MauveDB: Supporting Model-based User Views in Database Systems

Amol Deshpande, University of Maryland
Samuel Madden, MIT
Motivation

- Unprecedented, and rapidly increasing, instrumentation of our every-day world

- Distributed measurement networks (e.g. GPS)

- RFID

- Wireless sensor networks

- Industrial Monitoring
Motivation

- Unprecedented, and rapidly increasing, instrumentation of our every-day world
 - Overwhelmingly large raw data volumes generated *continuously*
 - Data must be processed in *real-time*
 - The applications have strong *acquisitional* aspects
 - Data may have to be actively acquired from the environment
 - Typically *imprecise, unreliable and incomplete* data
 - Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)
 - Communication link or sensor node failures (e.g. wireless sensor networks)
 - Spatial and temporal biases because of measurement constraints
- Traditional data management tools are ill-equipped to handle these challenges
Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

- **User**

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

- **sensors**

- **Temporal Query**
 - `select time, avg(temp) from sensors epoch 1 hour`
 - `{10am, 23.5}
 - `{11am, 24}
 - `{12pm, 30}

- **Problems**
 1. **Spatially biased deployment**
 - These are not true averages
 2. **High data loss rates**
 - Averages of different sets of sensors
 3. **Measurement errors**
 - Propagated to the user

- `{12pm, 70}

A wireless sensor network deployed to monitor temperature
Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

User

Impedance mismatch

User wants to query the “underlying environment”, and not the sensor readings at selected locations

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

sensors

A wireless sensor network deployed to monitor temperature
Typical Solution

- Process data using a statistical/probabilistic model before operating on it
 - Regression and interpolation models
 - To eliminate spatial or temporal biases, handle missing data, prediction
 - Filtering techniques (e.g. Kalman Filters), Bayesian Networks
 - To eliminate measurement noise, to infer hidden variables etc

```
<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
```

1. Extract all readings into a file
2. Run a statistical model (e.g. regression) using MATLAB
3. Write output to a file
4. Write data processing tools to process/aggregate the output

Sensor Network

Database

User

Databases typically only used as a backing store; All data processing done outside
Issues

- Can’t exploit commonalities, reuse/share computation
- No easy way to keep the model outputs up-to-date
- Lack of declarative languages for querying the processed data
- Large amount of duplication of effort
- Non-trivial
 - Expert knowledge & MATLAB familiarity required!

- Prevents real-time analysis of the data in most cases
- Why are databases not doing any of this?
 - We are very good at most of these things
Solution: Model-based User Views

- An abstraction analogous to traditional database views
- Provides independence from the messy measurement details

A traditional database view (defined using an SQL query)

User

<table>
<thead>
<tr>
<th>acct-no</th>
<th>balance</th>
<th>zipcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>a</td>
<td>20001</td>
</tr>
<tr>
<td>102</td>
<td>b</td>
<td>20002</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

avg-balance

<table>
<thead>
<tr>
<th>zipcode</th>
<th>avg(balance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>a</td>
</tr>
<tr>
<td>102</td>
<td>b</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

accounts

No difference from a user’s perspective

A model-based database view (defined using a statistical model)

User

temperatures

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

raw-temp-data

Use Regression to predict missing values and to remove spatial bias
MauveDB System

- Supports the abstraction of Model-based User Views
- Provides declarative language constructs for creating such views
- Supports SQL queries over model-based views
- Keeps the models up-to-date as new data is inserted into the database
MauveDB System

- Supports the abstraction of Model-based User Views
- Provides declarative language constructs for creating such views
- Supports SQL queries over model-based views
- Keeps the models up-to-date as new data is inserted into the database
Outline

- Motivation
- Model-based views
 - Details, view creation syntax, querying
- Query execution strategies
- MauveDB implementation details
- Experimental evaluation
Linear Regression

- Models a **dependent variable** as a function of a set of **independent variables**

Model *temperature* as a function of \((x, y)\)

E.g.

\[
\text{temp} = w_1 + w_2 \times x + w_3 \times x^2 + w_4 \times y + w_5 \times y^2
\]
Grid Abstraction

A Regression-based View

User

Continuous Function

temperatures

Use Regression to model temperature as:
\[temp = w_1 + w_2 \times x + w_3 \times x^2 + w_4 \times y + w_5 \times y^2 \]

User

Consistent uniform view

Apply regression; Compute “temp” at grid points

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

raw-temp-data
Creating a Regression-based View

CREATE VIEW
RegView(time [0::1], x [0:100:10], y[0:100:10], temp)
AS
FIT temp USING time, x, y
BASES 1, x, x², y, y²
FOR EACH time T
TRAINING DATA
SELECT temp, time, x, y
FROM raw-temp-data
WHERE raw-temp-data.time = T

Matlab-like syntax used for specifying the grid

Schema of the View

Model to be used

Training data for learning parameters
Somewhat model-specific, but many commonalities

A Interpolation-based View

```
CREATE VIEW
   IntView(t [0::1], sensorid [:1], y[0:100:10], temp)
   AS
   INTERPOLATE temp USING time, sensorid
   FOR EACH sensorid M
   TRAINING DATA
      SELECT temp, time, sensorid
      FROM raw-temp-readings
      WHERE raw-temp-readings.sensorid = M
```
Outline

- Motivation
- Model-based views
 - Details, view creation syntax, querying
- Query execution strategies
- MauveDB implementation details
- Experimental evaluation
Querying a Model-based View

- Analogous to traditional views

So:

- `select * from reg-view`
 - Lists out temperatures at all grid-points
- `select * from reg-view where x = 15 and y = 20`
 - Lists temperature at (15, 20) at all times

...
Query Processing

- **Two operators per view type that support get_next() API**
 - ScanView
 - Returns the contents of the view one-by-one
 - IndexView (condition)
 - Returns tuples that match a condition
 - e.g. return temperature where (x, y) = (10, 20)

```sql
select *
from locations l, reg-view r
where  (l.x, l.y) = (r.x, r.y)
and r.time = "10am"
```

- **Plan 1**
 - Hash join
 - Seqscan(l)
 - Scanview(r)

- **Plan 2**
 - Index join
 - Seqscan(l)
 - Indexview(r)
Option 1: Compute the view as needed from base data
 - For regression view, scan the tuples and compute the weights

Option 2: Keep the view materialized
 - Sometimes too large to be practical
 - E.g. if the grid is very fine
 - May need to be recomputed with every new tuple insertion
 - E.g. a regression view that fits a single function to the entire data

Option 3: Lazy materialization/caching
 - Materialize query results as computed

Generic options shared between all view types
Option 4: Maintain an efficient intermediate representation

Typically model-specific

Regression-based Views

- Say $temp = f(x, y) = w_1 h_1(x, y) + \ldots + w_k h_k(x, y)$
- Maintain the weights for $f(x, y)$ and a sufficient statistic
 - Two matrices ($O(k^2)$ space) that can be incrementally updated

- ScanView: Execute $f(x, y)$ on all grid points
- IndexView: Execute $f(x, y)$ on the specified point
- InsertTuple: Recompute the coefficients
 - Can be done very efficiently using the sufficient statistic

Interpolation-based Views

- Build and maintain a tree over the tuples in the TRAINING DATA
Outline

- Motivation
- Model-based views
 - Details, view creation syntax, querying
- Query execution strategies
- MauveDB implementation details
- Experimental evaluation
MauveDB: Implementation Details

- Written in the Apache Derby Java open source database system
- Support for Regression- and Interpolation-based views
- Minimal changes to the main codebase
- Much of the additional code (approx 3500 lines) fairly generic in nature
 - A view manager (for bookkeeping)
 - Query processing operators
 - View maintenance strategies
- Model-specific code
 - Intermediate representation
 - Part of the view creation syntax
MauveDB: Experimental Evaluation

- Intel Lab Dataset
 - 54-node sensor network monitoring temperature, humidity etc
 - Approx 400,000 readings
 - Attributes used
 - Independent - time, sensorid, x-coordinate, y-coordinate
 - Dependent - temperature
Spatial Regression

Contour plot over the data obtained using:

```
select * 
from reg-view
where time = 2100
```
Interpolation

Average temperature over raw sensor readings

Over 40% missing data

Average temperature over an interpolation-view over the raw sensor readings
Comparing View Maintenance Options

- 50000 tuples initially
- Mixed workload:
 - insert 1000 records
 - issue 50 point queries
 - issue 10 average queries

Brief summary:
- Intermediate representation typically the best
- Among others, dependent on the view properties, and query workload
Ongoing and Future Work

- Adding support for views based on *dynamic Bayesian networks* (e.g. *Kalman Filters*)
 - A very general class of models with wide applicability
 - Generate *probabilistic data*
- Developing APIs for adding arbitrary models
 - Minimize the work of the model developer
- Query processing, query optimization, and view maintenance issues

- Much research still needs to be done
Conclusions

- Proposed the abstraction of model-based views
 - Powerful abstraction that enables declarative querying over noisy, imprecise data
- Exploit commonalities to define, to create, and to process queries over such views
- MauveDB prototype implementation
 - Using the Apache Derby open source DBMS
 - Supports Regression- and Interpolation-based views
 - Supports many different view maintenance strategies
Thank you!!

- Questions?