Increasing the Representational Power and Scaling Reasoning in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal, Jian Li, and Prithviraj Sen)

Motivation

- Increasing amounts of real-world uncertain data
 - Sensor networks, Scientific databases
 - Imprecise data, data with confidence or accuracy bounds
 - Widespread use of statistical and probabilistic models
 - Data integration
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Information extraction
 - Automatically extracted knowledge from text
 - Social networks, biological networks
 - Noisy, error-prone observations
 - Ubiquitous use of entity resolution, link prediction, function prediction ...
- Need to develop database systems for efficiently representing and managing uncertainty

Probabilistic Databases

- "Probability theory" a strong foundation to reason about the uncertainty
- Goal of Probabilistic Databases: Managing and querying large volumes of data annotated with probabilities
- Much work in recent years, leading up to many systems

Mystiq (University of Washington)MCDB (Univ. of Florida, IBM)Trio (Stanford)Orion (Purdue University)MayBMS (Cornell, Oxford)BayesStore (Berkeley)

<u>PrDB (Maryland)</u>
Lahar (University of Washington)

Other work on approximations, ranking, indexing, summarization etc.

But, many challenges still remain...

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

Probabilistic Databases

- Types of uncertainties typically supported
 - Tuple-existence uncertainty
 - A tuple may or may not exist in the database
 - e.g. a sensor may detect a bird, but not 100% sure
 - Attribute-value uncertainty
 - The value of an attribute not known precisely
 - Instead a distribution over possible values is provided
 - e.g. a sensor detects a bird for sure, but it may be a sparrow or a dove or something else
- Most systems assume discrete probability distributions, but some support continuous distributions as well
- Largely based on the possible worlds semantics

An Example Probabilistic Database

- Example from Dalvi and Suciu [2004]
- Assume independent tuples

S	Α	В	prob
s1	'm'	1	0.6
s2	'n'	1	0.5

Interpret as a distribution over a set of deterministic possible worlds

T	В	С	prob
<i>t1</i>	1	ʻp'	0.4

p(s1) * p(t1) * (1-p(s2))
= 0.6 * 0.4 * 0.5
= 0.12

Possible worlds

instance	probability
{s1, s2, t1}	0.12
{s1, s2}	0.18
{s1, t1}	0.12
{s1}	0.18
{s2, t1}	0.08
{s2}	0.12
{t1}	0.08
{}	0.12

Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_c(S \bowtie_B T)$

Query Processing Semantics

Evaluate on each possible world and combine results

{}

• Example Query: $\pi_{C}(S \bowtie_{B} T)$

S	Α	В	prob
s1	'm'	1	0.6
s2	'n'	1	0.5

Possible worlds	Query	<u> Result</u>

0.1

instance	prob	result			
{s1, s2, t1}	0.12	{'p'}			
{s1, s2}	0.18	{}			
{s1, t1}	0.12	{'p'}		C	prob
{s1}	0.18	{}	<u> </u>	ʻp'	0.32
{s2, t1}	0.08	{'p'}			
{s2}	0.12	{}			
{t1}	0.0 No	t clear how	to do this i	n ge	neral

Not clear how to do this in general e.g. ranking ??

Consensus Answers [PODS'09]

Query Processing

- Several approaches proposed in recent years in DB literature
 - Typically make strong independence assumptions
 - Limited support for attribute-value uncertainty
 - In spite of that, query evaluation known to be #P-Hard [DS'04]
 - For very simple 3-relation queries

Our Goals:

- Increase representation power to support:
 - Correlations among the data items
 - Uncertainties at different abstraction levels and granularities
- Scale reasoning and querying to large-scale uncertain data while supporting the above

Correlations in Uncertain Data

- Most application domains generate correlated data
 - Data Integration
 - Conflicting information best captured using "mutual exclusivity"
 - Data from the same source may all be valid or may all be invalid

	Name	Salary				
DB1:	John	\$1200	Name	Salary	prob	_
		,	John	\$1200	0.3	Mutually
DB2:	John	\$1600	John	\$1600	0.7	exclusive

- Information extraction
 - Annotations on consecutive text segments strongly correlated

Correlations in Uncertain Data

- Most application domains generate correlated data
 - Data Integration
 - Conflicting information best captured using "mutual exclusivity"
 - Data from the same source may all be valid or may all be invalid
 - Information extraction
 - Annotations on consecutive text segments strongly correlated
 - Social networks
 - Attributes of neighboring nodes often highly correlated
 - Predicted links, class labels likely to be correlated
 - Sensor network data
 - Very strong spatio-temporal correlations
- Even if base data exhibits independence..
 - Correlations get introduced during query processing

Correlations in Uncertain Data

Even if base data exhibits independence...

Shared Uncertainties and Correlations

- Uncertainties and correlations often specified for groups of tuples rather than for individual tuples
- Necessary when trying to model and reason about uncertainty in large populations

AdID	Model	Color	Price
1	Honda	?	\$9,000
2	?	Beige	\$8,000
3	?	?	\$6,000
1000000	?	?	\$10,000

Model	Pr(M)
Honda	0.2
Mazda	0.1

Model	Color	Pr(C M)
Honda	Beige	0.1
Honda	Red	0.2
Mazda	Beige	0.02

A Used Car Ads Database

Schema-level Uncertainties

- Often we have probabilistic knowledge at the schema level (learned from a deterministic database) that we are trying to transfer
 - Using Prob. relational models (PRMs), Relational Markov networks (RMNs) etc.
 ("Intro. to Statistical Relational Learning"; Getoor and Taskar, 2007)

A "Schema-level" Dependence

An Instantiation

First-order Logic and Uncertainties

Often need to reason about uncertainties at the first-order level

Example from "Markov Logic Networks"; Richardson and Domingos [2006]

English and First Order Logic	Clausal Form	Weight
"Friends of friends are friends" $\forall x \forall y \forall z \ Fr(x, y) \land F(y, z) \Rightarrow Fr(x, z)$	$\neg Fr(x, y) \lor \neg F(y, z) \lor Fr(x, z)$	0.7
"Smoking causes cancer". ∀x Sm(x) ⇒ Ca(x)	¬Sm(x) V Ca(x)	1.5
"Friends have similar behavior w.r.t. smoking." $\forall x \forall y \ Fr(x, y) \land Sm(x) \Rightarrow Sm(y)$	$\neg Fr(x, y) \lor \neg Sm(x) \lor Sm(y)$	1.1

- Rules do not always hold hence may choose to augment them with weights (approach taken in Markov Logic Networks)
 - Hard vs soft constraints

Markov Logic Networks

- A specific population defines a specific Markov network
 - Given persons: Anna, Frank, Bob
 - We get the (boolean) variables:
 - Friends(Anna, Frank), Friends(Anna, Bob), Friends(Frank, Bob), ...
 - Smokes(Anna), Smokes(Frank), Smokes(Bob), ...
 - Ca(Anna), Ca(Frank), Ca(Bob), ...
 - An instantiation to these variables (true or false) is a possible world
 - Possible worlds that violate fewer constraints have higher probabilities
 - According to the weights
- Typical inference task: find the most likely world
- May want to treat the output as an uncertain database and support rich querying constructs

Reasoning over Correlated, Uncertain Data

- Huge body of work in Machine Learning community on this topic
 - Bayesian and Markov networks, statistical relational models (PRMs, MRNs)
 - On efficient algorithms for reasoning, for inference, for learning ...
 - As much emphasis on learning as on inference
- Lot of work in recent years in the Probabilistic Databases literature
 - On efficient SQL query processing over very large amounts of data
 - Comparatively simpler uncertainty structures
- How to combine the representational power and richness of ML approaches with the ability to execute declarative queries over large volumes of data?

PrDB Framework

- Flexible uncertainty model (based on probabilistic graphical models)
 - Support for representing rich correlation structures [ICDE'07]
 - Support for specifying uncertainty at multiple abstraction levels [DUNE'07]
- Declarative constructs for interacting with the database
 - Manipulating and updating uncertainty as a first class citizen
- Rich querying semantics
 - SQL queries; Inference, reasoning, and what-if queries
- New techniques for scaling reasoning and query processing
 - Inference techniques to exploit the structure in the data [VLDB'08]
 - Index structures for handling large volumes of data [SIGMOD'09,'10]
 - Efficient algorithms for ranking queries, consensus answers [VLDB'09,PODS'09]
 - Approximation techniques that enable tradeoff accuracy and speed [UAI'09]

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

A Simple Example

- Represent the uncertainties and correlations graphically using small functions called factors
 - Concepts borrowed from the graphical models literature

S	A	В	prok
s1	'm'	1	0.6
s2	'n'	1	0.5

s1	$f_1(s1)$
0	0.4
1	0.6

Often not probability distributions

Values can be > 1

T	В	С	prob
<i>t</i> 1	1	ʻp'	0.4

s2	t1	f ₂ (s2, t1)
0	0	0.1
0	1	0.5
1	0	0.4
1	1	0

s2 and t1 mutually exclusive

A Simple Example

- Represent the uncertainties and correlations graphically using small functions called factors
 - Concepts borrowed from the graphical models literature

S	Α	В	prob
s1	'm'	1	0.6
s2	'n'	1	0.5

s1	f ₁ (s1)
0	0.4
1	0.6

T	В	С	prob
<i>t1</i>	1	ʻp'	0.4

s2	t1	f ₂ (s2, t1)
0	0	0.1
0	1	0.5
1	0	0.4
1	1	0

Probabilistic Graphical Models

- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
 - A set of random variables
 - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing
- An Inference task: Finding a marginal prob. distribution over subset of variables
 - e.g. $Pr(t_1)$

$$Pr(s_1, s_2, t_1) \propto f_1(s_1) f_2(s_2, t_1)$$

For example:

$$Pr(s_1 = 0, s_2 = 0, t_1 = 0) =$$

$$\frac{1}{Z} f_1(s_1 = 0) f_2(s_2 = 0, t_1 = 0)$$
Normalizing Constant

("Partition Function")

A Simple Example

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
 - Encode the dependencies between base tuples and intermediate tuples
- Example query: $\pi_C(S \bowtie_B T)$

Probabilistic Graphical Models

- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
 - A set of random variables
 - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing

 $Pr(s_1, s_2, t_1, i_1, i_2, r_1) \propto f_1(s_1) f_2(s_2, t_1) f^{\wedge}(s_1, t_1, i_1) f^{\wedge}(s_2, t_1, i_2) f^{\vee}(i_1, i_2, r_1)$

A Simple Example

- Query evaluation ≡ Find the result tuple probabilities ≡ Inference !!
 - Can use standard techniques like variable elimination, junction trees (exact),
 message passing, loopy Belief propagation, Gibbs Sampling (approx)

A Simple Example: Inference

- Variable Elimination
 - Sum-out non-query random variables one by one
 - Collect factors for that variable, multiply them, and sum out the variable

$$P(r_1) = \sum_{s1, s2, t1, i1, i2} Pr(s_1, s_2, t_1, i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i1, i2} f^{\wedge}(s_1, t_1, i_1) f^{\wedge}(s_2, t_1, i_2) f^{\vee}(i_1, i_2, r_1)$$

A Simple Example: Inference

- Variable Elimination
 - Sum-out non-query random variables one by one
 - Collect factors for that variable, multiply them, and sum out the variable
 - Elimination Order: The order in which to sum-out the random variables
 - Choosing a good elimination order critical for performance (NP-Hard)

$$P(r_1) = \sum_{s1, s2, t1, i1, i2} Pr(s_1, s_2, t_1, i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i1, i2} f^{\Lambda}(s_1, t_1, i_1) f^{\Lambda}(s_2, t_1, i_2) f^{V}(i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i1, i2} f^{\Lambda}(s_1, t_1, i_1) f^{\Lambda}(s_2, t_1, i_2) f^{V}(i_1, i_2, r_1)$$

$$\propto \sum_{s1, s2, t1, i2} f^{\Lambda}(s_1, t_1, i_2, r_1) f^{\Lambda}(s_2, t_1, i_2) f^{\Lambda}(s_2, t_1, i_2, r_1)$$

An Observation

- AND and OR factors enable reorganization of the network
 - Complexity of the generated network depends on the query plan
 - "Safe plans" generate tree networks enabing extensional evaluation
 - But a reorganization may not necessarily correspond to a traditional query plan
 - Benefits in looking for optimal reorganization for a given query and dataset
- Efficient inference in presence of special types of factors largely open

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

PrDB: Representation and Storage

- Underlying representation essentially a factor graph
 - Tuples and factors stored separately in different tables
- Factors can be inserted on any set of random variables
 - Corresponding to tuple existences or attribute values
- Semantics: the joint pdf over the random variables is obtained by multiplying all the factors and normalizing
 - No special care taken right now to ensure this is correct
- Allows specifying shared factors that apply to groups of tuples, or to all tuples of a relation (schema-level)

PrDB: Representation and Storage

insert into S values ('s1', 'm', 1) uncertain('f 0.2; t 0.8');

Data Tables

Uncertainty Parameters (factors)

PrDB: Representation and Storage

insert into T **values** ('t1', uncertain, 'p'); **insert factor** 'f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1' **in** S, T **on** 's1.e', 't1.B';

S	tid	Α	В	е
	s1	'm'	1	П
	s2	'n'	1	П

funcio	func	
φ1	{[f]: 0.2, [t]: 0.8}	
φ2	{[f, 2] : 0.2, [f, 3] : 0.8 [t, 2] : 0.9, [t, 3] : 0.3	3,
	[t, 2] . 0.0, [t, 0] . 0	7

Data Tables

Uncertainty Parameters (factors)

PrDB: Query Processing Overview

No Index on the Data

Load the base PGM into memory

Construct an augmented PGM [ICDE'07]

Use exact or approximate inference

[VLDB'08, UAI'09]

INDSEP Indexes Present

Aggregation or inference queries: Use index directly [SIGMOD'09]

SQL SPJ Queries [SIGMOD'10]

Gather a minimal set of correlations& uncertainties using the indexUse exact or approximate inferenceIn some cases, solve using the index

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

Inference with Shared Factors

AdID	Model	Color	Price
1	Honda	?	\$9,000
2	?	Beige	\$8,000
3	?	?	\$6,000
1000000	?	?	\$10,000

	Model		Pr	·(M)	
	Hon	da	C).2	
	Maz	da	C).1	
		•			
Mc	odel	Co	olor	Pr(C	M)
Но	nda	Ве	ige	0.	1
Honda R		ed	0.2	2	
Ma	ızda	Ве	ige	0.0	2

Query: How many "red" cars are for sale?

- Option 1: "Ground out" (propositionalize) the random variables, and use standard techniques
- Option 2: Directly operate on the shared factors

Inference with Shared Factors

- Option 1: "Ground out" (propositionalize) the random variables, and use standard techniques
 - Would need to create a PGM with a few million nodes
- Option 2: Directly operate on the shared factors
 - Compute a distribution over makes for cars with unknown color ("Honda"? "Mazda"? "Unknown"?)
 - Use it to estimate the number of red cars
 - E.g. If 1000 Hondas with unknown color, 200 are expected to be red
 - "Lifted inference": Much work in recent years in the ML community
- We developed a general purpose lifted inference technique based on bisimulation [VLDB'08, UAI'09]

First-order Lifted Inference

- Huge potential speedups
- ... but hard to design general purpose techniques
 - #P-hardness of prob. query evaluation holds with all probabilities = 0.5

R

ID	A	В
1	α	?
2	β	?
3	α	?
4	α	?
5	β	?

A schema-level factor on A and B

A	В	f
α	0	0.2
α	1	8.0
β	0	0.3
β	1	0.7

A Conjunctive Query: Compute the prob. that there is a tuple in R with $A = \alpha$ and B = 0 $q := R(ID, \alpha, 0)$

- 1. Propositionalizing (grouding out)
 would take at least O(|R|) time
- 2. However, if we know $|R.a = \alpha|$, then: answer = 1 - $(1 - 0.2)^{|R.a = \alpha|}$ Essentially O(1) time

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
 - Bisimulation-based Lifted Inference
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

Query: S ⋈ T

3	A	В	prop
s1	'm'	1	8.0
s2	'n'	1	8.0
s3	ʻo'	1	0.6
T	В	С	prob
<i>t1</i>	1	ʻp'	0.5

s1	f ₁ (s1)
0	0.2
1	8.0

s2	f ₂ (s2)
0	0.2
1	8.0

s3	$f_3(s3)$
0	0.4
1	0.6

t1	g(t1)
0	0.5
1	0.5

Query: S ⋈ T

Inferences required:

$$\mu_1(i_1) = \sum_{s_1,t_1} f_1(s_1) g(t_1) f_1^{\Lambda}(s_1,t_1,i_1)$$

$$\mu_2(i_2) = \sum_{s2,t1} f_2(s_2) g(t_1) f_2^{\Lambda} (s_2,t_1,i_2)$$

$$\mu_3(i_3) = \sum_{s3,t1} f_3(s_3) g(t_1) f_3^{\wedge}(s_3,t_1,i_3)$$

Query: S ⋈ T

Inferences required:

$$\mu_{1}(i_{1}) = \sum_{s1,t1} f_{1}(s_{1}) g(t_{1}) f_{1}^{\wedge} (s_{1},t_{1},i_{1})$$

$$\mu_{2}(i_{2}) = \sum_{s2,t1} f_{2}(s_{2}) g(t_{1}) f_{2}^{\wedge} (s_{2},t_{1},i_{2})$$

$$\mu_{3}(i_{3}) = \sum_{s3,t1} f_{3}(s_{3}) g(t_{1}) f_{3}^{\wedge} (s_{3},t_{1},i_{3})$$

Identical computation
Repeated during evaluation

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

RV-Elim Graph

$$m_{s1}(t_1, i_1) = \sum_{s1} f_1(s_1) f_1^{\ \ \ }(s_1, t_1, i_1)$$

$$m_{s2}(t_2, i_2) = \sum_{s2} f_2(s_2) f_2^{\ \ \ \ }(s_2, t_1, i_2)$$

$$m_{s1}(t_3, i_3) = \sum_{s3} f_3(s_3) f_3^{\ \ \ \ \ }(s_3, t_1, i_3)$$

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

$$\mu_1(i_1) = \sum_{t1} m_{s1}(t_1, i_1) g(t_1)$$

$$\mu_2(i_2) = \sum_{t1} m_{s2}(t_1, i_2) g(t_1)$$

$$\mu_3(i_3) = \sum_{t1} m_{s3}(t_1, i_3) g(t_1)$$

RV-Elim Graph

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model

f_1 g f_2 f_3 f_4 f_4 f_2 f_3 f_3

RV-Elim Graph

Intuitively, two nodes are bisimilar if

- (1) they represent identical factors, and
- (2) their parents are identically colored

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model

f_1 g f_2 f_3 f_4 f_5 f_5

RV-Elim Graph

Intuitively, two nodes are bisimilar if

- (1) they represent identical factors, and
- (2) their parents are identically colored

Step 3: Compress the RV-Elim graph; run inference on compressed graph

RV-Elim Graph

Compressed RV-Elim Graph

Example RV-Elim Graph

[[3 relation join with 3 tuples each, attribute and tuple uncertainty]]

- Orders of magnitude performance improvements with symmetry
- Bisimulation can be done in linear time on DAGs
 - Somewhat more involved here
 - Need to keep track of the order in which factors were multiplied
 - Must construct labels on-the-fly as opposed to standard bisimulation
 - Our algorithm runs in O(|E| log(D) + |V|) time
- Choice of elimination order crucial
 - Dictates the amount of compression possible
 - We choose it by running bisimulation on the graphical model itself
- Our technique works on the ground (propositionalized) model
 - Enables approximations: e.g. allow approximate matches on factors [UAI'09]
- Many open challenges in effectively exploiting symmetry and first order representations

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

Querying Very Large CPDBs

- Base representation of PGMs can't handle large datasets
 - Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
 - Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q1: Need to do an inference operation involving nearly all variables

Q1: How does the value of "s" affect the value "e"?

Querying Very Large CPDBs

- Base representation of PGMs can't handle large datasets
 - Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
 - Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q2: Must compute a potentially large probability distribution:

Pr(d, i, f, n, p)

Q1: How does the value of "n" affect the value "e"?

Q2: Compute probability distribution of "d + i + f + n + p"

Querying Very Large CPDBs

- Base representation of PGMs can't handle large datasets
- Need data structures that:
 - Reuse computation during different inference operations
 - Support updating data as well as uncertainty parameters
 - Minimize the number of variables that need to be accessed
 - Support computation of aggregates and lineage expressions required for SQL query processing
- Some prior techniques (e.g. junction trees) help with some of these, but not all

Key Insight

Original PGM

What if we could "shortcut" the in-between nodes?

INDSEP: Overview

- Unclear how to do this on the graphical model directly
- Instead we work with a junction tree of the model
 - Essentially a tree decomposition of the factor graph, treated as a hypergraph
 - Caveat: Inherit the limitations of the junction tree approach –
 only works for models with bounded treewidth
- INDSEP is a hierarchical data structure over junction tree
 - Built using tree partitioning algorithms
 - Several techniques used to reduce the size of the index

INDSEP: Overview

 Very large speedups for inference queries, and for decomposable aggregate functions (like SUM, MAX)

Lineages (boolean formulas) trickier (not decomposable),
 but similar speedups with more complex algorithms

- Supports a lazy approach for updates
 - Future queries inherit the burden of updating the index
 - Needed because a single update can affect the entire junction tree

Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work

Ongoing Work and Open Problems

- Better connections with the work in the ML community
 - Many ML problems and application domains ideal use cases for probabilistic databases
 - Need to scale to large (relational) databases
 - Need support for rich querying over uncertain data
 - Significant overlap in the tools and techniques being developed
 - But many important differences
 - Learning and knowledge transfer equally important there
 - Typical use case for PRMs or MLNs: learn weights/probabilities from a deterministic database, and transfer to other (incomplete) database
 - Not much work in the probabilistic database community

Ongoing Work and Open Problems

- Language constructs and semantics
 - Flexibility in specifying uncertainties at different abstraction levels results in significant interpretation issues
 - How to resolve conflicting uncertainties?
 - How to keep the semantics simple enough that users can make sense of it?

- Efficient algorithms for lifted inference
 - Much work in recent years, but many interesting open problems remain

Ongoing Work and Open Problems

- Querying very large correlated probabilistic databases
 - Our indexing structures inherit the limitations of junction trees
 - Can only handle datasets or queries with low treewidths
 - How to incorporate approximations into the framework ?
 - Lineage formula probability computation especially hard
 - Computing probabilities of read-once lineages easy with tuple independence, but #P-Hard for simplest of correlations
- Uncertain graph data
 - Shared correlations prevalent in settings like social networks, biological networks
 - Compact models of correlations required

Thank You!!

• More details at:

http://www.cs.umd.edu/~amol/PrDB