
Flow Algorithms for Two
Pipelined Filtering Problems

Anne Condon, University of British Columbia
Amol Deshpande, University of Maryland
Lisa Hellerstein, Polytechnic University, Brooklyn
Ning Wu, Polytechnic University, Brooklyn

Pipelined Filter Ordering
  Query processors commonly need to evaluate complex predicates against

relations
  Eg., on an employee relation:
 ((salary > 120000) AND (status = 2)) OR (educationlevel = 3);
 (age < 30) AND hasPatents(emp) AND hasWrittenBooks(emp);

  Pipelined filter ordering problem
 Decide the order in which to apply the individual predicates (filters) to the
 tuples
  We will focus on evaluating conjunctive predicates (containing only ANDs)

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

Classical Pipelined Filter Ordering
  Given:

  A set of independent filters, predi

  cost of applying each filter, ci

  selectivity of each filter, pi

  Find:
  the optimal serial execution order for applying the filters that

minimizes the total execution cost on a single processor

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

age < 30 salary < … zipcode = …

age < 30 salary < … zipcode = …

3! = 6 plans
considered

Serial Plans Considered

Classical Pipelined Filter Ordering
  Given:

  A set of independent filters, predi

  cost of applying each filter, ci

  selectivity of each filter, pi

  Find:
  the optimal serial execution order for applying the filters that

minimizes the total execution cost on a single processor

select *
from employee
where age < 30 and
 salary < 100000 and
 zipcode = 20001

Example Query

age < 30 salary < … zipcode = …

Execution cost of a plan

c1
p1

c2
p2

c3
p3

costs
selectivities

c1 + p1 c2 + p1 p2 c3 Expected
cost per tuple

Independence Assumption

Classical Pipelined Filter Ordering
  Algorithm for independent filters [KBZ’86]

  Apply the filters in the increasing order of:
 (1 – pi) / ci

  O(n log (n))

  Correlated filters ?
  NP-hard under several formulations

  E.g. when asked to find the best order for a given set of
tuples

  4-Approx greedy algorithm [BMMNW’04]

Pipelined Filter Ordering
  Complex expensive predicates

  E.g. pointInPolygon(x, y, P), hasPatents(emp)??
  Many join queries reduce to this problem

  E.g. queries posed against a star schema
  Increasing interest in recent years

  Data streams [AH’00, BMMNW’04]
  Sensor Networks [DGMH’05]
  Web indexes [CDY’95, EHJKMW’96, GW’00]
  Web services [SM’06]

  Similar to many problems in other domains
  Sequential testing (e.g. for fault detection) [SF’01, K’01]
  Learning with attribute costs [KKM’05]

Outline

  Introduction
 Problem1: Max-throughput problem

  Maximize throughput (tuples processed per
unit time) in a parallel environment

 Problem 2: Adversarial type, Single Tuple
  Minimize multiplicative regret in an adversarial

setting

Problem 1: Max-throughput Problem
  n independent filters executed in parallel by n operators,
 O1, …, On
  Given:

  selectivities of the filters, pi
  rate limits of the operators, ri

  Goal: Maximize the number of tuples processed per time unit

Patents
Database Google

Person
John
Jane

…

Amazon

Query
Processor

Queries over web services Parallel Databases

proc 1
age<30

proc 2
salary<…

proc 3
zipcode ...

R

Max-throughput Problem
r1 = 4
p1 = ½

r2 = 4
p2 = ½

r3 = 4
p3 = ½

Best “single” execution order ?

Throughput = 4 tuples

4 tuples/
unit time

2 tuples/
unit time

1 tuples/
unit time

Idle

X tuples/
unit time

x
2 tuples/
unit time

x
4 tuples/
unit time

X tuples/
unit time

x
2 tuples/
unit time

x
4 tuples/
unit time

Max-throughput Problem

Send Y tuples through (1, 2, 3), (2, 3, 1), and (3, 1, 2)

Throughput = tuples

X = 16
 5

32
 5

Use two orders: (1, 2, 3) and (3, 2, 1)

Y =

Throughput = tuples

16
 7

48
 7

Best possible ??

r1 = 4
p1 = ½

r2 = 4
p2 = ½

r3 = 4
p3 = ½

Processes r1 tuples
Rejects r1(1-p1) tuples Combined rejection probability =

 (1 – p1p2…pn)

Max-throughput Problem
  Definition:

  Saturation = an operator is processing at its capacity
  Lemma: Full saturation optimality
  Proof:

r1, p1 r2, p2 r3, p3 rn, pn

Saturated steady state – Throughput K

Total tuples rejected in unit time
 = Σ ri (1 – pi)

If throughput equal to K,
then total tuples rejected in unit time
 = K (1 - p1…pn)

K =Σ ri (1 – pi) / (1 - p1…pn) = Constant

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

 Adversarial type, Single Tuple

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

  Equal rates, unequal selectivities
  Unequal rates and selectivities

  Two operators
  General case

  Routing and queuing issues
 Adversarial type, Single Tuple

Summary of results
  Max-throughput problem

  O(n) algorithm to find the maximal achievable throughput, if
rates given in sorted order

  O(n2) algorithm to find the optimal solution

  Previously known best algorithms [Kodialam’01]

  From sequential testing literature

  O(n2) and O(n3 log n) respectively

Equal rates, unequal selectivities
  Closed form saturating solution using cyclic permutations

  Send:
 (1 – pj -1) / (n – Σ pi)
 tuples through permutation:
 (j, j+1, j+2, …, n, 1, …, j-1)

p1 p2 p3 pn

rate = 1

p1 x x

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

r1, p1 r2, p2

Or:
 O2 saturates,
 but O1 doesn’t

Either:
 residual rates
 equalize

r1, p1 r2, p2

(if r1p1 > r2)
O1

O2

O1

O2

r1, p1 r2, p2

O1
O2

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

Either:
 residual rates
 equalize

r1, p1 r2, p2

(if r1p1 > r2)
Use the equal-rates algorithm
 to solve the residual problem

Two part solution:
During every time unit,
 1. Send x tuples through
 (1, 2)
 2. Send y tuples total through
 cylic permutations:
 (1, 2) and (2, 1)
 (appropriately divided)

O1

O2

p1 x x

r1, p1 r2, p2

O1
O2

Unequal rates: Two Operators
Two operators with unequal rates (r1 > r2)

Start adding flow
through (1, 2)

r1, p1 r2, p2

Or:
 O2 saturates,
 but O1 doesn’t 1. O2 has saturated

2. No flow out of O2

O2 is being applied last to all tuples.
No way to lighten its load more.

Optimal

Solution:
During every time unit, send z
tuples through (1, 2)

O1

O2

p1 x x

r1, p1 r2, p2

O1
O2

x

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4

E1
1 E2

1 E3
1 E4

1 E5
1

Equalized

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

x

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize

r1, p1 r2, p2 r3, p3 r5, p5 r4, p4

Equalized

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

E1
2 E2

2 E3
2 E4

2

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4

E1
2 E2

2 E3
2 E4

2

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)

y
Use equal-rates solution to
 distribute tuples evenly

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

r2
1, p1 r2

2, p2 r2
3, p3 r2

5, p5 r2
4, p4

E1
2 E2

2 E3
2 E4

2

y
Use equal-rates solution to
 distribute tuples evenly

Partial solution:
 1. send x tuples along
 (1, 2, 3, 4, 5)
 2. send y tuples total
 along:
 (1, 2, 3, 4, 5) and
 (1, 3, 2, 4, 5)
 (appropriately divided)

Unequal rates: General Case
  Create equivalence groups of operators based on rates
  Incrementally add flow from higher-rate groups towards lower-

rate groups
  Merge groups if residual rates equalize
  Recurse using residual rates

  After at most n rounds
  Either: All operators are equalized

  Solve using equal rates solution
  Full saturation Optimality

  Or: Rightmost equivalence group saturates
  No flow out of that group Optimality

  Running time: O(n2)

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

  Equal rates, unequal selectivities
  Unequal rates and selectivities

  Two operators
  General case

  Routing and queuing issues
 Adversarial type, Single Tuple

Routing
  Ideal form of the final solution:

  (πi, fπi): a list of permutations, and associated flows
  Not feasible: The resulting solution is not necessarily sparse

  Can directly use the output of the algorithm (the equivalence groups
and associated flows) for routing tuples

O1 O2

E1
1

O3 O4

E2
1

O2k-1 O2k

Ek
1

Positive flow assigned to 2k permutations
 (1 2) (3 4) … (2k-1 2k)

Queuing issues

 Rate limits only guaranteed in expectation

  [Kodialam’01]
  If K is an optimal routing scheme with max

throughput F, then, for any F* < F, there is a
routing scheme K* with throughput F* that
obeys the rate limits

Outline

  Introduction
 Max-throughput problem

  Formulation in terms of flows
  Algorithms

 Adversarial type, Single Tuple

Problem 2: Adversarial, Single Tuple

  Given n predicates and their costs, c1, …, cn

  For tuple t, let:

  Adversary knows algorithm used, and controls input
tuples

  Goal: Minimize the expected multiplicative regret

 actual cost of processing t
minimum cost of processing t multiplicative regret(t) =

Problem 2: Adversarial, Single Tuple

  Can be reduced to a problem similar to max-
throughput problem
  Details in the paper
  Same algorithms can be used

  Naïve solution
  Order in the increasing order of costs

  Theorem: Naïve solution within a factor of 2

Conclusions

 Two pipelined filter ordering problems
  Maximize throughput in a parallel scenario
  Minimize multiplicative regret in an adversarial

scenario
 Very simple and efficient algorithms

  Using a flow formulation
  Interesting open problems

  Correlated predicates
  Robustness of algorithms
  Routing tuples of multiple types together

Thank you !!

 Questions ?

