
Flow Algorithms for Two
Pipelined Filtering Problems

Anne Condon, University of British Columbia
Amol Deshpande, University of Maryland
Lisa Hellerstein, Polytechnic University, Brooklyn
Ning Wu, Polytechnic University, Brooklyn

Pipelined Filter Ordering
  Query processors commonly need to evaluate complex predicates against

relations

  Eg., on an employee relation:

 ((salary > 120000) AND (status = 2)) OR (educationlevel = 3);

 (age < 30) AND hasPatents(emp) AND hasWrittenBooks(emp);

  Pipelined filter ordering problem

 Decide the order in which to apply the individual predicates (filters) to the

 tuples

  We will focus on evaluating conjunctive predicates (containing only ANDs)

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

Classical Pipelined Filter Ordering
  Given:

  A set of independent filters, predi

  cost of applying each filter, ci

  selectivity of each filter, pi

  Find:
  the optimal serial execution order for applying the filters that

minimizes the total execution cost on a single processor

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

age < 30 salary < … zipcode = …

age < 30 salary < … zipcode = …

3! = 6 plans
considered

Serial Plans Considered

Classical Pipelined Filter Ordering
  Given:

  A set of independent filters, predi

  cost of applying each filter, ci

  selectivity of each filter, pi

  Find:
  the optimal serial execution order for applying the filters that

minimizes the total execution cost on a single processor

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

age < 30 salary < … zipcode = …

Execution cost of a plan

c1
p1

c2
p2

c3
p3

costs
selectivities

c1 + p1 c2 + p1 p2 c3 Expected
cost per tuple

Independence Assumption

Classical Pipelined Filter Ordering
  Algorithm for independent filters [KBZ’86]

  Apply the filters in the increasing order of:
 (1 – pi) / ci

  O(n log (n))

  Correlated filters ?
  NP-hard under several formulations

  E.g. when asked to find the best order for a given set of
tuples

  4-Approx greedy algorithm [BMMNW’04]

Pipelined Filter Ordering
  Complex expensive predicates

  E.g. pointInPolygon(x, y, P), hasPatents(emp)??
  Many join queries reduce to this problem

  E.g. queries posed against a star schema
  Increasing interest in recent years

  Data streams [AH’00, BMMNW’04]
  Sensor Networks [DGMH’05]
  Web indexes [CDY’95, EHJKMW’96, GW’00]
  Web services [SM’06]

  Similar to many problems in other domains
  Sequential testing (e.g. for fault detection) [SF’01, K’01]
  Learning with attribute costs [KKM’05]

Outline

  Introduction
 Problem1: Max-throughput problem

  Maximize throughput (tuples processed per
unit time) in a parallel environment

 Problem 2: Adversarial type, Single Tuple
  Minimize multiplicative regret in an adversarial

setting

Problem 1: Max-throughput Problem
  n independent filters executed in parallel by n operators,
 O1, …, On
  Given:

  selectivities of the filters, pi
  rate limits of the operators, ri

  Goal: Maximize the number of tuples processed per time unit

Patents
Database Google

Person
John
Jane

…

Amazon

Query
Processor

Queries over web services Parallel Databases

proc 1
age<30

proc 2
salary<…

proc 3
zipcode ...

R

Max-throughput Problem
r1 = 4
p1 = ½

r2 = 4
p2 = ½

r3 = 4
p3 = ½

Best “single” execution order ?

Throughput = 4 tuples

4 tuples/
unit time

2 tuples/
unit time

1 tuples/
unit time

Idle

X tuples/
unit time

x
2 tuples/
unit time

x
4 tuples/
unit time

X tuples/
unit time

x
2 tuples/
unit time

x
4 tuples/
unit time

Max-throughput Problem

Send Y tuples through (1, 2, 3), (2, 3, 1), and (3, 1, 2)

Throughput = tuples

X = 16
 5

32
 5

Use two orders: (1, 2, 3) and (3, 2, 1)

Y =

Throughput = tuples

16
 7

48
 7

Best possible ??

r1 = 4
p1 = ½

r2 = 4
p2 = ½

r3 = 4
p3 = ½

Processes r1 tuples
Rejects r1(1-p1) tuples Combined rejection probability =

 (1 – p1p2…pn)

Max-throughput Problem
  Definition:

  Saturation = an operator is processing at its capacity
  Lemma: Full saturation  optimality
  Proof:

r1, p1 r2, p2 r3, p3 rn, pn

Saturated steady state – Throughput K

Total tuples rejected in unit time
 = Σ ri (1 – pi)

If throughput equal to K,
then total tuples rejected in unit time
 = K (1 - p1…pn)

K =Σ ri (1 – pi) / (1 - p1…pn) = Constant

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

 Adversarial type, Single Tuple

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

  Equal rates, unequal selectivities
  Unequal rates and selectivities

  Two operators
  General case

  Routing and queuing issues
 Adversarial type, Single Tuple

Summary of results
  Max-throughput problem

  O(n) algorithm to find the maximal achievable throughput, if
rates given in sorted order

  O(n2) algorithm to find the optimal solution

  Previously known best algorithms [Kodialam’01]

  From sequential testing literature

  O(n2) and O(n3 log n) respectively

Equal rates, unequal selectivities
  Closed form saturating solution using cyclic permutations

  Send:
 (1 – pj -1) / (n – Σ pi)
 tuples through permutation:
 (j, j+1, j+2, …, n, 1, …, j-1)

p1 p2 p3 pn

rate = 1

p1 x x

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

r1, p1 r2, p2

Or:
 O2 saturates,
 but O1 doesn’t

Either:
 residual rates
 equalize

r1, p1 r2, p2

(if r1p1 > r2)
O1

O2

O1

O2

r1, p1 r2, p2

O1
O2

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

Either:
 residual rates
 equalize

r1, p1 r2, p2

(if r1p1 > r2)
Use the equal-rates algorithm
 to solve the residual problem

Two part solution:
During every time unit,
 1. Send x tuples through
 (1, 2)
 2. Send y tuples total through
 cylic permutations:
 (1, 2) and (2, 1)
 (appropriately divided)

O1

O2

p1 x x

r1, p1 r2, p2

O1
O2

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

r1, p1 r2, p2

Or:
 O2 saturates,
 but O1 doesn’t 1. O2 has saturated

2. No flow out of O2

O2 is being applied last to all tuples.
No way to lighten its load more.

Optimal

Solution:
During every time unit, send z
tuples through (1, 2)

O1

O2

p1 x x

r1, p1 r2, p2

O1
O2

x

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4

E1
1 E2

1 E3
1 E4

1 E5
1

Equalized

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

x

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4

Equalized

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

E1
2 E2

2 E3
2 E4

2

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4

E1
2 E2

2 E3
2 E4

2

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

y
Use equal-rates solution to
 distribute tuples evenly

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4

E1
2 E2

2 E3
2 E4

2

y
Use equal-rates solution to
 distribute tuples evenly

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)
 2. send y tuples total
 along:
 (1, 2, 3, 4, 5) and
 (1, 3, 2, 4, 5)
 (appropriately divided)

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

  After at most n rounds
  Either: All operators are equalized

  Solve using equal rates solution
  Full saturation  Optimality

  Or: Rightmost equivalence group saturates
  No flow out of that group  Optimality

  Running time: O(n2)

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

  Equal rates, unequal selectivities
  Unequal rates and selectivities

  Two operators
  General case

  Routing and queuing issues
 Adversarial type, Single Tuple

Routing
  Ideal form of the final solution:

  (πi, fπi): a list of permutations, and associated flows
  Not feasible: The resulting solution is not necessarily sparse

  Can directly use the output of the algorithm (the equivalence groups
and associated flows) for routing tuples

O1 O2

E1
1

O3 O4

E2
1

O2k-1 O2k

Ek
1

Positive flow assigned to 2k permutations
 (1 2) (3 4) … (2k-1 2k)

Queuing issues

 Rate limits only guaranteed in expectation

  [Kodialam’01]
  If K is an optimal routing scheme with max

throughput F, then, for any F* < F, there is a
routing scheme K* with throughput F* that
obeys the rate limits

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

 Adversarial type, Single Tuple

Problem 2: Adversarial, Single Tuple

  Given n predicates and their costs, c1, …, cn

  For tuple t, let:

  Adversary knows algorithm used, and controls input
tuples

  Goal: Minimize the expected multiplicative regret

 actual cost of processing t
minimum cost of processing t multiplicative regret(t) =

Problem 2: Adversarial, Single Tuple

  Can be reduced to a problem similar to max-
throughput problem
  Details in the paper
  Same algorithms can be used

  Naïve solution
  Order in the increasing order of costs

  Theorem: Naïve solution within a factor of 2

Conclusions

 Two pipelined filter ordering problems
  Maximize throughput in a parallel scenario
  Minimize multiplicative regret in an adversarial

scenario
 Very simple and efficient algorithms

  Using a flow formulation
  Interesting open problems

  Correlated predicates
  Robustness of algorithms
  Routing tuples of multiple types together

Thank you !!

 Questions ?

