Increasing the Representational Power and Scaling Reasoning in Probabilistic Databases

Amol Deshpande, University of Maryland

(joint work w/ Prof. Lise Getoor, Bhargav Kanagal, Jian Li, and Prithviraj Sen)
Motivation

- Increasing amounts of real-world uncertain data
 - Sensor networks, Scientific databases
 - Imprecise data, data with confidence or accuracy bounds
 - Widespread use of statistical and probabilistic models
 - Data integration
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Information extraction
 - Automatically extracted knowledge from text
 - Social networks, biological networks
 - Noisy, error-prone observations
 - Ubiquitous use of entity resolution, link prediction, function prediction ..
- Need to develop database systems for efficiently representing and managing uncertainty
“Probability theory” a strong foundation to reason about the uncertainty

Goal of Probabilistic Databases: Managing and querying large volumes of data annotated with probabilities

Much work in recent years, leading up to many systems

- **Mystiq (University of Washington)**
- **Trio (Stanford)**
- **MayBMS (Cornell, Oxford)**
- **PrDB (Maryland)**
- **MCDB (Univ. of Florida, IBM)**
- **Orion (Purdue University)**
- **BayesStore (Berkeley)**
- **Lahar (University of Washington)**

Other work on approximations, ranking, indexing, summarization etc.

But, many challenges still remain...
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
Types of uncertainties typically supported

- **Tuple-existence uncertainty**
 - A tuple may or may not exist in the database
 - *e.g.* a sensor may detect a bird, but not 100% sure

- **Attribute-value uncertainty**
 - The *value* of an attribute not known precisely
 - Instead a distribution over possible values is provided
 - *e.g.* a sensor detects a bird for sure, but it may be a sparrow or a dove or something else

Most systems assume discrete probability distributions, but some support continuous distributions as well

Largely based on the *possible worlds semantics*
An Example Probabilistic Database

- Example from Dalvi and Suciu [2004]
- Assume independent tuples

Possible worlds

<table>
<thead>
<tr>
<th>instance</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>{s1, s2, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1, s2}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s1, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s2, t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{s2}</td>
<td>0.12</td>
</tr>
<tr>
<td>{t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{}</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Interpret as a distribution over a set of deterministic possible worlds:

$$p(s1) \times p(t1) \times (1-p(s2)) = 0.6 \times 0.4 \times 0.5 = 0.12$$
Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: \(\pi_C(S \bowtie_B T) \)

S

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[i1 \]

\[i2 \]

\[\pi_C C \]

\[r1 \]

\[‘p’ \]
Query Processing Semantics

- Evaluate on each possible world and combine results
- Example Query: $\pi_C(S \bowtie_B T)$

Possible worlds

<table>
<thead>
<tr>
<th>instance</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>{s1, s2, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1, s2}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s1, t1}</td>
<td>0.12</td>
</tr>
<tr>
<td>{s1}</td>
<td>0.18</td>
</tr>
<tr>
<td>{s2, t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{s2}</td>
<td>0.12</td>
</tr>
<tr>
<td>{t1}</td>
<td>0.08</td>
</tr>
<tr>
<td>{}</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Query Result

<table>
<thead>
<tr>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>{'p'}</td>
</tr>
<tr>
<td>{}</td>
</tr>
<tr>
<td>{'p'}</td>
</tr>
<tr>
<td>{}</td>
</tr>
</tbody>
</table>

Not clear how to do this in general e.g. ranking ??

Consensus Answers [PODS’09]
Several approaches proposed in recent years in DB literature

 - Typically make strong independence assumptions
 - Limited support for attribute-value uncertainty
 - In spite of that, query evaluation known to be #P-Hard [DS’04]
 - For very simple 3-relation queries

Our Goals:

 - Increase representational power to support:
 - Correlations among the data items
 - Uncertainties at different abstraction levels and granularities
 - Scale reasoning and querying to large-scale uncertain data while supporting the above
Correlations in Uncertain Data

- Most application domains generate correlated data
 - Data Integration
 - Conflicting information best captured using “mutual exclusivity”
 - Data from the same source may all be valid or may all be invalid

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>$1200</td>
</tr>
<tr>
<td>John</td>
<td>$1600</td>
</tr>
</tbody>
</table>

- Information extraction
 - Annotations on consecutive text segments strongly correlated

Bill can be reached at 3-4057

- Annotation: first name (prob: 80%)
- Annotation: phone number (prob: 90%)

High positive correlation
Correlations in Uncertain Data

- Most application domains generate correlated data
 - **Data Integration**
 - Conflicting information best captured using “mutual exclusivity”
 - Data from the same source may all be valid or may all be invalid
 - **Information extraction**
 - Annotations on consecutive text segments strongly correlated
 - **Social networks**
 - Attributes of neighboring nodes often highly correlated
 - Predicted links, class labels likely to be correlated
 - **Sensor network data**
 - Very strong spatio-temporal correlations
- Even if base data exhibits independence..
 - Correlations get introduced during query processing
Correlations in Uncertain Data

- Even if base data exhibits independence..
 - Correlations get introduced during query processing

\[
p(i_1) = p(s_1) \times p(t_1)
\]

\[
= 0.6 \times 0.4 = 0.24
\]
Shared Uncertainties and Correlations

- Uncertainties and correlations often specified for groups of tuples rather than for individual tuples.
- Necessary when trying to model and reason about uncertainty in large populations.

A Used Car Ads Database

<table>
<thead>
<tr>
<th>AdID</th>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Honda</td>
<td>?</td>
<td>$9,000</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>Beige</td>
<td>$8,000</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>$6,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000000</td>
<td>?</td>
<td>?</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Pr(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td>0.2</td>
</tr>
<tr>
<td>Mazda</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| Model | Color | Pr(C|M) |
|-------|-------|--------|
| Honda | Beige | 0.1 |
| Honda | Red | 0.2 |
| ... | ... | ... |
| Mazda | Beige | 0.02 |
Often we have probabilistic knowledge at the schema level (learned from a deterministic database) that we are trying to transfer.

- Using Prob. relational models (PRMs), Relational Markov networks (RMNs) etc. ("Intro. to Statistical Relational Learning"; Getoor and Taskar, 2007)

A “Schema-level” Dependence

An Instantiation

<table>
<thead>
<tr>
<th>Name</th>
<th>IQ</th>
<th>Course</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td></td>
<td>CS101</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
<td>CS101</td>
<td>CS201</td>
</tr>
<tr>
<td>Alice</td>
<td></td>
<td>CS201</td>
<td></td>
</tr>
</tbody>
</table>
First-order Logic and Uncertainties

- Often need to reason about uncertainties at the first-order level

Example from “Markov Logic Networks”; Richardson and Domingos [2006]

<table>
<thead>
<tr>
<th>English and First Order Logic</th>
<th>Clausal Form</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Friends of friends are friends” (\forall x \forall y \forall z \ Fr(x, y) \land F(y, z) \Rightarrow Fr(x, z))</td>
<td>(\neg Fr(x, y) \lor \neg F(y, z) \lor Fr(x, z))</td>
<td>0.7</td>
</tr>
<tr>
<td>“Smoking causes cancer”. (\forall x \ Sm(x) \Rightarrow Ca(x))</td>
<td>(\neg Sm(x) \lor Ca(x))</td>
<td>1.5</td>
</tr>
<tr>
<td>“Friends have similar behavior w.r.t. smoking.” (\forall x \forall y \ Fr(x, y) \land Sm(x) \Rightarrow Sm(y))</td>
<td>(\neg Fr(x, y) \lor \neg Sm(x) \lor Sm(y))</td>
<td>1.1</td>
</tr>
</tbody>
</table>

- Rules do not always hold – hence may choose to augment them with weights (approach taken in *Markov Logic Networks*)
 - *Hard vs soft constraints*
A specific population defines a specific Markov network

- Given persons: Anna, Frank, Bob
- We get the (boolean) variables:
 - Friends(Anna, Frank), Friends(Anna, Bob), Friends(Frank, Bob), ...
 - Smokes(Anna), Smokes(Frank), Smokes(Bob), ...
 - Ca(Anna), Ca(Frank), Ca(Bob), ...

An instantiation to these variables (true or false) is a possible world

Possible worlds that violate fewer constraints have higher probabilities

- According to the weights

Typical inference task: find the most likely world

May want to treat the output as an uncertain database and support rich querying constructs
Reasoning over Correlated, Uncertain Data

- Huge body of work in Machine Learning community on this topic
 - Bayesian and Markov networks, statistical relational models (PRMs, MRNs)
 - On efficient algorithms for reasoning, for inference, for learning ...
 - As much emphasis on *learning* as on *inference*

- Lot of work in recent years in the Probabilistic Databases literature
 - On efficient SQL query processing over very large amounts of data
 - Comparatively simpler uncertainty structures

- How to combine the representational power and richness of ML approaches with the ability to execute declarative queries over large volumes of data?
PrDB Framework

- Flexible uncertainty model (based on probabilistic graphical models)
 - Support for representing rich correlation structures [ICDE’07]
 - Support for specifying uncertainty at multiple abstraction levels [DUNE’07]
- Declarative constructs for interacting with the database
 - Manipulating and updating uncertainty as a first class citizen
- Rich querying semantics
 - SQL queries; Inference, reasoning, and what-if queries
- New techniques for scaling reasoning and query processing
 - Inference techniques to exploit the structure in the data [VLDB’08]
 - Index structures for handling large volumes of data [SIGMOD’09,’10]
 - Efficient algorithms for ranking queries, consensus answers [VLDB’09,PODS’09]
 - Approximation techniques that enable tradeoff accuracy and speed [UAI’09]
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*

- Concepts borrowed from the *graphical models* literature

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>'m'</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>'n'</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>'p'</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[
f_1(s) = \begin{cases}
0 & \text{if } s = 0 \\
1 & \text{if } s = 1
\end{cases}
\]

\[
f_2(s, t) = \begin{cases}
0.1 & \text{if } s = 0 \text{ and } t = 0 \\
0.5 & \text{if } s = 0 \text{ and } t = 1 \\
0.4 & \text{if } s = 1 \text{ and } t = 0 \\
0 & \text{if } s = 1 \text{ and } t = 1
\end{cases}
\]

0 = Tuple does not exist
1 = Tuple exists

Often not probability distributions
Values can be > 1

s2 and t1 mutually exclusive
A Simple Example

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
- Concepts borrowed from the *graphical models* literature

Example

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>prob</th>
<th></th>
<th>s1</th>
<th>f₁(s1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.6</td>
<td></td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>B</th>
<th>C</th>
<th>prob</th>
<th></th>
<th>s2</th>
<th>t1</th>
<th>f₂(s2, t1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Edges capture the dependencies between variables

Markov network representation

Factor graphs
Probabilistic Graphical Models

- A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations
- Specified completely by:
 - A set of random variables
 - A set of factors over the random variables
- Joint pdf obtained by multiplying all the factors and normalizing
- An *Inference* task: Finding a marginal prob. distribution over subset of variables
 - e.g. $Pr(t_1)$

$$Pr(s_1, s_2, t_1) \propto f_1(s_1) f_2(s_2, t_1)$$

For example:
$$Pr(s_1 = 0, s_2 = 0, t_1 = 0) = \frac{1}{Z} f_1(s_1 = 0) f_2(s_2 = 0, t_1 = 0)$$

Normalizing Constant ("Partition Function")
A Simple Example

- During query processing, add new deterministic factors (hard constraints) corresponding to intermediate tuples
 - Encode the dependencies between base tuples and intermediate tuples
- Example query: $\pi_C(S \bowtie_B T)$
A PGM can compactly represent a joint probability distribution over a large number of random variables with complex correlations.

Specified completely by:

- A set of random variables
- A set of factors over the random variables

Joint pdf obtained by multiplying all the factors and normalizing

\[
Pr(s_1, s_2, t_1, i_1, i_2, r_1) \propto f_1(s_1) f_2(s_2, t_1) f^{\wedge}(s_1, t_1, i_1) f^{\wedge}(s_2, t_1, i_2) f^{\vee}(i_1, i_2, r_1)
\]
A Simple Example

- **Query evaluation** ≡ Find the result tuple probabilities ≡ **Inference** !!
 - Can use standard techniques like *variable elimination, junction trees (exact), message passing, loopy Belief propagation, Gibbs Sampling (approx)*

\[\begin{array}{c|c|c}
S & A & B \\
\hline
s1 & 'm' & 1 \\
s2 & 'n' & 1 \\
\end{array} \]

\[\begin{array}{c|c|c}
T & B & C \\
\hline
t1 & 1 & 'p' \\
\end{array} \]

\[\begin{array}{c|c|c}
\text{A} & \text{B} & \text{C} \\
\hline
i1 & 'm' & 1 & 'p' \\
i2 & 'n' & 1 & 'p' \\
\end{array} \]

\[\begin{array}{c|c}
\Pi_C & C \\
\hline
r1 & 'p' \\
\end{array} \]

\[\begin{array}{c|c|c}
f1 & s1 & t1 \\
\hline
f2 & s2 & t1 \\
\end{array} \]
A Simple Example: Inference

- Variable Elimination
 - Sum-out non-query random variables one by one
 - Collect factors for that variable, multiply them, and sum out the variable

\[P(r_1) = \sum_{s_1, s_2, t_1, i_1, i_2} Pr(s_1, s_2, t_1, i_1, i_2, r_1) \]
\[\propto \sum f_1(s_1) f_2(s_2, t_1) f^\wedge(s_1, t_1, i_1) f^\wedge(s_2, t_1, i_2) f^\vee(i_1, i_2, r_1) \]
A Simple Example: Inference

- **Variable Elimination**
 - Sum-out non-query random variables one by one
 - Collect factors for that variable, multiply them, and sum out the variable
 - **Elimination Order**: The order in which to sum-out the random variables
 - Choosing a good elimination order critical for performance (NP-Hard)

\[
P(r_1) = \sum_{s_1, s_2, t_1, i_1, i_2} Pr(s_1, s_2, t_1, i_1, i_2, r_1) \\
\propto \sum f_1(s_1) f_2(s_2, t_1) f^\land(s_1, t_1, i_1) f^\land(s_2, t_1, i_2) f^\lor(i_1, i_2, r_1) \\
\propto \sum f_2(s_2, t_1) g_1(t_1, i_1) f^\land(s_2, t_1, i_2) f^\lor(i_1, i_2, r_1)
\]
An Observation

- AND and OR factors enable reorganization of the network
 - Complexity of the generated network depends on the query plan
 - “Safe plans” generate tree networks – enabling extensional evaluation
 - But a reorganization may not necessarily correspond to a traditional query plan
 - Benefits in looking for optimal reorganization for a given query and dataset
- Efficient inference in presence of special types of factors largely open
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
Underlying representation essentially a factor graph

- Tuples and factors stored separately in different tables

Factors can be inserted on any set of random variables

- Corresponding to tuple existences or attribute values

Semantics: the joint pdf over the random variables is obtained by multiplying all the factors and normalizing

- No special care taken right now to ensure this is correct

Allows specifying *shared factors* that apply to groups of tuples, or to all tuples of a relation (schema-level)
PrDB: Representation and Storage

Data Tables

```
tid  A  B  e
s1   'm' 1 π
s2   'n' 1 π
```

```
tid  B  C  e
t1   π  'p'  t
```

Uncertainty Parameters (factors)

```
fid  rv  pos
f1   s1.e  1
f2   s2.e  1
f3   s1.e  1
f3   t1.B  2
```

```
funcid  func
φ1  {f : 0.2, t : 0.8}
φ2  {{f, 2} : 0.2, {f, 3} : 0.8, {t, 2} : 0.9, {t, 3} : 0.1}
```

SQL Example

```
insert into S values ('s1', 'm', 1) uncertain('f 0.2; t 0.8');
```
PrDB: Representation and Storage

insert into T *values* (‘t1’, uncertain, ‘p’);

insert factor ‘f 2 0.2; f 3 0.8; t 2 0.9; t 3 0.1’ *in* S, *on* ‘s1.e’, ‘t1.B’;

<table>
<thead>
<tr>
<th>S</th>
<th>tid</th>
<th>A</th>
<th>B</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>П</td>
</tr>
<tr>
<td></td>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>П</td>
</tr>
</tbody>
</table>

Data Tables

<table>
<thead>
<tr>
<th>T</th>
<th>tid</th>
<th>B</th>
<th>C</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t1</td>
<td>П</td>
<td>‘p’</td>
<td>t</td>
</tr>
</tbody>
</table>

Uncertainty Parameters (factors)

<table>
<thead>
<tr>
<th>fid</th>
<th>rv</th>
<th>pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>s1.e</td>
<td>1</td>
</tr>
<tr>
<td>f2</td>
<td>s2.e</td>
<td>1</td>
</tr>
<tr>
<td>f3</td>
<td>s1.e</td>
<td>1</td>
</tr>
<tr>
<td>f3</td>
<td>t1.B</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fid</th>
<th>funcid</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>φ1</td>
</tr>
<tr>
<td>f2</td>
<td>φ1</td>
</tr>
<tr>
<td>f3</td>
<td>φ2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>funcid</th>
<th>func</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ1</td>
<td>{f : 0.2, [t] : 0.8}</td>
</tr>
<tr>
<td>φ2</td>
<td>{[f, 2] : 0.2, [f, 3] : 0.8, [t, 2] : 0.9, [t, 3] : 0.1}</td>
</tr>
</tbody>
</table>
PrDB: Query Processing Overview

No Index on the Data

- Load the base PGM into memory
- Construct an augmented PGM [ICDE’07]
- Use exact or approximate inference [VLDB’08, UAI’09]

INDSEP Indexes Present

- Aggregation or inference queries: Use index directly [SIGMOD’09]
- SQL SPJ Queries [SIGMOD’10]
 - Gather a minimal set of correlations & uncertainties using the index
 - Use exact or approximate inference
 - In some cases, solve using the index
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
Inference with Shared Factors

<table>
<thead>
<tr>
<th>AdID</th>
<th>Model</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Honda</td>
<td>?</td>
<td>$9,000</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
<td>Beige</td>
<td>$8,000</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>?</td>
<td>$6,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000000</td>
<td>?</td>
<td>?</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Pr(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td>0.2</td>
</tr>
<tr>
<td>Mazda</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| Model | Color | Pr(C|M) |
|-------|-------|--------|
| Honda | Beige | 0.1 |
| Honda | Red | 0.2 |
| ... | ... | ... |
| Mazda | Beige | 0.02 |

Query: How many “red” cars are for sale?

- **Option 1**: “Ground out” (propositionalize) the random variables, and use standard techniques
- **Option 2**: Directly operate on the shared factors
Inference with Shared Factors

- **Option 1**: “Ground out” (propositionally) the random variables, and use standard techniques
 - Would need to create a PGM with a few million nodes

- **Option 2**: Directly operate on the shared factors
 - Compute a distribution over *makes* for cars with unknown *color* (%Honda% ? %Mazda% ? %Unknown% ?)
 - Use it to estimate the number of red cars
 - E.g. If 1000 Hondas with unknown color, 200 are expected to be red
 - “Lifted inference”: Much work in recent years in the ML community

- We developed a general purpose lifted inference technique based on *bisimulation* [VLDB’08, UAI’09]
First-order Lifted Inference

- Huge potential speedups
- ... but hard to design general purpose techniques
 - \#P-hardness of prob. query evaluation holds with all probabilities = 0.5

A Conjunctive Query: Compute the prob. that there is a tuple in R with A = α and B = 0

q :- R(ID, α, 0)

1. Propositionalizing (grounding out) would take at least O(|R|) time

2. However, if we know |R.a = α|, then:
 \[\text{answer} = 1 - (1 - 0.2)^{|R.a = α|} \]

 Essentially O(1) time
Probabilistic Databases: Overview, Limitations
PrDB: Example and Background
PrDB: Overview
Inference with Shared Factors
 Bisimulation-based Lifted Inference
Indexing Structures for Correlated Databases
Ongoing and Future Work
Bisimulation-based Lifted Inference

Query: S ⊗ T

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s3</td>
<td>‘o’</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Functions and Probabilities:

- $f_1(s_1) = 0.2$, $f_1(s_2) = 0.2$, $f_1(s_3) = 0.4$
- $f_2(s_2) = 0.8$, $f_2(s_3) = 0.6$
- $g(t_1) = 0.5$
Bisimulation-based Lifted Inference

Query: $S \bowtie T$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>$prob$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>‘m’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s_2</td>
<td>‘n’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s_3</td>
<td>‘o’</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>$prob$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>‘p’</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Inferences required:

\[
\mu_1(i_1) = \sum_{s_1, t_1} f_1(s_1) g(t_1) f_1^\wedge (s_1, t_1, i_1)
\]

\[
\mu_2(i_2) = \sum_{s_2, t_1} f_2(s_2) g(t_1) f_2^\wedge (s_2, t_1, i_2)
\]

\[
\mu_3(i_3) = \sum_{s_3, t_1} f_3(s_3) g(t_1) f_3^\wedge (s_3, t_1, i_3)
\]
Bisimulation-based Lifted Inference

Query: S ⊗ T

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>‘m’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s2</td>
<td>‘n’</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>s3</td>
<td>‘o’</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>‘p’</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Inferences required:

\[
\begin{align*}
\mu_1(i_1) &= \sum_{s1, t1} f_1(s_1) g(t_1) f_1^\wedge (s_1, t_1, i_1) \\
\mu_2(i_2) &= \sum_{s2, t1} f_2(s_2) g(t_1) f_2^\wedge (s_2, t_1, i_2) \\
\mu_3(i_3) &= \sum_{s3, t1} f_3(s_3) g(t_1) f_3^\wedge (s_3, t_1, i_3)
\end{align*}
\]

Identical computation
Repeated during evaluation
Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

RV-Elim Graph

\[m_{s_1}(t_1, i_1) = \sum_{s_1} f_1(s_1) f_1^\wedge(s_1, t_1, i_1) \]

\[m_{s_2}(t_2, i_2) = \sum_{s_2} f_2(s_2) f_2^\wedge(s_2, t_1, i_2) \]

\[m_{s_1}(t_3, i_3) = \sum_{s_3} f_3(s_3) f_3^\wedge(s_3, t_1, i_3) \]
Bisimulation-based Lifted Inference

Step 1: Capture a (simulated) run of variable elimination as a graph

Graphical Model

RV-Elim Graph

\[\mu_1(i_1) = \sum_{t_1} m_{s_1}(t_1, i_1) \, g(t_1) \]
\[\mu_2(i_2) = \sum_{t_1} m_{s_2}(t_1, i_2) \, g(t_1) \]
\[\mu_3(i_3) = \sum_{t_1} m_{s_3}(t_1, i_3) \, g(t_1) \]
Step 2: Run *bisimulation* on the RV-Elim graph to identify symmetries

Intuitively, two nodes are bisimilar if
(1) they represent identical factors, and
(2) their parents are identically colored
Step 2: Run *bisimulation* on the RV-Elim graph to identify symmetries

Intuitively, two nodes are bisimilar if

1. they represent identical factors, and
2. their parents are identically colored

Graphical Model

RV-Elim Graph
Bisimulation-based Lifted Inference

Step 3: Compress the RV-Elim graph; run inference on compressed graph
Example RV-Elim Graph

[[3 relation join with 3 tuples each, attribute and tuple uncertainty]]
Orders of magnitude performance improvements with symmetry

Bisimulation can be done in linear time on DAGs
- Somewhat more involved here
 - Need to keep track of the order in which factors were multiplied
 - Must construct labels on-the-fly as opposed to standard bisimulation
- Our algorithm runs in $O(|E| \log(D) + |V|)$ time

Choice of elimination order crucial
- Dictates the amount of compression possible
- We choose it by running bisimulation on the graphical model itself

Our technique works on the ground (propositionalized) model
- Enables approximations: e.g. allow approximate matches on factors [UAI’09]

Many open challenges in effectively exploiting symmetry and first order representations
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
Querying Very Large CPDBs

- Base representation of PGMs can’t handle large datasets
 - Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
 - Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q1: How does the value of “s” affect the value “e”?

Q1: Need to do an inference operation involving nearly all variables
Base representation of PGMs can’t handle large datasets

- Queries may only reference a small set of variables
 - Still may need to touch the entire dataset
- Infeasible to load into memory and operate upon the full PGM

An example PGM

Queries of interest

Q1: How does the value of “n” affect the value “e”?
Q2: Compute probability distribution of “d + i + f + n + p”
Querying Very Large CPDBs

- Base representation of PGMs can’t handle large datasets

- Need data structures that:
 - Reuse computation during different inference operations
 - Support updating data as well as uncertainty parameters
 - Minimize the number of variables that need to be accessed
 - Support computation of aggregates and lineage expressions required for SQL query processing

- Some prior techniques (e.g. junction trees) help with some of these, but not all
Key Insight

What if we could “shortcut” the in-between nodes?

Many fewer computations
Can do inference much faster
Unclear how to do this on the graphical model directly

Instead we work with a junction tree of the model

- Essentially a tree decomposition of the factor graph, treated as a hypergraph
- Caveat: Inherit the limitations of the junction tree approach – only works for models with bounded treewidth

INDSEP is a hierarchical data structure over junction tree

- Built using tree partitioning algorithms
- Several techniques used to reduce the size of the index
Indsep: Overview

- Very large speedups for inference queries, and for decomposable aggregate functions (like SUM, MAX)

- Lineages (boolean formulas) trickier (not decomposable), but similar speedups with more complex algorithms

- Supports a lazy approach for updates
 - Future queries inherit the burden of updating the index
 - Needed because a single update can affect the entire junction tree
Outline

- Probabilistic Databases: Overview, Limitations
- PrDB: Example and Background
- PrDB: Overview
- Inference with Shared Factors
- Indexing Structures for Correlated Databases
- Ongoing and Future Work
Better connections with the work in the ML community

- Many ML problems and application domains ideal use cases for probabilistic databases
 - Need to scale to large (relational) databases
 - Need support for rich querying over uncertain data
- Significant overlap in the tools and techniques being developed
- But many important differences
 - Learning and knowledge transfer equally important there
 - Typical use case for PRMs or MLNs: learn weights/probabilities from a deterministic database, and transfer to other (incomplete) database
- Not much work in the probabilistic database community
Ongoing Work and Open Problems

- Language constructs and semantics
 - Flexibility in specifying uncertainties at different abstraction levels results in significant interpretation issues
 - *How to resolve conflicting uncertainties?*
 - *How to keep the semantics simple enough that users can make sense of it?*

- Efficient algorithms for lifted inference
 - Much work in recent years, but many interesting open problems remain
Ongoing Work and Open Problems

- Querying very large correlated probabilistic databases
 - Our indexing structures inherit the limitations of junction trees
 - Can only handle datasets or queries with low treewidths
 - How to incorporate approximations into the framework?
 - Lineage formula probability computation especially hard
 - Computing probabilities of read-once lineages easy with tuple independence, but #P-Hard for simplest of correlations

- Uncertain graph data
 - Shared correlations prevalent in settings like social networks, biological networks
 - Compact models of correlations required
More details at:

http://www.cs.umd.edu/~amol/PrDB