Flow Algorithms for Two Pipelined Filtering Problems

Anne Condon, University of British Columbia Amol Deshpande, University of Maryland Lisa Hellerstein, Polytechnic University, Brooklyn Ning Wu, Polytechnic University, Brooklyn

Pipelined Filter Ordering

- Query processors commonly need to evaluate complex predicates against relations
 - Eg., on an *employee* relation:

((salary > 120000) AND (status = 2)) OR (educationlevel = 3);

(age < 30) AND hasPatents(emp) AND hasWrittenBooks(emp);

Pipelined filter ordering problem

Decide the order in which to apply the individual predicates (filters) to the tuples

We will focus on evaluating *conjunctive predicates* (containing only ANDs)

Example Query

select * from *employee* where *age* < 30 and *salary* < 100000 and *zipcode* = 20001

Classical Pipelined Filter Ordering

Given:

- A set of <u>independent</u> filters, pred_i
- cost of applying each filter, c_i
- selectivity of each filter, p_i

Find:

 the optimal <u>serial</u> execution order for applying the filters that minimizes the <u>total execution cost on a single processor</u>

Example Query

select * from *employee* where *age* < 30 and *salary* < 100000 and *zipcode* = 20001

Serial Plans Considered

Classical Pipelined Filter Ordering

Given:

- A set of *independent* filters, *pred*,
- cost of applying each filter, c_i
- <u>selectivity</u> of each filter, p_i

Find:

 the optimal <u>serial</u> execution order for applying the filters that minimizes the <u>total execution cost on a single processor</u>

Independence Assumption

Classical Pipelined Filter Ordering

Algorithm for independent filters [KBZ'86]

Apply the filters in the increasing order of:

$$(1 - p_i) / c_i$$

O(n log (n))

Correlated filters ?

- NP-hard under several formulations
 - E.g. when asked to find the best order for a given set of tuples
- 4-Approx greedy algorithm [BMMNW'04]

Pipelined Filter Ordering

- Complex expensive predicates
 - E.g. pointInPolygon(x, y, P), hasPatents(emp)??
- Many join queries reduce to this problem
 - E.g. queries posed against a *star schema*
- Increasing interest in recent years
 - Data streams [AH'00, BMMNW'04]
 - Sensor Networks [DGMH'05]
 - Web indexes [CDY'95, EHJKMW'96, GW'00]
 - Web services [SM'06]
- Similar to many problems in other domains
 - Sequential testing (e.g. for fault detection) [SF'01, K'01]
 - Learning with attribute costs [KKM'05]

Outline

Introduction

Problem1: Max-throughput problem

 Maximize *throughput* (tuples processed per unit time) in a parallel environment

Problem 2: Adversarial type, Single Tuple

Minimize *multiplicative regret* in an adversarial setting

Problem 1: Max-throughput Problem

n independent filters executed in parallel by n operators,

O₁, ..., O_n

Given:

- selectivities of the filters, p_i
- rate limits of the operators, r_i

Goal: Maximize the number of tuples processed per time unit

Queries over web services

Max-throughput Problem

Max-throughput Problem

Use two orders: (1, 2, 3) and (3, 2, 1)

$$\begin{array}{cccc} r_1 = 4 & r_2 = 4 & r_3 = 4 \\ p_1 = \frac{1}{2} & p_2 = \frac{1}{2} & p_3 = \frac{1}{2} \end{array}$$

$$X \text{ tuples/}_{unit \text{ time}} \qquad X = \frac{16}{5}$$

$$X = \frac{16}{5}$$

$$Throughput = \frac{32}{5} \text{ tuples/}_{unit \text{ time}}$$

$$X = \frac{16}{5}$$

$$X = \frac{16}{5}$$

$$X = \frac{16}{5}$$

$$X = \frac{16}{5}$$

Send Y tuples through (1, 2, 3), (2, 3, 1), and (3, 1, 2)

$$Y = \frac{16}{7}$$
Throughput = $\frac{48}{7}$ tuples
Best possible ??

Max-throughput Problem

Definition:

- Saturation = an operator is processing at its capacity
- Lemma: Full saturation \rightarrow optimality

Outline

- Introduction
- Max-throughput problem
 Formulation in terms of flows
 Algorithms
 Adversarial type, Single Tuple

Outline

- Introduction
- Max-throughput problem
 - Formulation in terms of flows
 - Algorithms
 - Equal rates, unequal selectivities
 - Unequal rates and selectivities
 - Two operators
 - General case
- Routing and queuing issuesAdversarial type, Single Tuple

Summary of results

- Max-throughput problem
 - O(n) algorithm to find the maximal achievable throughput, if rates given in sorted order
 - $O(n^2)$ algorithm to find the optimal solution
 - Previously known best algorithms [Kodialam'01]
 - From sequential testing literature
 - $O(n^2)$ and $O(n^3 \log n)$ respectively

Equal rates, unequal selectivities

- Closed form saturating solution using cyclic permutations
- Send:

 $(1 - p_{j-1}) / (n - \Sigma p_j)$ tuples through permutation: (j, j+1, j+2, ..., n, 1, ..., j-1)

Unequal rates: Two Operators

Unequal rates: Two Operators

Unequal rates: Two Operators

- Create equivalence groups of operators based on rates
- Incrementally add flow from higher-rate groups towards lowerrate groups
 Partial solution:
- Merge groups if *residual rates* equalize

Partial solution: 1. send *x* tuples along *(1, 2, 3, 4, 5)*

- Create equivalence groups of operators based on rates
- Incrementally add flow from higher-rate groups towards lowerrate groups
 Partial solution:
- Merge groups if *residual rates* equalize

Partial solution: 1. send *x* tuples along *(1, 2, 3, 4, 5)*

- Create equivalence groups of operators based on rates
- Incrementally add flow from higher-rate groups towards lowerrate groups
 Partial solution:
- Merge groups if *residual rates* equalize
- Recurse using residual rates

Partial solution: 1. send *x* tuples along *(1, 2, 3, 4, 5)*

- Create equivalence groups of operators based on rates
- Incrementally add flow from higher-rate groups towards lowerrate groups
 Partial solution:

1. send x tuples along

Merge groups if *residual rates* equalize

- Create equivalence groups of operators based on rates
- Incrementally add flow from higher-rate groups towards lowerrate groups
- Merge groups if *residual rates* equalize
- Recurse using residual rates
- After at most n rounds
 - Either: All operators are equalized
 - Solve using equal rates solution
 - Full saturation \rightarrow Optimality
 - Or: Rightmost equivalence group saturates
 - No flow out of that group \rightarrow Optimality
- Running time: O(n²)

Outline

- Introduction
- Max-throughput problem
 - Formulation in terms of flows
 - Algorithms
 - Equal rates, unequal selectivities
 - Unequal rates and selectivities
 - Two operators
 - General case
- Routing and queuing issues
 Adversarial type, Single Tuple

Routing

- Ideal form of the final solution:
 - ($\pi_{i}, f_{\pi i}$): a list of permutations, and associated flows
- Not feasible: The resulting solution is *not necessarily sparse*
- Can directly use the output of the algorithm (the equivalence groups and associated flows) for routing tuples

Positive flow assigned to 2^k permutations (1 2) (3 4) ... (2k-1 2k)

Queuing issues

Rate limits only guaranteed in expectation

[Kodialam'01]

If K is an optimal routing scheme with max throughput F, then, for any F* < F, there is a routing scheme K* with throughput F* that obeys the rate limits

Outline

- Introduction
- Max-throughput problem
 - Formulation in terms of flows
 - Algorithms
- Adversarial type, Single Tuple

Problem 2: Adversarial, Single Tuple

Given *n* predicates and their costs, c₁, ..., c_n
 For tuple *t*, let:

 $multiplicative \ regret(t) = \frac{actual \ cost \ of \ processing \ t}{minimum \ cost \ of \ processing \ t}$

- Adversary knows algorithm used, and controls input tuples
- Goal: Minimize the expected multiplicative regret

Problem 2: Adversarial, Single Tuple

- Can be reduced to a problem similar to maxthroughput problem
 - Details in the paper
 - Same algorithms can be used
 - Naïve solution
 - Order in the increasing order of costs
- Theorem: Naïve solution within a factor of 2

Conclusions

- Two pipelined filter ordering problems
 - Maximize throughput in a parallel scenario
 - Minimize multiplicative regret in an adversarial scenario
- Very simple and efficient algorithms
 Using a *flow* formulation
- Interesting open problems
 - Correlated predicates
 - Robustness of algorithms
 - Routing tuples of multiple types together

Thank you !!

Questions ?