correlated
  - Sensor network data
    - Very strong spatio-temporal correlations
- Even if base data exhibits independence..
  - Correlations get introduced during query processing

#### Correlations in Uncertain Data

Even if base data exhibits independence...





#### **Shared Uncertainties and Correlations**

- Uncertainties and correlations often specified for groups of tuples rather than for individual tuples
- Necessary when trying to model and reason about uncertainty in large populations

| AdID    | Model | Color | Price    |
|---------|-------|-------|----------|
| 1       | Honda | ?     | \$9,000  |
| 2       | ?     | Beige | \$8,000  |
| 3       | ?     | ?     | \$6,000  |
|         |       |       |          |
|         |       |       |          |
|         |       |       |          |
| 1000000 | ?     | ?     | \$10,000 |

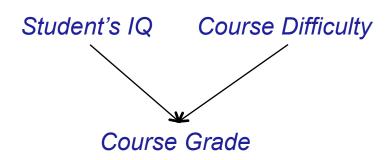
| Model | Pr(M) |
|-------|-------|
| Honda | 0.2   |
| Mazda | 0.1   |
|       |       |

| Model | Color | Pr(C M) |
|-------|-------|---------|
| Honda | Beige | 0.1     |
| Honda | Red   | 0.2     |
|       |       |         |
| Mazda | Beige | 0.02    |

A Used Car Ads Database

#### Schema-level Uncertainties

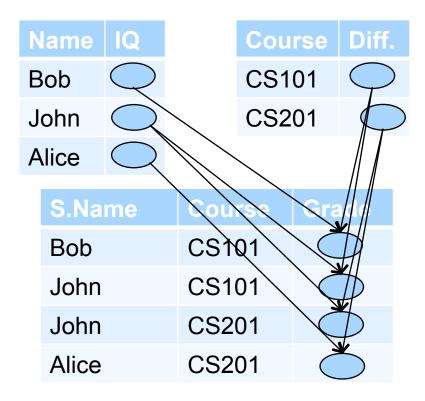
- Often we have probabilistic knowledge at the schema level (learned from a deterministic database) that we are trying to transfer
  - Using Prob. relational models (PRMs), Relational Markov networks (RMNs) etc.
     ("Intro. to Statistical Relational Learning"; Getoor and Taskar, 2007)



A "Schema-level" Dependence

**An Instantiation** 





## First-order Logic and Uncertainties

Often need to reason about uncertainties at the first-order level

Example from "Markov Logic Networks"; Richardson and Domingos [2006]

| English and First Order Logic                                                                                     | Clausal Form                                    | Weight |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| "Friends of friends are friends"<br>$\forall x \forall y \forall z \ Fr(x, y) \land F(y, z) \Rightarrow Fr(x, z)$ | $\neg Fr(x, y) \lor \neg F(y, z) \lor Fr(x, z)$ | 0.7    |
| "Smoking causes cancer".<br>∀x Sm(x) ⇒ Ca(x)                                                                      | ¬Sm(x) V Ca(x)                                  | 1.5    |
| "Friends have similar behavior w.r.t. smoking." $\forall x \forall y \ Fr(x, y) \land Sm(x) \Rightarrow Sm(y)$    | $\neg Fr(x, y) \lor \neg Sm(x) \lor Sm(y)$      | 1.1    |

- Rules do not always hold hence may choose to augment them with weights (approach taken in Markov Logic Networks)
  - Hard vs soft constraints

#### Markov Logic Networks

- A specific population defines a specific Markov network
  - Given persons: Anna, Frank, Bob
  - We get the (boolean) variables:
    - Friends(Anna, Frank), Friends(Anna, Bob), Friends(Frank, Bob), ...
    - Smokes(Anna), Smokes(Frank), Smokes(Bob), ...
    - Ca(Anna), Ca(Frank), Ca(Bob), ...
  - An instantiation to these variables (true or false) is a possible world
  - Possible worlds that violate fewer constraints have higher probabilities
    - According to the weights
- Typical inference task: find the most likely world
- May want to treat the output as an uncertain database and support rich querying constructs

## Reasoning over Correlated, Uncertain Data

- Huge body of work in Machine Learning community on this topic
  - Bayesian and Markov networks, statistical relational models (PRMs, MRNs)
  - On efficient algorithms for reasoning, for inference, for learning ...
  - As much emphasis on learning as on inference
- Lot of work in recent years in the Probabilistic Databases literature
  - On efficient SQL query processing over very large amounts of data
  - Comparatively simpler uncertainty structures
- How to combine the representational power and richness of ML approaches with the ability to execute declarative queries over large volumes of data?

#### PrDB Framework

- Flexible uncertainty model (based on probabilistic graphical models)
  - Support for representing rich correlation structures [ICDE'07]
  - Support for specifying uncertainty at multiple abstraction levels [DUNE'07]
- Declarative constructs for interacting with the database
  - Manipulating and updating uncertainty as a first class citizen
- Rich querying semantics
  - SQL queries; Inference, reasoning, and what-if queries
- New techniques for scaling reasoning and query processing
  - Inference techniques to exploit the structure in the data [VLDB'08]
  - Index structures for handling large volumes of data [SIGMOD'09,'10]
  - Efficient algorithms for ranking queries, consensus answers [VLDB'09,PODS'09]
  - Approximation techniques that enable tradeoff accuracy and speed [UAI'09]

#### Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

# A Simple Example

- Represent the uncertainties and correlations graphically using small functions called factors
  - Concepts borrowed from the graphical models literature

| S  | A   | В | prok |
|----|-----|---|------|
| s1 | 'm' | 1 | 0.6  |
| s2 | 'n' | 1 | 0.5  |

| s1 | $f_1(s1)$ |
|----|-----------|
| 0  | 0.4       |
| 1  | 0.6       |

Often not probability distributions

Values can be > 1

| T          | В | С   | prob |
|------------|---|-----|------|
| <i>t</i> 1 | 1 | ʻp' | 0.4  |

| s2 | t1 | f <sub>2</sub> (s2, t1) |
|----|----|-------------------------|
| 0  | 0  | 0.1                     |
| 0  | 1  | 0.5                     |
| 1  | 0  | 0.4                     |
| 1  | 1  | 0                       |

s2 and t1 mutually exclusive

# A Simple Example

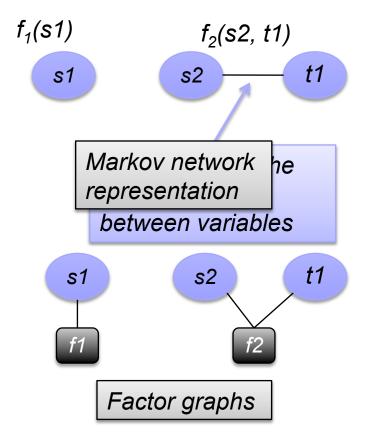
- Represent the uncertainties and correlations graphically using small functions called factors
  - Concepts borrowed from the graphical models literature

| S  | Α   | В | prob |
|----|-----|---|------|
| s1 | 'm' | 1 | 0.6  |
| s2 | 'n' | 1 | 0.5  |

| s1 | f <sub>1</sub> (s1) |
|----|---------------------|
| 0  | 0.4                 |
| 1  | 0.6                 |

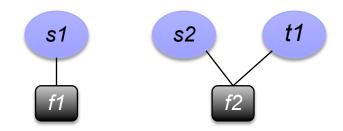
| T         | В | С   | prob |
|-----------|---|-----|------|
| <i>t1</i> | 1 | ʻp' | 0.4  |

| s2 | t1 | f <sub>2</sub> (s2, t1) |
|----|----|-------------------------|
| 0  | 0  | 0.1                     |
| 0  | 1  | 0.5                     |
| 1  | 0  | 0.4                     |
| 1  | 1  | 0                       |



# Probabilistic Graphical Models

- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
  - A set of random variables
  - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing
- An Inference task: Finding a marginal prob. distribution over subset of variables
  - e.g.  $Pr(t_1)$



$$Pr(s_1, s_2, t_1) \propto f_1(s_1) f_2(s_2, t_1)$$

#### For example:

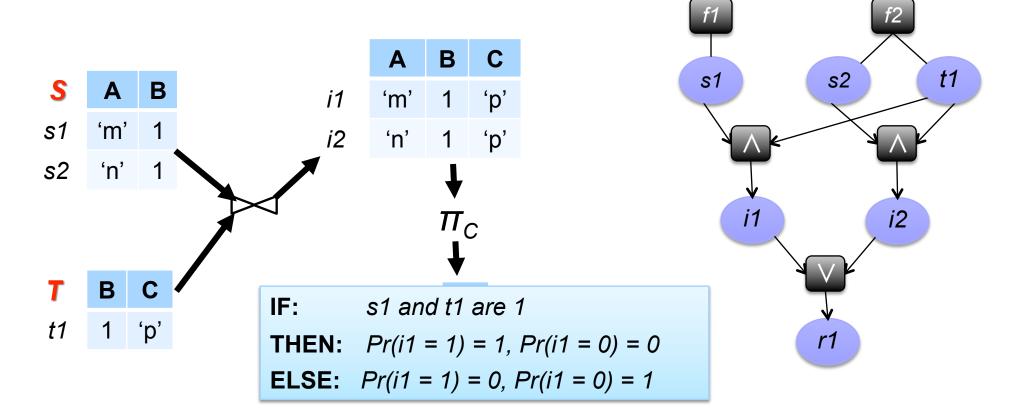
$$Pr(s_1 = 0, s_2 = 0, t_1 = 0) =$$

$$\frac{1}{Z} f_1(s_1 = 0) f_2(s_2 = 0, t_1 = 0)$$
Normalizing Constant

("Partition Function")

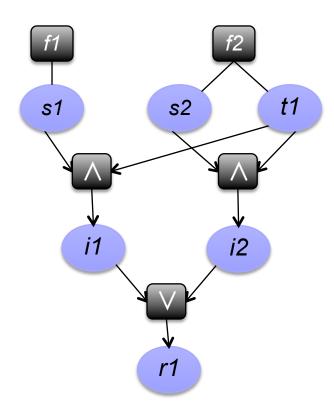
# A Simple Example

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
  - Encode the dependencies between base tuples and intermediate tuples
- Example query:  $\pi_C(S \bowtie_B T)$



## Probabilistic Graphical Models

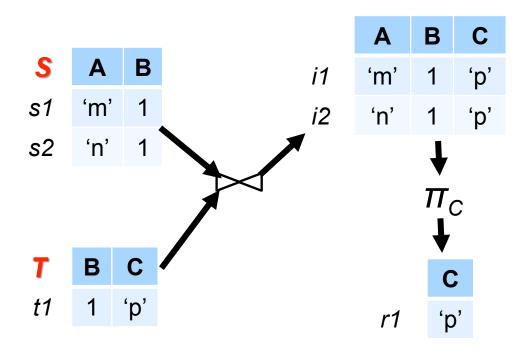
- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
  - A set of random variables
  - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing

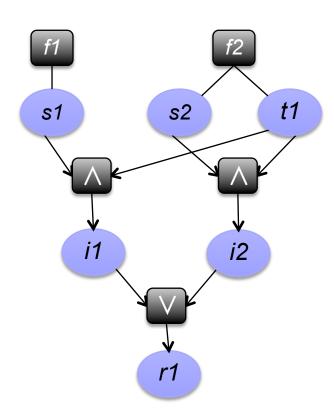


 $Pr(s_1, s_2, t_1, i_1, i_2, r_1) \propto f_1(s_1) f_2(s_2, t_1) f^{\wedge}(s_1, t_1, i_1) f^{\wedge}(s_2, t_1, i_2) f^{\vee}(i_1, i_2, r_1)$ 

# A Simple Example

- Query evaluation ≡ Find the result tuple probabilities ≡ Inference !!
  - Can use standard techniques like variable elimination, junction trees (exact),
     message passing, loopy Belief propagation, Gibbs Sampling (approx)



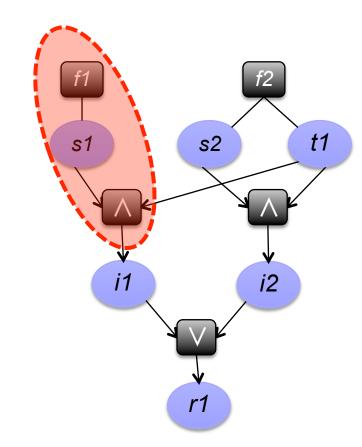


# A Simple Example: Inference

- Variable Elimination
  - Sum-out non-query random variables one by one
    - Collect factors for that variable, multiply them, and sum out the variable

$$P(r_1) = \sum_{s1, s2, t1, i1, i2} Pr(s_1, s_2, t_1, i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i1, i2} f^{\wedge}(s_1, t_1, i_1) f^{\wedge}(s_2, t_1, i_2) f^{\vee}(i_1, i_2, r_1)$$



## A Simple Example: Inference

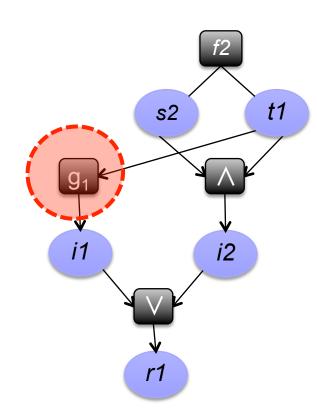
- Variable Elimination
  - Sum-out non-query random variables one by one
    - Collect factors for that variable, multiply them, and sum out the variable
  - Elimination Order: The order in which to sum-out the random variables
    - Choosing a good elimination order critical for performance (NP-Hard)

$$P(r_1) = \sum_{s1, s2, t1, i1, i2} Pr(s_1, s_2, t_1, i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i1, i2} f^{\Lambda}(s_1, t_1, i_1) f^{\Lambda}(s_2, t_1, i_2) f^{V}(i_1, i_2, r_1)$$

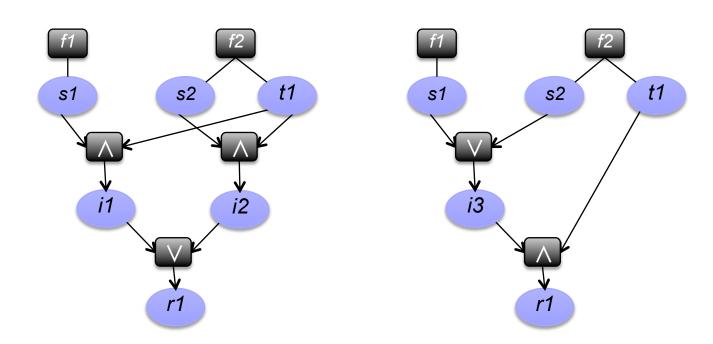
$$\propto \sum_{s1, s2, t1, i1, i2} f^{\Lambda}(s_1, t_1, i_1) f^{\Lambda}(s_2, t_1, i_2) f^{V}(i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i2} f^{\Lambda}(s_1, t_1, i_2, r_1) f^{\Lambda}(s_2, t_1, i_2) f^{\Lambda}(s_2, t_1, i_2, r_1)$$



#### An Observation

- AND and OR factors enable reorganization of the network
  - Complexity of the generated network depends on the query plan
    - "Safe plans" generate tree networks enabing extensional evaluation
  - But a reorganization may not necessarily correspond to a traditional query plan
  - Benefits in looking for optimal reorganization for a given query and dataset
- Efficient inference in presence of special types of factors largely open



#### Outline

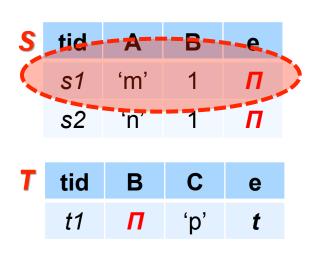
- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

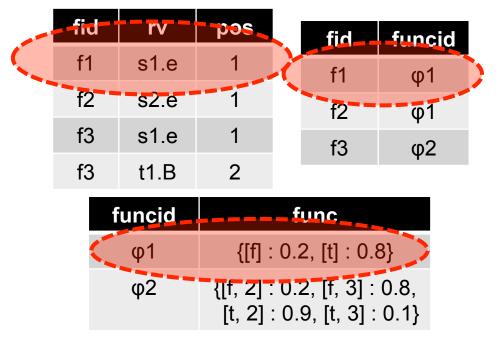
## PrDB: Representation and Storage

- Underlying representation essentially a factor graph
  - Tuples and factors stored separately in different tables
- Factors can be inserted on any set of random variables
  - Corresponding to tuple existences or attribute values
- Semantics: the joint pdf over the random variables is obtained by multiplying all the factors and normalizing
  - No special care taken right now to ensure this is correct
- Allows specifying shared factors that apply to groups of tuples, or to all tuples of a relation (schema-level)

# PrDB: Representation and Storage

insert into S values ('s1', 'm', 1) uncertain('f 0.2; t 0.8');





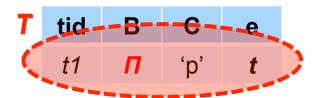
**Data Tables** 

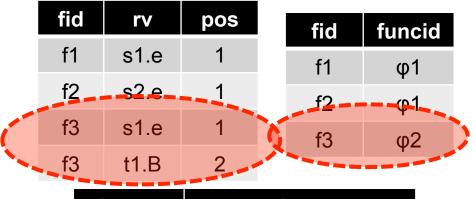
**Uncertainty Parameters (factors)** 

## PrDB: Representation and Storage

**insert into** T **values** ('t1', uncertain, 'p'); **insert factor** 'f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1' **in** S, T **on** 's1.e', 't1.B';

| S | tid | Α   | В | е |
|---|-----|-----|---|---|
|   | s1  | 'm' | 1 | П |
|   | s2  | 'n' | 1 | П |





| funcio | func                                                      |    |
|--------|-----------------------------------------------------------|----|
| φ1     | {[f]: 0.2, [t]: 0.8}                                      |    |
| φ2     | {[f, 2] : 0.2, [f, 3] : 0.8<br>[t, 2] : 0.9, [t, 3] : 0.3 | 3, |
|        | [t, 2] . 0.0, [t, 0] . 0                                  | 7  |

**Data Tables** 

**Uncertainty Parameters (factors)** 

# PrDB: Query Processing Overview

#### No Index on the Data

Load the base PGM into memory

Construct an augmented PGM [ICDE'07]

Use exact or approximate inference

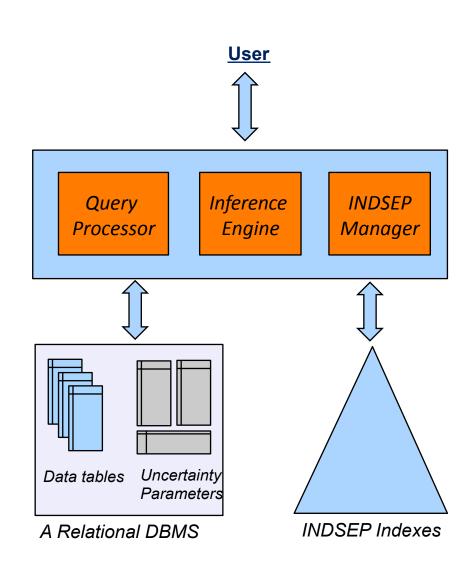
[VLDB'08, UAI'09]

#### **INDSEP Indexes Present**

Aggregation or inference queries: Use index directly [SIGMOD'09]

SQL SPJ Queries [SIGMOD'10]

Gather a minimal set of correlations& uncertainties using the indexUse exact or approximate inferenceIn some cases, solve using the index



#### Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

#### Inference with Shared Factors

| AdID    | Model | Color | Price    |
|---------|-------|-------|----------|
| 1       | Honda | ?     | \$9,000  |
| 2       | ?     | Beige | \$8,000  |
| 3       | ?     | ?     | \$6,000  |
|         |       |       |          |
|         |       |       |          |
|         |       |       |          |
| 1000000 | ?     | ?     | \$10,000 |

|         | Model |    | Pr   | ·(M) |    |
|---------|-------|----|------|------|----|
|         | Hon   | da | C    | ).2  |    |
|         | Maz   | da | C    | ).1  |    |
|         |       | •  |      |      |    |
| Mc      | odel  | Co | olor | Pr(C | M) |
| Но      | nda   | Ве | ige  | 0.   | 1  |
| Honda R |       | ed | 0.2  | 2    |    |
|         |       |    |      |      |    |
| Ma      | ızda  | Ве | ige  | 0.0  | 2  |

#### Query: How many "red" cars are for sale?

- Option 1: "Ground out" (propositionalize) the random variables, and use standard techniques
- Option 2: Directly operate on the shared factors

#### Inference with Shared Factors

- Option 1: "Ground out" (propositionalize) the random variables, and use standard techniques
  - Would need to create a PGM with a few million nodes
- Option 2: Directly operate on the shared factors
  - Compute a distribution over makes for cars with unknown color ("Honda"? "Mazda"? "Unknown"?)
  - Use it to estimate the number of red cars
    - E.g. If 1000 Hondas with unknown color, 200 are expected to be red
  - "Lifted inference": Much work in recent years in the ML community
- We developed a general purpose lifted inference technique based on bisimulation [VLDB'08, UAI'09]

## First-order Lifted Inference

- Huge potential speedups
- ... but hard to design general purpose techniques
  - #P-hardness of prob. query evaluation holds with all probabilities = 0.5

R

| ID | A | В |
|----|---|---|
| 1  | α | ? |
| 2  | β | ? |
| 3  | α | ? |
| 4  | α | ? |
| 5  | β | ? |
|    |   |   |

A schema-level factor on A and B

| A | В | f   |
|---|---|-----|
| α | 0 | 0.2 |
| α | 1 | 8.0 |
| β | 0 | 0.3 |
| β | 1 | 0.7 |

A Conjunctive Query: Compute the prob. that there is a tuple in R with  $A = \alpha$  and B = 0 $q := R(ID, \alpha, 0)$ 

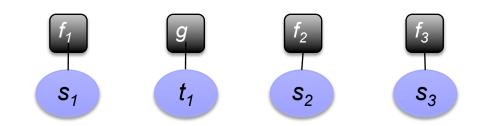
- 1. Propositionalizing (grouding out)
  would take at least O(|R|) time
- 2. However, if we know  $|R.a = \alpha|$ , then: answer = 1 -  $(1 - 0.2)^{|R.a = \alpha|}$ Essentially O(1) time

# Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
  - Bisimulation-based Lifted Inference
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

### Query: S ⋈ T

| 3         | A   | В   | prop |
|-----------|-----|-----|------|
| s1        | 'm' | 1   | 8.0  |
| s2        | 'n' | 1   | 8.0  |
| s3        | ʻo' | 1   | 0.6  |
| <b>T</b>  | В   | С   | prob |
| <i>t1</i> | 1   | ʻp' | 0.5  |



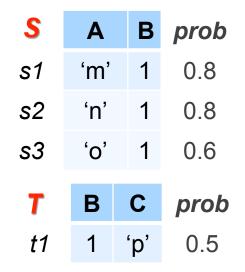
| s1 | f <sub>1</sub> (s1) |
|----|---------------------|
| 0  | 0.2                 |
| 1  | 8.0                 |

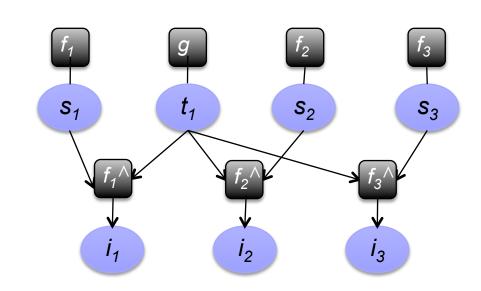
| s2 | f <sub>2</sub> (s2) |
|----|---------------------|
| 0  | 0.2                 |
| 1  | 8.0                 |

| s3 | $f_3(s3)$ |
|----|-----------|
| 0  | 0.4       |
| 1  | 0.6       |

| t1 | g(t1) |
|----|-------|
| 0  | 0.5   |
| 1  | 0.5   |

### Query: S ⋈ T





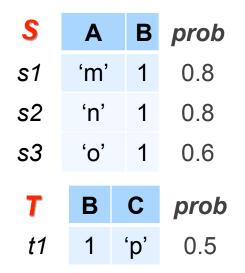
### **Inferences required:**

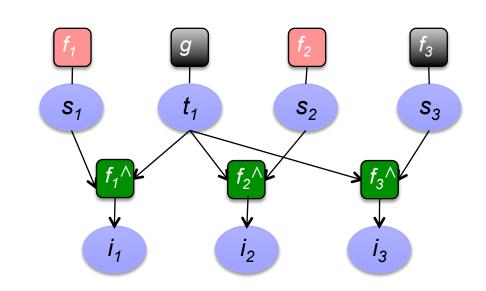
$$\mu_1(i_1) = \sum_{s_1,t_1} f_1(s_1) g(t_1) f_1^{\Lambda}(s_1,t_1,i_1)$$

$$\mu_2(i_2) = \sum_{s2,t1} f_2(s_2) g(t_1) f_2^{\Lambda} (s_2,t_1,i_2)$$

$$\mu_3(i_3) = \sum_{s3,t1} f_3(s_3) g(t_1) f_3^{\wedge}(s_3,t_1,i_3)$$

### Query: S ⋈ T





### **Inferences required:**

$$\mu_{1}(i_{1}) = \sum_{s1,t1} f_{1}(s_{1}) g(t_{1}) f_{1}^{\wedge} (s_{1},t_{1},i_{1})$$

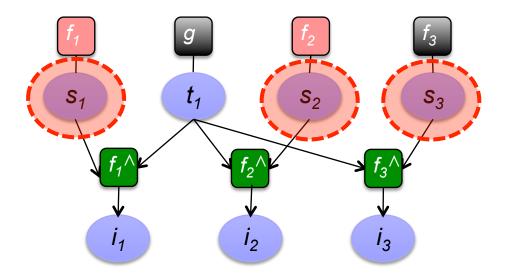
$$\mu_{2}(i_{2}) = \sum_{s2,t1} f_{2}(s_{2}) g(t_{1}) f_{2}^{\wedge} (s_{2},t_{1},i_{2})$$

$$\mu_{3}(i_{3}) = \sum_{s3,t1} f_{3}(s_{3}) g(t_{1}) f_{3}^{\wedge} (s_{3},t_{1},i_{3})$$

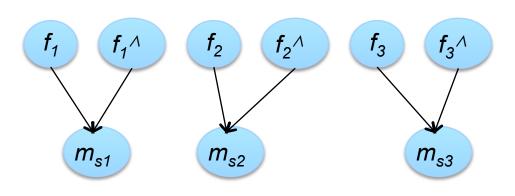
Identical computation
Repeated during evaluation

### Step 1: Capture a (simulated) run of variable elimination as a graph

### **Graphical Model**



### **RV-Elim Graph**



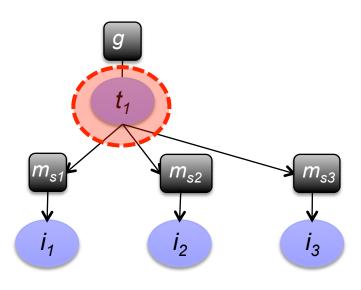
$$m_{s1}(t_1, i_1) = \sum_{s1} f_1(s_1) f_1^{\ \ \ }(s_1, t_1, i_1)$$

$$m_{s2}(t_2, i_2) = \sum_{s2} f_2(s_2) f_2^{\ \ \ \ }(s_2, t_1, i_2)$$

$$m_{s1}(t_3, i_3) = \sum_{s3} f_3(s_3) f_3^{\ \ \ \ \ }(s_3, t_1, i_3)$$

### Step 1: Capture a (simulated) run of variable elimination as a graph

### **Graphical Model**

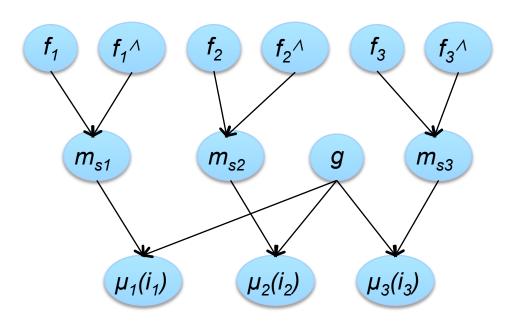


$$\mu_1(i_1) = \sum_{t1} m_{s1}(t_1, i_1) g(t_1)$$

$$\mu_2(i_2) = \sum_{t1} m_{s2}(t_1, i_2) g(t_1)$$

$$\mu_3(i_3) = \sum_{t1} m_{s3}(t_1, i_3) g(t_1)$$

### **RV-Elim Graph**

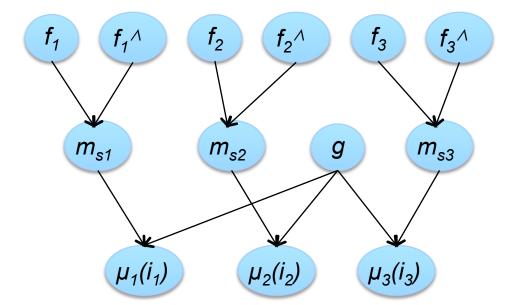


### Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

### **Graphical Model**

# $f_1$ g $f_2$ $f_3$ $f_4$ $f_4$ $f_2$ $f_3$ $f_3$

**RV-Elim Graph** 



Intuitively, two nodes are bisimilar if

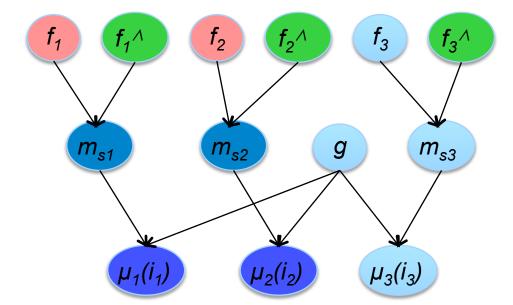
- (1) they represent identical factors, and
- (2) their parents are identically colored

### Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

### **Graphical Model**

# $f_1$ g $f_2$ $f_3$ $f_4$ $f_5$ $f_5$

**RV-Elim Graph** 

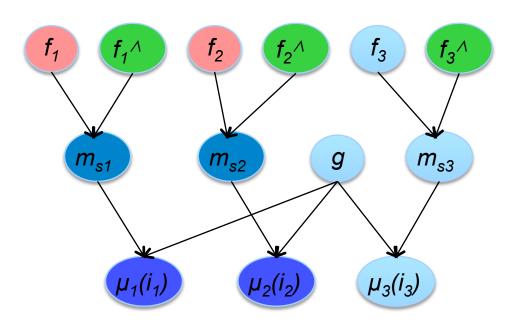


Intuitively, two nodes are bisimilar if

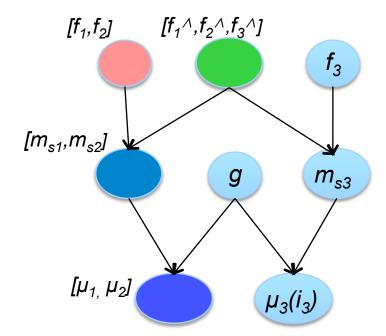
- (1) they represent identical factors, and
- (2) their parents are identically colored

Step 3: Compress the RV-Elim graph; run inference on compressed graph

### **RV-Elim Graph**

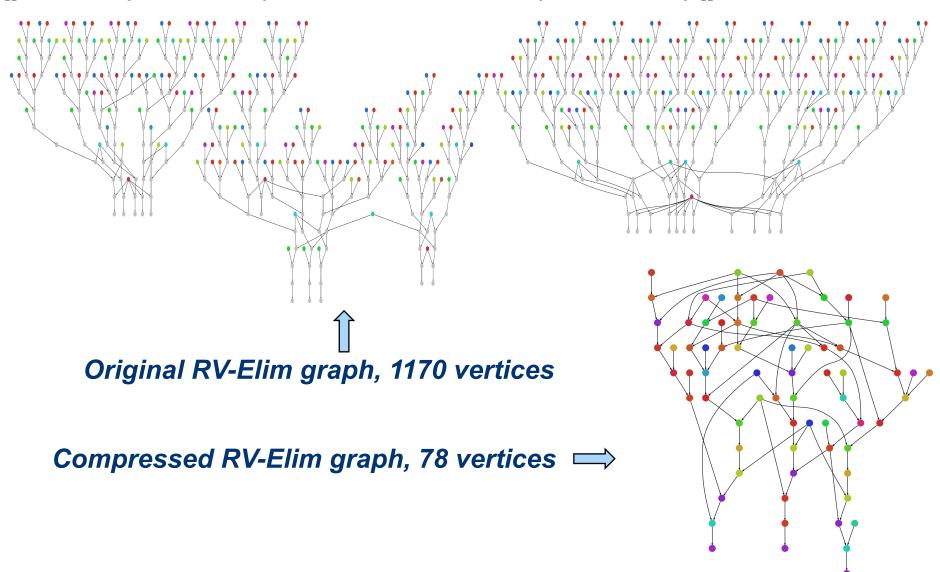


### Compressed RV-Elim Graph



# Example RV-Elim Graph

[[ 3 relation join with 3 tuples each, attribute and tuple uncertainty ]]



- Orders of magnitude performance improvements with symmetry
- Bisimulation can be done in linear time on DAGs
  - Somewhat more involved here
    - Need to keep track of the order in which factors were multiplied
    - Must construct labels on-the-fly as opposed to standard bisimulation
  - Our algorithm runs in O(|E| log(D) + |V|) time
- Choice of elimination order crucial
  - Dictates the amount of compression possible
  - We choose it by running bisimulation on the graphical model itself
- Our technique works on the ground (propositionalized) model
  - Enables approximations: e.g. allow approximate matches on factors [UAI'09]
- Many open challenges in effectively exploiting symmetry and first order representations

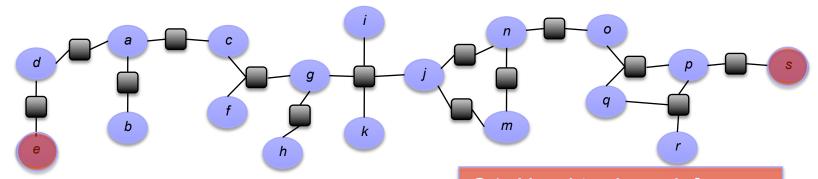
# Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

# Querying Very Large CPDBs

- Base representation of PGMs can't handle large datasets
  - Queries may only reference a small set of variables
    - Still may need to touch the entire dataset
  - Infeasible to load into memory and operate upon the full PGM

#### An example PGM



Queries of interest

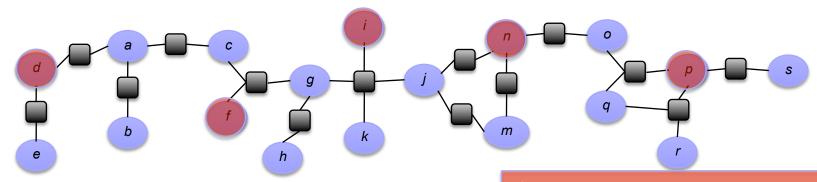
Q1: Need to do an inference operation involving nearly all variables

Q1: How does the value of "s" affect the value "e"?

# Querying Very Large CPDBs

- Base representation of PGMs can't handle large datasets
  - Queries may only reference a small set of variables
    - Still may need to touch the entire dataset
  - Infeasible to load into memory and operate upon the full PGM

### An example PGM



Queries of interest

Q2: Must compute a potentially large probability distribution:

Pr(d, i, f, n, p)

Q1: How does the value of "n" affect the value "e"?

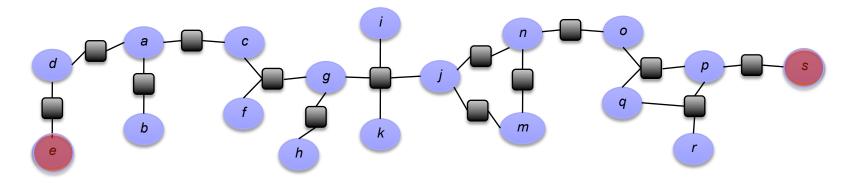
Q2: Compute probability distribution of "d + i + f + n + p"

# Querying Very Large CPDBs

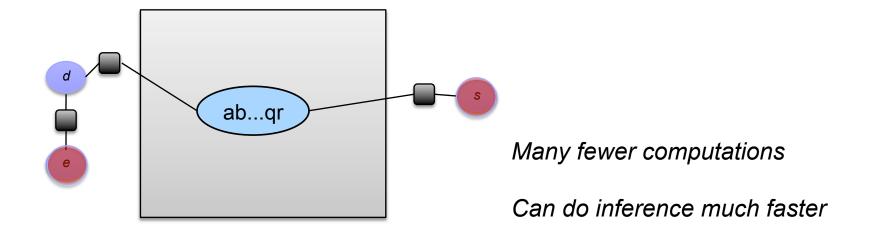
- Base representation of PGMs can't handle large datasets
- Need data structures that:
  - Reuse computation during different inference operations
  - Support updating data as well as uncertainty parameters
  - Minimize the number of variables that need to be accessed
  - Support computation of aggregates and lineage expressions required for SQL query processing
- Some prior techniques (e.g. junction trees) help with some of these, but not all

# **Key Insight**

### Original PGM



What if we could "shortcut" the in-between nodes?



# **INDSEP:** Overview

- Unclear how to do this on the graphical model directly
- Instead we work with a junction tree of the model
  - Essentially a tree decomposition of the factor graph, treated as a hypergraph
  - Caveat: Inherit the limitations of the junction tree approach –
     only works for models with bounded treewidth
- INDSEP is a hierarchical data structure over junction tree
  - Built using tree partitioning algorithms
  - Several techniques used to reduce the size of the index

## **INDSEP:** Overview

 Very large speedups for inference queries, and for decomposable aggregate functions (like SUM, MAX)

Lineages (boolean formulas) trickier (not decomposable),
 but similar speedups with more complex algorithms

- Supports a lazy approach for updates
  - Future queries inherit the burden of updating the index
  - Needed because a single update can affect the entire junction tree

# Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

# Ongoing Work and Open Problems

- Better connections with the work in the ML community
  - Many ML problems and application domains ideal use cases for probabilistic databases
    - Need to scale to large (relational) databases
    - Need support for rich querying over uncertain data
  - Significant overlap in the tools and techniques being developed
  - But many important differences
    - Learning and knowledge transfer equally important there
      - Typical use case for PRMs or MLNs: learn weights/probabilities from a deterministic database, and transfer to other (incomplete) database
    - Not much work in the probabilistic database community

# Ongoing Work and Open Problems

- Language constructs and semantics
  - Flexibility in specifying uncertainties at different abstraction levels results in significant interpretation issues
  - How to resolve conflicting uncertainties?
  - How to keep the semantics simple enough that users can make sense of it?

- Efficient algorithms for lifted inference
  - Much work in recent years, but many interesting open problems remain

# Ongoing Work and Open Problems

- Querying very large correlated probabilistic databases
  - Our indexing structures inherit the limitations of junction trees
    - Can only handle datasets or queries with low treewidths
  - How to incorporate approximations into the framework ?
  - Lineage formula probability computation especially hard
    - Computing probabilities of read-once lineages easy with tuple independence, but #P-Hard for simplest of correlations
- Uncertain graph data
  - Shared correlations prevalent in settings like social networks, biological networks
  - Compact models of correlations required

# Thank You!!

• More details at:

http://www.cs.umd.edu/~amol/PrDB