
MauveDB: Supporting Model-based
User Views in Database Systems

Amol Deshpande, University of Maryland
Samuel Madden, MIT

Motivation

  Unprecedented, and rapidly increasing, instrumentation of our
every-day world

Wireless sensor
networks

RFID

Distributed measurement
networks (e.g. GPS)

Industrial Monitoring

Motivation

  Unprecedented, and rapidly increasing, instrumentation of our
every-day world

  Overwhelmingly large raw data volumes generated continuously
  Data must be processed in real-time

  The applications have strong acquisitional aspects
  Data may have to be actively acquired from the environment

  Typically imprecise, unreliable and incomplete data
  Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)

  Communication link or sensor node failures (e.g. wireless sensor networks)

  Spatial and temporal biases because of measurement constraints

  Traditional data management tools are ill-equipped to handle these
challenges

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29
sensors

select time, avg(temp)
from sensors
epoch 1 hour

User

2. High data loss rates
 averages of different sets
 of sensors

1. Spatially biased deployment
 these are not true averages

{10am, 23.5}
{11am, 24}

{12pm, 70}

3. Measurement errors
 propagated to the user

{10am, 23.5}
{11am, 24}
{12pm, 30}

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29
sensors

User

Impedance mismatch
 User wants to query the “underlying environment”,
 and not the sensor readings at selected locations

Typical Solution

  Process data using a statistical/probabilistic model before operating on it
  Regression and interpolation models

  To eliminate spatial or temporal biases, handle missing data, prediction
  Filtering techniques (e.g. Kalman Filters), Bayesian Networks

  To eliminate measurement noise, to infer hidden variables etc

Database

insert into
 raw-data
…

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

Table raw-data

select *
from raw-data

1.  Extract all readings into a file
2.  Run a statistical model (e.g.

 regression) using MATLAB
3.  Write output to a file
4.  Write data processing tools to

 process/aggregate the output

raw-data
tuples

Sensor
Network

User

Databases typically only used as a backing store;
All data processing done outside

Issues

  Can’t exploit commonalities, reuse/share computation
  No easy way to keep the model outputs up-to-date
  Lack of declarative languages for querying the

processed data
  Large amount of duplication of effort
  Non-trivial

  Expert knowledge & MATLAB familiarity required !

  Prevents real-time analysis of the data in most cases
  Why are databases not doing any of this ?

  We are very good at most of these things

Solution: Model-based User Views

  An abstraction analogous to traditional database views
  Provides independence from the messy measurement details

acct-no balance zipcode

101 a 20001

102 b 20002

.. ..

.. ..

User

 avg-balances
select zipcode, avg(balance)
from accounts
group by zipcode

A traditional database view
(defined using an SQL query)

accounts

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

 temperatures
Use Regression to predict
missing values and to
remove spatial bias

A model-based database view
(defined using a statistical model)

raw-temp-data

User

No difference
from a user’s
perspective

MauveDB System

  Supports the abstraction of Model-based User Views
  Provides declarative language constructs for creating

such views
  Supports SQL queries over model-based views
  Keeps the models up-to-date as new data is inserted

into the database

MauveDB System

  Supports the abstraction of Model-based User Views
  Provides declarative language constructs for creating

such views
  Supports SQL queries over model-based views
  Keeps the models up-to-date as new data is inserted

into the database

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

Linear Regression

  Models a dependent variable as a function of a set of
independent variables

x

y

Model temperature as a function of (x, y)

E.g.
 temp = w1 + w2 * x + w3 * x2 + w4 * y + w5 * y2

Weights

Basis Functions

Grid Abstraction

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

 temperatures
Use Regression to model
temperature as:
 temp = w1 + w2 x + w3 x2
 + w4 y + w5 y2

A Regression-based View

raw-temp-data

User

x

y

Continuous
Function

User

x

y

Consistent uniform view

Apply regression;
Compute “temp” at grid
 points

Creating a Regression-based View

CREATE VIEW

 RegView(time [0::1], x [0:100:10], y[0:100:10], temp)

AS

 FIT temp USING time, x, y

 BASES 1, x, x2, y, y2

 FOR EACH time T

 TRAINING DATA

 SELECT temp, time, x, y

 FROM raw-temp-data

 WHERE raw-temp-data.time = T

Schema of the View

Model to be used

Training data for
 learning parameters

Matlab-like syntax used for
 specifying the grid

View Creation Syntax

  Somewhat model-specific, but many commonalities

CREATE VIEW

 IntView(t [0::1], sensorid [::1], y[0:100:10], temp)

AS

 INTERPOLATE temp USING time, sensorid

 FOR EACH sensorid M

 TRAINING DATA

 SELECT temp, time, sensorid

 FROM raw-temp-readings

 WHERE raw-temp-readings.sensorid = M

A Interpolation-based View

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

Querying a Model-based View

  Analogous to traditional views
  So:

  select * from reg-view
  Lists out temperatures at all grid-points

  select * from reg-view where x = 15 and y = 20
  Lists temperature at (15, 20) at all times

  …

Query Processing

  Two operators per view type that support get_next() API
  ScanView

  Returns the contents of the view one-by-one

  IndexView (condition)
  Returns tuples that match a condition

  e.g. return temperature where (x, y) = (10, 20)

select *
from locations l, reg-view r
where (l.x, l.y) = (r.x, r.y)
 and r.time = “10am”

Seqscan(l) Scanview(r)

Hash join

Plan 1

Seqscan(l) Indexview(r)

Index join

Plan 2

View Maintenance Strategies

  Option 1: Compute the view as needed from base data
  For regression view, scan the tuples and compute the weights

  Option 2: Keep the view materialized
  Sometimes too large to be practical

  E.g. if the grid is very fine

  May need to be recomputed with every new tuple insertion
  E.g. a regression view that fits a single function to the entire data

  Option 3: Lazy materialization/caching
  Materialize query results as computed

  Generic options shared between all view types

View Maintenance Strategies

  Option 4: Maintain an efficient intermediate representation

  Typically model-specific

  Regression-based Views

  Say temp = f(x, y) = w1 h1(x, y) + … + wk hk(x, y)

  Maintain the weights for f(x, y) and a sufficient statistic

  Two matrices (O(k2) space) that can be incrementally updated

  ScanView: Execute f(x, y) on all grid points

  IndexView: Execute f(x, y) on the specified point

  InsertTuple: Recompute the coefficients

  Can be done very efficiently using the sufficient statistic

  Interpolation-based Views
  Build and maintain a tree over the tuples in the TRAINING DATA

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

MauveDB: Implementation Details

  Written in the Apache Derby Java open source database system

  Support for Regression- and Interpolation-based views
  Minimal changes to the main codebase

  Much of the additional code (approx 3500 lines) fairly generic in
nature
  A view manager (for bookkeeping)

  Query processing operators

  View maintenance strategies

  Model-specific code
  Intermediate representation

  Part of the view creation syntax

MauveDB: Experimental Evaluation

  Intel Lab Dataset
  54-node sensor network monitoring temperature, humidity etc
  Approx 400,000 readings
  Attributes used

  Independent - time, sensorid, x-coordinate, y-coordinate
  Dependent - temperature

Spatial Regression

Contour plot over the data
obtained using:
 select *
 from reg-view
 where time = 2100

Average temperature over
raw sensor readings

Interpolation

Time

Time

Average temperature over
an interpolation-view over
the raw sensor readings

Time

Over 40% missing data

Comparing View Maintenance Options

  50000 tuples initially
  Mixed workload:

  insert 1000 records
  issue 50 point queries
  issue 10 average queries

  Brief summary:
  Intermediate representation

typically the best
  Among others, dependent on

the view properties, and query
workload

Regression, per time

Interpolation, per sensor

112.6s

Ongoing and Future Work

  Adding support for views based on dynamic Bayesian
networks (e.g. Kalman Filters)
  A very general class of models with wide applicability

  Generate probabilistic data

  Developing APIs for adding arbitrary models
  Minimize the work of the model developer

  Query processing, query optimization, and view
maintenance issues

  Much research still needs to be done

Conclusions

  Proposed the abstraction of model-based views
  Poweful abstraction that enables declarative querying over noisy,

imprecise data

  Exploit commonalities to define, to create, and to process
queries over such views

  MauveDB prototype implementation
  Using the Apache Derby open source DBMS

  Supports Regression- and Interpolation-based views

  Supports many different view maintenance strategies

Thank you !!

 Questions ?

