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Pipelined Filter Ordering 
  Query processors commonly need to evaluate complex predicates against 

relations

  Eg., on an employee relation:

       ((salary > 120000) AND (status = 2)) OR (educationlevel = 3);

       (age < 30) AND hasPatents(emp) AND hasWrittenBooks(emp);


  Pipelined filter ordering problem

            Decide the order in which to apply the individual predicates (filters) to the

            tuples

  We will focus on evaluating conjunctive predicates (containing only ANDs)


select * 
from employee 
where age < 30 and  
        salary < 100000 and 
        zipcode = 20001 

Example Query 



Classical Pipelined Filter Ordering 
  Given:  

  A set of independent filters, predi 

  cost of applying each filter, ci 

  selectivity of each filter, pi 

  Find: 
  the optimal serial execution order for applying the filters that 

minimizes the total execution cost on a single processor 

select * 
from employee 
where age < 30 and  
       salary < 100000 and 
       zipcode = 20001 

Example Query 

age < 30 salary < … zipcode = … 

age < 30 salary < … zipcode = … 

3! = 6 plans 
considered 

Serial Plans Considered 



Classical Pipelined Filter Ordering 
  Given:  

  A set of independent filters, predi 

  cost of applying each filter, ci 

  selectivity of each filter, pi 

  Find: 
  the optimal serial execution order for applying the filters that 

minimizes the total execution cost on a single processor 

select * 
from employee 
where age < 30 and  
       salary < 100000 and 
       zipcode = 20001 

Example Query 

age < 30 salary < … zipcode = … 

Execution cost of a plan 

c1 
p1 

c2 
p2 

c3 
p3 

costs 
selectivities 

c1             + p1 c2         + p1 p2 c3 Expected  
cost per tuple 

Independence Assumption 



Classical Pipelined Filter Ordering 
  Algorithm for independent filters [KBZ’86] 

  Apply the filters in the increasing order of: 
             (1 – pi ) / ci 

  O(n log (n)) 

  Correlated filters ? 
  NP-hard under several formulations 

  E.g. when asked to find the best order for a given set of 
tuples  

  4-Approx greedy algorithm [BMMNW’04] 



Pipelined Filter Ordering 
  Complex expensive predicates 

  E.g. pointInPolygon(x, y, P), hasPatents(emp)?? 
  Many join queries reduce to this problem 

  E.g. queries posed against a star schema 
  Increasing interest in recent years 

  Data streams [AH’00, BMMNW’04] 
  Sensor Networks [DGMH’05] 
  Web indexes [CDY’95, EHJKMW’96, GW’00] 
  Web services [SM’06] 

  Similar to many problems in other domains 
  Sequential testing (e.g. for fault detection) [SF’01, K’01] 
  Learning with attribute costs [KKM’05] 



Outline 

  Introduction 
 Problem1: Max-throughput problem 

  Maximize throughput (tuples processed per 
unit time) in a parallel environment 

 Problem 2: Adversarial type, Single Tuple 
  Minimize multiplicative regret in an adversarial 

setting 



Problem 1: Max-throughput Problem 
  n independent filters executed in parallel by n operators,  
                    O1, …, On 
  Given:  

  selectivities of the filters, pi 
  rate limits of the operators, ri 

  Goal: Maximize the number of tuples processed per time unit  

Patents 
Database Google 

Person 
John 
Jane 

… 

Amazon 

Query  
Processor 

Queries over web services Parallel Databases 

proc 1 
age<30 

proc 2 
salary<… 

proc 3 
zipcode ... 

R 



Max-throughput Problem 
r1 = 4 
p1 = ½ 

r2 = 4 
p2 = ½ 

r3 = 4 
p3 = ½ 

Best “single” execution order ? 

Throughput = 4 tuples 

4 tuples/ 
unit time 

2 tuples/ 
unit time 

1 tuples/ 
unit time 

Idle 



X tuples/ 
unit time 

x 
2    tuples/ 
unit time 

x 
4    tuples/ 
unit time 

X tuples/ 
unit time 

x 
2    tuples/ 
unit time 

x 
4    tuples/ 
unit time 

Max-throughput Problem 

Send Y tuples through (1, 2, 3), (2, 3, 1), and (3, 1, 2) 

Throughput =      tuples 

X = 16 
 5 

32 
 5 

Use two orders: (1, 2, 3) and (3, 2, 1) 

Y = 

Throughput =      tuples 

16 
 7 

48 
 7 

Best possible ?? 

r1 = 4 
p1 = ½ 

r2 = 4 
p2 = ½ 

r3 = 4 
p3 = ½ 



Processes r1 tuples 
Rejects r1(1-p1) tuples Combined rejection probability = 

      (1 – p1p2…pn) 

Max-throughput Problem 
  Definition:  

  Saturation = an operator is processing at its capacity 
  Lemma: Full saturation  optimality 
  Proof: 

r1, p1 r2, p2 r3, p3 rn, pn 

Saturated steady state – Throughput K 

Total tuples rejected in unit time  
            = Σ ri (1 – pi) 

If throughput equal to K,  
then total tuples rejected in unit time 
        = K (1 - p1…pn) 

K =Σ ri (1 – pi) / (1 - p1…pn) = Constant  



Outline 

  Introduction 
 Max-throughput problem 

  Formulation in terms of flows 
  Algorithms 

 Adversarial type, Single Tuple 
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Summary of results 
  Max-throughput problem 

  O(n) algorithm to find the maximal achievable throughput, if 
rates given in sorted order 

  O(n2) algorithm to find the optimal solution 

  Previously known best algorithms [Kodialam’01] 

  From sequential testing literature  

  O(n2) and O(n3 log n) respectively 



Equal rates, unequal selectivities 
  Closed form saturating solution using cyclic permutations 

  Send: 
                     (1 – pj -1) / (n – Σ pi ) 
     tuples through permutation: 
                     (j, j+1, j+2, …, n, 1, …, j-1) 

p1 p2 p3 pn 

rate = 1 



p1 x x 

Unequal rates: Two Operators 
Two operators with unequal rates (r1 > r2) 

Start adding flow 
through (1, 2) 

r1, p1 r2, p2 

Or: 
     O2 saturates, 
     but O1 doesn’t 

Either: 
     residual rates 
     equalize 

r1, p1 r2, p2 

(if r1p1 > r2) 
O1 

O2 

O1 

O2 

r1, p1 r2, p2 

O1 
O2 



Unequal rates: Two Operators 
Two operators with unequal rates (r1 > r2) 

Start adding flow 
through (1, 2) 

Either: 
     residual rates 
     equalize 

r1, p1 r2, p2 

(if r1p1 > r2) 
Use the equal-rates algorithm  
      to solve the residual problem 

Two part solution: 
During every time unit, 
    1. Send x tuples through 
             (1, 2) 
    2. Send y tuples total through  
        cylic permutations: 
             (1, 2) and (2, 1) 
        (appropriately divided) 

O1 

O2 

p1 x x 

r1, p1 r2, p2 

O1 
O2 



Unequal rates: Two Operators 
Two operators with unequal rates (r1 > r2) 

Start adding flow 
through (1, 2) 

r1, p1 r2, p2 

Or: 
     O2 saturates, 
     but O1 doesn’t 1. O2 has saturated 

2. No flow out of O2 

O2 is being applied last to all tuples. 
No way to lighten its load more. 

Optimal 

Solution: 
During every time unit, send z  
tuples through (1, 2) 

O1 

O2 

p1 x x 

r1, p1 r2, p2 

O1 
O2 



x 

Unequal rates: General Case 
  Create equivalence groups of operators based on rates  
  Incrementally add flow from higher-rate groups towards lower-

rate groups 
  Merge groups if residual rates equalize 

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4 

E1
1 E2

1 E3
1 E4

1 E5
1 

Equalized 

Partial solution: 
    1. send x tuples along 
           (1, 2, 3, 4, 5) 



x 

Unequal rates: General Case 
  Create equivalence groups of operators based on rates  
  Incrementally add flow from higher-rate groups towards lower-

rate groups 
  Merge groups if residual rates equalize 

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4 

Equalized 

Partial solution: 
    1. send x tuples along 
           (1, 2, 3, 4, 5) 

E1
2 E2

2 E3
2 E4

2 



Unequal rates: General Case 
  Create equivalence groups of operators based on rates  
  Incrementally add flow from higher-rate groups towards lower-

rate groups 
  Merge groups if residual rates equalize 
  Recurse using residual rates 

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4 

E1
2 E2

2 E3
2 E4

2 

Partial solution: 
    1. send x tuples along 
           (1, 2, 3, 4, 5) 

y 
Use equal-rates solution to  
     distribute tuples evenly 



Unequal rates: General Case 
  Create equivalence groups of operators based on rates  
  Incrementally add flow from higher-rate groups towards lower-

rate groups 
  Merge groups if residual rates equalize 
  Recurse using residual rates 

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4 

E1
2 E2

2 E3
2 E4

2 

y 
Use equal-rates solution to  
     distribute tuples evenly 

Partial solution: 
    1. send x tuples along 
           (1, 2, 3, 4, 5) 
    2. send y tuples total  
        along: 
           (1, 2, 3, 4, 5) and 
           (1, 3, 2, 4, 5) 
        (appropriately divided) 



Unequal rates: General Case 
  Create equivalence groups of operators based on rates  
  Incrementally add flow from higher-rate groups towards lower-

rate groups 
  Merge groups if residual rates equalize 
  Recurse using residual rates 

  After at most n rounds 
  Either: All operators are equalized 

  Solve using equal rates solution 
  Full saturation  Optimality 

  Or: Rightmost equivalence group saturates 
  No flow out of that group  Optimality 

  Running time: O(n2) 



Outline 

  Introduction 
 Max-throughput problem 

  Formulation in terms of flows 
  Algorithms 

  Equal rates, unequal selectivities 
  Unequal rates and selectivities 

  Two operators 
  General case 

  Routing and queuing issues 
 Adversarial type, Single Tuple 



Routing  
  Ideal form of the final solution: 

  (πi, fπi): a list of permutations, and associated flows 
  Not feasible: The resulting solution is not necessarily sparse 

  Can directly use the output of the algorithm (the equivalence groups 
and associated flows) for routing tuples 

O1 O2 

E1
1 

O3 O4 

E2
1 

O2k-1 O2k 

Ek
1 

Positive flow assigned to 2k permutations 
        (1 2) (3 4) …  (2k-1 2k)  



Queuing issues 

 Rate limits only guaranteed in expectation 

  [Kodialam’01] 
  If K is an optimal routing scheme with max 

throughput F, then, for any F* < F, there is a 
routing scheme K* with throughput F* that 
obeys the rate limits  
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Problem 2: Adversarial, Single Tuple 

  Given n predicates and their costs, c1, …, cn 

  For tuple t, let: 

  Adversary knows algorithm used, and controls input 
tuples 

  Goal: Minimize the expected multiplicative regret  

 actual cost of processing t 
minimum cost of processing t multiplicative regret(t) = 



Problem 2: Adversarial, Single Tuple 

  Can be reduced to a problem similar to max-
throughput problem 
  Details in the paper 
  Same algorithms can be used 

  Naïve solution 
  Order in the increasing order of costs 

  Theorem: Naïve solution within a factor of 2 



Conclusions 

 Two pipelined filter ordering problems 
  Maximize throughput in a parallel scenario 
  Minimize multiplicative regret in an adversarial 

scenario 
 Very simple and efficient algorithms 

  Using a flow formulation 
  Interesting open problems 

  Correlated predicates 
  Robustness of algorithms 
  Routing tuples of multiple types together 



Thank you !! 

 Questions ? 


