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Motivation

® Increasing amounts of real-world uncertain data
Sensor networks, Scientific databases

e Imprecise data, data with confidence or accuracy bounds
e Widespread use of statistical and probabilistic models
Data integration
e Noisy data sources, automatically derived schema mappings
e Reputation/trust/staleness issues
Information extraction
e Automatically extracted knowledge from text
Social networks, biological networks
e Noisy, error-prone observations

e Ubiquitous use of entity resolution, link prediction, function prediction ..

® Need to develop database systems for efficiently representing and
managing uncertainty



Probabilistic Databases

® “Probability theory” a strong foundation to reason about the uncertainty

® Goal of Probabilistic Databases: Managing and querying large volumes of
data annotated with probabilities

® Much work in recent years, leading up to many systems

Mystiq (University of Washington) MCDB (Univ. of Florida, IBM)
Trio (Stanford) Orion (Purdue University)
MayBMS (Cornell, Oxford) BayesStore (Berkeley)

PrDB (Maryland) Lahar (University of Washington)

® Other work on approximations, ranking, indexing, summarization etc.

® But, many challenges still remain...
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Probabilistic Databases

® Types of uncertainties typically supported

Tuple-existence uncertainty
e A tuple may or may not exist in the database

e e.g. a sensor may detect a bird, but not 100% sure

Attribute-value uncertainty
e The value of an attribute not known precisely
e Instead a distribution over possible values is provided

e e.g. a sensor detects a bird for sure, but it may be a sparrow or a dove
or something else

® Most systems assume discrete probability distributions, but some
support continuous distributions as well

® Largely based on the possible worlds semantics



An Example Probabilistic Database

® Example from Dalvi and Suciu [2004]

® Assume independent tuples
Possible worlds

S A B prob . t e instance probability
- nterpret as a distribution s1. s2, t1 0.12
sT Higmy 06 over a set of deterministic { }

> C {s1,t1) 012

{s1} 0.18
T B C prob {s2, t1} 0.08
t1 1 p 04

p(s1) *p(t1) * (1-p(s2)) {s2} 0.12
_ 000700 1) 0.08

0 0.12



Query Processing Semantics

® Evaluate on each possible world and combine results
® Example Query: 1T (S, T)

A B C
A B prob i1 'm 1 p
‘m 1 0.6 i2 ‘n 1 p
‘"N 1 05 ¥
e
B C prob *c
1 ‘p 04 ‘0’



Query Processing Semantics

® Evaluate on each possible world and combine results

e Example Query:

mo(SX5 T)

Possible worlds

instance
S A B prob {s1, 2, t1}
sT 'm 1 0.6 {s1, s2)
2 n 1 05
° j> {s1, t1}
{s1}
T B Cc prob {82, t1}
t1 1 ‘p 04 {s2}
{t1}
{}

Query Result
prob result
0.12 {'p’}
0.18 3
0.12 {'p’} C prob
0.18 {} j|> ri ‘p° 0.32
0.08 {'p’}
0.12 {}
0.0 Not clear how to do this in general

0.1

e.g. ranking ??
Consensus Answers [PODS’09]




Query Processing

® Several approaches proposed in recent years in DB literature
Typically make strong independence assumptions
Limited support for attribute-value uncertainty
In spite of that, query evaluation known to be #P-Hard [DS’04]

e For very simple 3-relation queries

® Our Goals:
Increase representationl power to support:
e Correlations among the data items
e Uncertainties at different abstraction levels and granularities

Scale reasoning and querying to large-scale uncertain data while
supporting the above



Correlations in Uncertain Data

® Most application domains generate correlated data

Data Integration
e Conflicting information best captured using “mutual exclusivity”
e Data from the same source may all be valid or may all be invalid

Name Salary
DB1: John $1200

John $1200 0.3 Mutually
DB2: John $1600 John $1600 0.7 exclusive

Information extraction

Name Salary prob

e Annotations on consecutive text segments strongly correlated

Bill can be reached at 3-4057

~

annotation: first name (prob: 80%) \ / annotation: phone number (prob: 90%)

High positive correlation



Correlations in Uncertain Data

® Most application domains generate correlated data

Data Integration
e Conflicting information best captured using “mutual exclusivity”

e Data from the same source may all be valid or may all be invalid

Information extraction

e Annotations on consecutive text segments strongly correlated

Social networks

e Attributes of neighboring nodes often highly correlated

e Predicted links, class labels likely to be correlated

Sensor network data

e \ery strong spatio-temporal correlations

® Even if base data exhibits independence..

Correlations get introduced during query processing



Correlations in Uncertain Data

® Even if base data exhibits independence..

Correlations get introduced during query processing .
p(i1) = p(s1) " p(t1)

=0.6*04=0.24
A B C prob
S A B prob i1 ‘'m 1 ‘p’
sT 'm 1 0.6 2 ‘n 1 p 0.20
s2 nn 1 0.5 *
TI.C Correlated
T B C prob



Shared Uncertainties and Correlations

® Uncertainties and correlations often specified for groups of tuples
rather than for individual tuples

® Necessary when trying to model and reason about uncertainty in
large populations

AdID Model Color Price m

1 Honda ? $9,000
2 ? Beige $8,000

3 ? ? 6,000
® "Model | Color | PriCIN)
Honda Beige 0.1
Honda Red 0.2

Honda 0.2
Mazda 0.1

1000000 ? ? $10,000 Mazda Beige  0.02

A Used Car Ads Database




Schema-level Uncertainties

e Often we have probabilistic knowledge at the schema level (learned

from a deterministic database) that we are trying to transfer
Using Prob. relational models (PRMs), Relational Markov networks (RMNs) etc.
(“Intro. to Statistical Relational Learning”; Getoor and Taskar, 2007)

Student’s 1Q Course Diffficulty Bob

\/ John
Alice

Course Grade

A “Schema-level” Dependence Bob
John
An Instantiation [ > John

Alice



First-order Logic and Uncertainties

® Often need to reason about uncertainties at the first-order level

Example from “Markov Logic Networks”; Richardson and Domingos [2006]

English and First Order Logic Clausal Form Weight
“Friends of friends are friends” Fr(x,y) V2 F(y, 2) V Fr(x, z) 0.7
VxVyVz Fr(x, y)AF(y, z) = Fr(x, z)

“Smoking causes cancer’. “Sm(x) V Ca(x) 1.5

vV x Sm(x) = Ca(x)

“Friends have similar behavior w.r.t. smoking.” —Fr(x, y) V 7"Sm(x) V Sm(y) 1.1

VxVy Fr(x,y) A Sm(x) = Sm(y)

® Rules do not always hold — hence may choose to augment them
with weights (approach taken in Markov Logic Networks)

Hard vs soft constraints



Markov Logic Networks

® A specific population defines a specific Markov network
Given persons: Anna, Frank, Bob

We get the (boolean) variables:
e Friends(Anna, Frank), Friends(Anna, Bob), Friends(Frank, Bob), ...
e Smokes(Anna), Smokes(Frank), Smokes(Bob), ...
e Ca(Anna), Ca(Frank), Ca(Bob), ...

An instantiation to these variables (true or false) is a possible world
Possible worlds that violate fewer constraints have higher probabilities

e According to the weights

® Typical inference task: find the most likely world

® May want to treat the output as an uncertain database and
support rich querying constructs



Reasoning over Correlated, Uncertain Data

® Huge body of work in Machine Learning community on this topic
Bayesian and Markov networks, statistical relational models (PRMs, MRNs)
On efficient algorithms for reasoning, for inference, for learning ...

As much emphasis on learning as on inference

® Lot of work in recent years in the Probabilistic Databases literature

On efficient SQL query processing over very large amounts of data

Comparatively simpler uncertainty structures

® How to combine the representational power and richness of ML

approaches with the ability to execute declarative queries over
large volumes of data ?



PrDB Framework

® Flexible uncertainty model (based on probabilistic graphical models)
Support for representing rich correlation structures [ICDE'07]
Support for specifying uncertainty at multiple abstraction levels [DUNE’07]

® Declarative constructs for interacting with the database
Manipulating and updating uncertainty as a first class citizen

® Rich querying semantics

SQL queries; Inference, reasoning, and what-if queries

® New techniques for scaling reasoning and query processing
Inference techniques to exploit the structure in the data [VLDB'08]
Index structures for handling large volumes of data [SIGMOD’09,'10]
Efficient algorithms for ranking queries, consensus answers [VLDB'09,PODS’09]

Approximation techniques that enable tradeoff accuracy and speed [UAI’09]
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A Simple Example

® Represent the uncertainties and correlations graphically using

small functions called factors

Concepts borrowed from the graphical models literature

0 = Tuple does not exist
1 = Tuple exists

N\ Often not probability
S A B s1  fi(s1) distributions
s ‘m 1 "0 04 ’ Values can be > 1
s2 1 1 0.6

s2 t1 f(s2,t1)

0 0 0.1
T B C s2 and t1

0 1 0.5
t1 1 p mutually

1 0 0.4 exclusive

1 1 0



A Simple Example

® Represent the uncertainties and correlations graphically using
small functions called factors

Concepts borrowed from the graphical models literature

f1(s1) f,(s2, t1)
S A B s1  fi(s1) s1 s2 — t1
st 'm 1 0 04
s2 ‘n 1 1 0.6 Markov network he
representation
s2 t1 fy(s2,t1) between variables
T B C 0 0 0.1 s1 s2 t1
0 1 0.5
t1 1 ‘p
1 0 0.4
1 1 0

Factor graphs




Probabilistic Graphical Models

® A PGM can compactly represent a
joint probability distribution over a
large number of random variables

s s2 t1

with complex correlations é E i/

e Specified completely by:
A set of random variables

Pr(s; s, t;) oc fi(s;) fy(s, t;)
For example:
Pr(s;=0s,=0t,=0) =

%f1(31 =0) fy(s,= 0t;= 0)

A set of factors over the random variables

® Joint pdf obtained by multiplying all
the factors and normalizing

® An Inference task: Finding a marginal prob.

distribution over subset of variables

e.g. Pr(t,) Normalizing Constant
(“Partition Function”)



A Simple Example

® During query processing, add new deterministic factors (hard
constraints) corresponding to intermediate tuples

Encode the dependencies between base tuples and intermediate tuples

e Example query: T(SD><p T)
s1 s2 t

A B C 1
S NN i1om 1 p
s 'm 1 j2 n 1 ‘p
s2 m 1 {
T, i1 i2
T IF: s1and tf are 1 i’
7 THEN: Pr(i1=1)=1, Pri1=0)=0 r1

ELSE: Pr(i1=1)=0, Pr(i1=0) =1



Probabilistic Graphical Models

® A PGM can compactly represent a ﬁ ﬁ
joint probability distribution over a

large number of random variables
with complex correlations W
e Specified completely by:
A set of random variables '
A set of factors over the random variables \?/
® Joint pdf obtained by multiplying all

the factors and normalizing

Pr(s,; s, t; iy iy ;) oc f,(s;) fy(S, 1) FA(S,t,0) FA(So,t i) TV (ig,inr)



A Simple Example

® Query evaluation = Find the result tuple probabilities = Inference !!

Can use standard techniques like variable elimination, junction trees (exact),

message passing, loopy Belief propagation, Gibbs Sampling (approx)

A B C
S NN i1
st 'm 1 2 n o1
2 m 1 {
e
T B C C
t1 1 p "o

s1 S2 t1

i i2

Y

ri



A Simple Example: Inference

® Variable Elimination

Sum-out non-query random variables one by one

e Collect factors for that variable, multiply them, and sum out the variable

P(r) = 2s1 s2. t1, i1, i2 Pr(S1,Sa, t iy ip 14)

oc ¥ fi(s,) fo(Sy, ty) FA(Sy,1,0,) FA(St,00) £V (iyiyry)




A Simple Example: Inference

® Variable Elimination

Sum-out non-query random variables one by one

e Collect factors for that variable, multiply them, and sum out the variable

Elimination Order: The order in which to sum-out the random variables

e Choosing a good elimination order critical for performance (NP-Hard)

P(r) = 2s1 s2. t1, i1, i2 Pr(S1,Sa, t iy ip 14)
oc ¥ fi(s,) fo(Sy, ty) FA(Sy,1,0,) FA(St,00) £V (iyiyry)

oc ) fy(Sy 1) gq(ty.iq) FAND(S,,t,,05) FOR(iy,iyry)




An Observation

® AND and OR factors enable reorganization of the network

Complexity of the generated network depends on the query plan

o “Safe plans” generate tree networks — enabing extensional evaluation
But a reorganization may not necessarily correspond to a traditional query plan

Benefits in looking for optimal reorganization for a given query and dataset

® Efficient inference in presence of special types of factors largely open
st S2 t1 st s2 t1
i1 i2 i3 \$/
r1

r1
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PrDB: Representation and Storage

® Underlying representation essentially a factor graph

Tuples and factors stored separately in different tables

® Factors can be inserted on any set of random variables

Corresponding to tuple existences or attribute values

® Semantics: the joint pdf over the random variables is
obtained by multiplying all the factors and normalizing

No special care taken right now to ensure this is correct

e Allows specifying shared factors that apply to groups of
tuples, or to all tuples of a relation (schema-level)



PrDB: Representation and Storage

insert into S values (s1’, ‘m’, 1) uncertain(‘’f 0.2, t 0.8’°);

S,,ud--A---B---e.\\ \\‘Fz"- gl o1 )
(\51 m o1 §26 1 mm—m-g3T
s2 MmN f3 sle 1 P 02
f3 t1.B 2

THd B C e

1 N ‘ot < o (1:02,1:08) S

~52""{'[1*,'2]-:13.'2:'['11',':%]' 0.8,
[t, 2] : 0.9, [t, 3] : 0.1}

Data Tables Uncertainty Parameters (factors)




PrDB: Representation and Storage

insert into T values (‘t1’, uncertain, ‘p’);
insert factor f2 0.2, f30.8,t20.9,t30.1°in S, Ton ‘sl.e, ‘t1.B’;

fid |_rv_| pos MG funcid
f1
1 o1

S td A B e s1.e 1
s 'm 1 1N PP e T - BTy
— 7 3 sle 1 \({
\~~f.3 t1.B —2”¢/ R — -
T — Cuncia | ne
(s~f1 n ‘o t S (Pl ———— WL Da L 98}
—r—— - e {[f, 2] : 0.2, [f, 3] : o.§,\’
S [t,2]: 0.9, [t, 3] : 0.1}~

Data Tables Uncertainty Parameters (factors)




PrDB: Query Processing Overview

No Index on the Data

Load the base PGM into memory
Construct an augmented PGM

Use exact or approximate inference

INDSEP Indexes Present

Aggregation or inference queries: Use
index directly

SQL SPJ Queries

Gather a minimal set of correlations
& uncertainties using the index

Use exact or approximate inference

In some cases, solve using the index

Data tables Uncertainty)|
Parameters

A Relational DBMS

INDSEP Indexes
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Inference with Shared Factors
AdID Model Color Price m

1 Honda 2  $9.000 B
Mazd 0.1
2 ?  Beige $8,000 azda

3 ? ? $6,000
| Model | Color | Pr(C|M)
Honda Beige 0.1
Honda Red 0.2

1000000  ? ?  $10,000 Mazda Beige  0.02
Query: How many “red” cars are for sale ?

® Option 1: “Ground out” (propositionalize) the random variables,
and use standard techniques

® Option 2: Directly operate on the shared factors



Inference with Shared Factors

e Option 1: “Ground out” (propositionalize) the random variables,
and use standard techniques

Would need to create a PGM with a few million nodes

® Option 2: Directly operate on the shared factors

Compute a distribution over makes for cars with unknown color
(“Honda” ? “Mazda” ? “Unknown” ?)

Use it to estimate the number of red cars

e E.g. If 1000 Hondas with unknown color, 200 are expected to be red

“Lifted inference”: Much work in recent years in the ML community

® We developed a general purpose lifted inference technique based
on bisimulation



First-order Lifted Inference

® Huge potential speedups

® ... but hard to design general purpose techniques
#P-hardness of prob. query evaluation holds with all probabilities = 0.5

R A schema-level A Conjunctive Query: Compute the prob.
that there is a tuple in R with A= aand B =0

ID A B factor on A and B q - R(ID, a, 0)

1 o ? A B f

5 , a 0 02 1. Propositionalizing (grouding out)
P a 1 08 would take at least O(|R|) time

S e B 0 03 |

4 g 2 B 1 07 2. However, if we know |R.a = a|, then:

answer =1—(1-0.2)Ra=q
D14 Essentially O(1) time
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Bisimulation-based Lifted Inference

Query: ST

s ‘m 1 08 51 t 52 53
S2 m 1 0.8
s3 ‘0 1 06 s1 f(s1) s2 fy(s2) S3  fy(s3)
. B C prob 0 0.2 0 0.2 0 04
t1 1 ‘o 05 108 1 08 1 06
t1  g(t1)
0 0.5



Bisimulation-based Lifted Inference

Query: ST

S A B prob ﬁ ﬁ a a
sT ‘'m 1 08 51 f >2 >3
s2 ‘nn 1 0.8
s3 ‘o 1 0.6

T B C prob I I i3

t1 1 o 05

Inferences required:

Hq(iy) = 231,1‘1 fi(s4) 9(t,) f;/ (sp,ty.iy)
Ho(ix) = 2sot1 Fo(S)) glty) £7 (Spt4,0)
Hs(iz) = 2s3t1 3(S9) g(ty) F5(s5.t0,05)




Bisimulation-based Lifted Inference

e S @ 0o e
S A B prob
‘ty’ S4 ty S2 S3

st m 1 0.8
S2 m 1 0.8
s3 o 1 0.6
T B C prob I I
t1 1 ‘p 05

Inferences required:

H1(1) = 2s1,41 To(80) 9(t) ;7 (S1.tp,i3) Identical computation
Hoiy) = Y g0 11 To(S3) () £/ (Sptyi) Repeated during evaluation

Hs(iz) = 2s3t1 3(S9) g(ty) F5(s5.t0,05)



Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model RV-Elim Graph

Mgy (ty, i)=Y o1 F1(S4) £ (Sp,t400)
Mgo(ty, 1))=Y 5o Fo(S5) £,/ (Spt1,00)
Mgy (ts, i3)= ) 53 T3(S3) F5\ (S5 14,03



Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model RV-Elim Graph

H4(iz) Ho(iz) Hs(i3)
Hq(i) = 241 Mgy(tyiy) 9(ty)
Ho(ly) = 2 41 Mso(tyiy) 9(ty)
H3(i3) = 2 41 Mgs(tyiz) g(ty)



Bisimulation-based Lifted Inference

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model RV-Elim Graph

0 8 0 B GPHHeE
Sy t Sy S3

H4(iz) Ho(i) Hs(iz)

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored



Bisimulation-based Lifted Inference

Step 2: Run bisimulation on the RV-Elim graph to identify symmetries

Graphical Model RV-Elim Graph

¢ @0 @ eaved
s t, S, S3 \/

ms3

Hs(iz)

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored



Bisimulation-based Lifted Inference

Step 3: Compress the RV-Elim graph; run inference on compressed graph

RV-Elim Graph Compressed RV-Elim Graph

.

[f,,f5] [f;7,F7, 3]

5 @
\/ [ms1’m32]

ms3

. ]
IJ3(I3) [IJ1, .U2



Example RV-Elim Graph

[[ 3 relation join with 3 tuples each, attribute and tuple uncertainty ||

YUY NV YN Yy vy v.y.v.yv.yv.yv.y.y vy vy Vv
% \\VT/ Q{ \t/T/ \\/ I// / \\\'\J/ T /\/ \\\%/1/ \1\%/\/ \N/T/ X\\T/T/ \W/ \J\T/T/ \\T/T/ \\T/T/ \I\T/T/ \I\\T/T/ X\U/ \\T/T/ \\T/T/
| / | AR AR NV,
NNV NV I VL NNY VoL vy NV AL N N N NN NV NV NV Y
NN Y LN LY NV NV NNV NN Y, XY N YNY V2 N VY
NNV Y YL Y Vooy NN NN N ENVYL Y LN,
~o VAL U NYNLD JNY NN YN NNNY O NNNYY Y Y VY
~N AV BNV N GGG NN N NY o VLT V4
AV ZR VA RN R RVA /A RN /AN NN o
U/m{ N \\\%ﬁf/ﬁ / \1\ \1// fi /T/ \\4\\ DN //%///
, i |
~ WV T T 1
" N
Y W

Original RV-Elim graph, 1170 vertices

Compressed RV-Elim graph, 78 vertices =—




Bisimulation-based Lifted Inference

Orders of magnitude performance improvements with symmetry

Bisimulation can be done in linear time on DAGs
Somewhat more involved here
e Need to keep track of the order in which factors were multiplied
e Must construct labels on-the-fly as opposed to standard bisimulation
Our algorithm runs in O(|E| log(D) + |V]) time
Choice of elimination order crucial

Dictates the amount of compression possible

We choose it by running bisimulation on the graphical model itself

Our technigue works on the ground (propositionalized) model

Enables approximations: e.g. allow approximate matches on factors [UAI’09]

Many open challenges in effectively exploiting symmetry and first
order representations
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Querying Very Large CPDBs

® Base representation of PGMs can’t handle large datasets
Queries may only reference a small set of variables
e Still may need to touch the entire dataset

Infeasible to load into memory and operate upon the full PGM

An example PGM

i

S5 29

k

@ ,, * '

Q1: Need to do an inference

operation involving nearly
all variables

Queries of interest

Q1: How does the value of “s” affect the value “e” ?



Querying Very Large CPDBs

® Base representation of PGMs can’t handle large datasets
Queries may only reference a small set of variables
e Still may need to touch the entire dataset

Infeasible to load into memory and operate upon the full PGM

An example PGM

Q2: Must compute a potentially

: . large probability distribution:
Queries of interest Ztel 7 1),

Q1: How does the value of “n” affect the value “e” ?

Q2: Compute probability distribution of “d+i+f+n+p”



Querying Very Large CPDBs

® Base representation of PGMs can’t handle large datasets

® Need data structures that:
Reuse computation during different inference operations
Support updating data as well as uncertainty parameters
Minimize the number of variables that need to be accessed

Support computation of aggregates and lineage expressions
required for SQL query processing

® Some prior techniques (e.g. junction trees) help with
some of these, but not all



Key Insight

Original PGM

=9 =-¢ - _ TV
2L SPINE o7

b
r

\'

What if we could “shortcut” the in-between nodes ?

AN
¢ | Go—9®
' Many fewer computations
Can do inference much faster




INDSEP: Overview

® Unclear how to do this on the graphical model directly

® Instead we work with a junction tree of the model

Essentially a tree decomposition of the factor graph, treated as a
hypergraph

Caveat: Inherit the limitations of the junction tree approach —
only works for models with bounded treewidth

® INDSEP is a hierarchical data structure over junction tree
Built using tree partitioning algorithms

Several techniques used to reduce the size of the index



INDSEP: Overview

® Very large speedups for inference queries, and for
decomposable aggregate functions (like SUM, MAX)

® Lineages (boolean formulas) trickier (not decomposable),
but similar speedups with more complex algorithms

® Supports a lazy approach for updates
Future queries inherit the burden of updating the index

Needed because a single update can affect the entire junction
tree
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Ongoing Work and Open Problems

® Better connections with the work in the ML community

Many ML problems and application domains ideal use cases for
probabilistic databases

e Need to scale to large (relational) databases

e Need support for rich querying over uncertain data
Significant overlap in the tools and techniques being developed
But many important differences

e Learning and knowledge transfer equally important there

o Typical use case for PRMs or MLNs: learn weights/probabilities from

a deterministic database, and transfer to other (incomplete) database

e Not much work in the probabilistic database community



Ongoing Work and Open Problems

® Language constructs and semantics

Flexibility in specifying uncertainties at different abstraction
levels results in significant interpretation issues

How to resolve conflicting uncertainties ?

How to keep the semantics simple enough that users can make

sense of it ?

e Efficient algorithms for lifted inference

Much work in recent years, but many interesting open

problems remain



Ongoing Work and Open Problems

® Querying very large correlated probabilistic databases
Our indexing structures inherit the limitations of junction trees
e Can only handle datasets or queries with low treewidths

How to incorporate approximations into the framework ?

Lineage formula probability computation especially hard

e Computing probabilities of read-once lineages easy with tuple
independence, but #P-Hard for simplest of correlations

® Uncertain graph data

Shared correlations prevalent in settings like social networks,
biological networks

Compact models of correlations required



Thank You !!

® More details at:

http://www.cs.umd.edu/~amol/PrDB




