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Adaptive Query Processing



Query Processing:  Adapting to the World

Data independence facilitates modern DBMS technology
– Separates specification (“what”) from implementation (“how”)
– Optimizer maps declarative query algebraic operations

Platforms, conditions are constantly changing:

Query processing adapts implementation to runtime 
conditions
– Static applications dynamic environments
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Dynamic Programming + Pruning Heuristics

Query Optimization and Processing
(As Established in System R [SAC+’79])

> UPDATE STATISTICS 
�

cardinalities
index lo/hi key

> SELECT *
FROM Professor P, 
Course C, Student S
WHERE P.pid = C.pid
AND S.sid = C.sid

�

Professor Course Student



Traditional Optimization Is Breaking

In traditional settings:
– Queries over many tables
– Unreliability of traditional cost estimation
– Success & maturity make problems more apparent, critical

In new environments:
– e.g. data integration, web services, streams, P2P, sensor nets, hosting
– Unknown and dynamic characteristics for data and runtime
– Increasingly aggressive sharing of resources and computation
– Interactivity in query processing

Note two distinct themes lead to the same conclusion:
– Unknowns: even static properties often unknown in new environments

and often unknowable a priori
– Dynamics:             can be very high

Motivates intra-query adaptivity

denv
dt



A Call for Greater Adaptivity

System R adapted query processing as stats were updated
– Measurement/analysis: periodic 
– Planning/actuation: once per query
– Improved thru the late 90s (see [Graefe ’93] [Chaudhuri ’98])

Better measurement, models, search strategies

INGRES adapted execution many times per query
– Each tuple could join with relations in a different order
– Different plan space, overheads, frequency of adaptivity

Didn’t match applications & performance at that time

Recent work considers adaptivity in new contexts



Tutorial Focus

By necessity, we will cover only a piece of the picture here
– Intra-query adaptivity:

• autonomic / self-tuning optimization [CR’94,  CN’97, BC’02, …]

• robust / least expected cost optimization [CHG’02, MRS+’04, 
BC’05, ...]

• parametric or competitive optimization [A’93, INSS’92, CG’94, …]

• adaptive operators, e.g., memory adaptive sort & hash join 
[NKT’88, KNT’89, PCL’93a, PCL’93b,…]

– Conventional relations, rather than streams
– Single-site, single query computation

For more depth, see our survey in now Publishers’ Foundations 
and Trends in Databases, Vol. 1 No. 1



Tutorial Outline

Motivation

Non-pipelined execution

Pipelined execution
– Selection ordering

– Multi-way join queries

Putting it all in context

Recap/open problems



Low-Overhead Adaptivity: 
Non-pipelined Execution



Late Binding; Staged Execution

Materialization points make natural decision points where 
the next stage can be changed with little cost:

– Re-run optimizer at each point to get the next stage
– Choose among precomputed set of plans – parametric query 

optimization [INSS’92, CG’94, …]

AR

NLJ

sort

C

B

MJ

MJ

sort
Normal execution: pipelines separated 
by materialization points

e.g., at a sort, GROUP BY, etc.

materialization 
point



Mid-query Reoptimization
[KD’98,MRS+04]

Choose checkpoints at which to monitor cardinalities
Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated,
Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan
Try to maintain previous computation during plan switching

Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick, 

Query scrambling (96), Mid-query re-optimization (98),  
Progressive Optimization (04), Proactive Reoptimization (05), …

Where?

How?

When?

AR

NLJ

B

C

HJ

MJ

sort

C

B

MJ

MJ

sort

Challenges



Where to Place Checkpoints?

Lazy checkpoints: placed above materialization points 
– No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere
– May have to discard some partially computed results
– Useful where optimizer estimates have high uncertainty

A

C

B

R

MJ

NLJ

MJ

sort

More checkpoints more opportunities for 
switching plans

Overhead of (simple) monitoring is small 
[SLMK’01]

Consideration:  it is easier to switch plans at 
some checkpoints than others

sort
Lazy

Eager



When to Re-optimize?
Suppose actual cardinality is different from estimates:
how high a difference should trigger a re-optimization?

Idea: do not re-optimize if current plan is still the best

1.Heuristics-based [KD’98]:
e.g., re-optimize < time to finish execution

2.Validity range [MRS+04]: precomputed range of a parameter 
(e.g., a cardinality) within which plan is optimal 
– Place eager checkpoints where the validity range is narrow
– Re-optimize if value falls outside this range
– Variation:  bounding boxes [BBD’05]



How to Reoptimize

Getting a better plan:
– Plug in actual cardinality information acquired during this 

query (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:
– Treat fully computed intermediate results as materialized 

views
• Everything that is under a materialization point

– Note: It is optional for the optimizer to use these in the 
new plan

Other approaches are possible (e.g., query scrambling 
[UFA’98])



Pipelined Execution



Adapting Pipelined Queries

Adapting pipelined execution is often necessary:
– Too few materializations in today’s systems 
– Long-running queries
– Wide-area data sources
– Potentially endless data streams

The tricky issues:
– Some results may have been delivered to the user

• Ensuring correctness non-trivial
– Database operators build up state

• Must reason about it during adaptation
• May need to manipulate state



Adapting Pipelined Queries

We discuss three subclasses of the problem:
– Selection ordering (stateless)

• Very good analytical and theoretical results
• Increasingly important in web querying, streams, sensornets
• Certain classes of join queries reduce to them

– Select-project-join queries (stateful)

• History-independent execution
– Operator state largely independent of execution history

Execution decisions for a tuple independent of prior tuples

• History-dependent execution
– Operator state depends on execution history
– Must reason about the state during adaptation



Pipelined Execution Part I:
Adaptive Selection Ordering



Adaptive Selection Ordering

Complex predicates on single relations common
– e.g., on an employee relation:

((salary > 120000) AND (status = 2)) OR 
((salary between 90000 and 120000) AND (age < 30) AND (status = 1)) OR …

Selection ordering problem:
Decide the order in which to evaluate the individual 
predicates against the tuples

We focus on conjunctive predicates (containing only AND’s)
Example Query

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Basics: Static Optimization

Find a single order of the selections to be used for all tuples 

Query

Query plans considered

R.a = 10 R.b < 20R resultR.c like …

R.b < 20 R.c like …R resultR.a = 10 3! = 6 distinct
plans possible

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Static Optimization

Cost metric: CPU instructions
Computing the cost of a plan

– Need to know the costs and the selectivities of the predicates

R.a = 10 R.b < 20R resultR.c like …

cost(plan) = |R| * (c1 + s1 * c2 + s1 * s2 * c3)

R1 R2 R3

costs                    c1                    c2               c3
selectivities          s1                    s2                 s3

cost per               c1         +        s1 c2       +        s1 s2 c3
tuple

Independence assumption



Static Optimization

Rank ordering algorithm for independent selections [IK’84]
– Apply the predicates in the decreasing order of rank:

(1 – s) / c 
where s = selectivity, c = cost

For correlated selections:
– NP-hard under several different formulations

• e.g. when given a random sample of the relation

– Greedy algorithm, shown to be 4-approximate [BMMNW’04]:
• Apply the selection with the highest (1 - s)/c
• Compute the selectivities of remaining selections over the result

– Conditional selectivities
• Repeat

Conditional Plans ? [DGHM’05]



Adaptive Greedy [BMMNW’04]

Context: Pipelined query plans over streaming data
Example:

R.a = 10 R.b < 20 R.c like …

Initial estimated 
selectivities

0.05 0.1 0.2

Costs 1 unit 1 unit 1 unit

Three independent predicates

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

Optimal execution plan orders by selectivities (because costs are identical)



Adaptive Greedy [BMMNW’04]

1. Monitor the selectivities over recent past (sliding window)
2. Re-optimize if the predicates not ordered by selectivities

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

Rsample

Randomly 
sample R.a = 10

R.b < 20

R.c like …

estimate selectivities of the predicates
over the tuples of the profile

Reoptimizer
IF the current plan not optimal w.r.t. 

these new selectivities
THEN reoptimize using the Profile

Profile



Adaptive Greedy [BMMNW’04]

Correlated Selections
– Must monitor conditional selectivities

monitor selectivities
sel(R.a = 10), sel(R.b < 20), sel(R.c …)

monitor conditional selectivities
sel(R.b < 20 | R.a = 10)
sel(R.c like … | R.a = 10)
sel(R.c like … | R.a = 10 and R.b < 20)

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

Rsample

Randomly 
sample R.a = 10

R.b < 20

R.c like …
(Profile)

Reoptimizer
Uses conditional selectivities to 

detect violations
Uses the profile to reoptimize

O(n2) selectivities need to be 
monitored



Adaptive Greedy [BMMNW’04]

Advantages: 
– Can adapt very rapidly
– Handles correlations
– Theoretical guarantees on performance [MBMW’05]

Not known for any other AQP algorithms

Disadvantages:
– May have high runtime overheads

• Profile maintenance
– Must evaluate a (random) fraction of tuples against all

operators 
• Detecting optimality violations
• Reoptimization cost

– Can require multiple passes over the profile



Eddies [AH’00]

Pipelined query execution using an eddy

Query processing as routing of tuples through operators

An eddy operator
• Intercepts tuples from sources

and output tuples from operators
• Executes query by routing source         

tuples through operators

A traditional pipelined query plan

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

EddyR
result

R.a = 10

R.c like …

R.b < 20

Encapsulates all aspects of 
adaptivity in a “standard”

dataflow operator: 
measure, model, plan and 

actuate.



Eddies [AH’00]

a b c …
15 10 AnameA …

An R Tuple:  r1

r1

r1

EddyR

result

R.a = 10

R.c like …

R.b < 20



ready bit i :
1 operator i can be applied
0 operator i can’t be applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



done bit i :
1 operator i has been applied
0 operator i hasn’t been applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

Used to decide validity and need
of applying operators

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

satisfied
r1

r1

a b c … ready done
15 10 AnameA … 101 010

r1

not satisfied

eddy looks at the
next tuple

For a query with only selections,
ready = complement(done)

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c …
10 15 AnameA …

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2
EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

a b c … ready done
10 15 AnameA … 000 111

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2

if done = 111,
send to output 

r2

EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

Adapting order is easy
– Just change the operators to which tuples are sent
– Can be done on a per-tuple basis
– Can be done in the middle of tuple’s “pipeline”

How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policies that Have Been Studied

Deterministic [D03]
– Monitor costs & selectivities continuously
– Re-optimize periodically using rank ordering

(or A-Greedy for correlated predicates)

Lottery scheduling [AH00]
– Each operator runs in thread with an input queue
– “Tickets” assigned according to tuples input / output
– Route tuple to next eligible operator with room in queue, 

based on number of “tickets” and “backpressure”

Content-based routing [BBDW05]
– Different routes for different plans based on attribute values



Pipelined Execution Part II:
Adaptive Join Processing



Adaptive Join Processing: Outline

Single streaming relation
– Left-deep pipelined plans

Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution
– History-dependent execution



Left-Deep Pipelined Plans

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables (scan, hash, or index)
– Order the driven tables
– Flow R tuples through the driven tables

For each r ∈ R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r ∈ R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

Almost identical 
to selection 

ordering

R
B

NLJ

C

NLJ

A

NLJ



Adapting the Join Order

Let ci = cost/lookup into i’th driven table, 
si = fanout of the lookup

As with selection, cost =  |R| x (c1 + s1c2 + s1s2c3)
Caveats:
– Fanouts s1,s2,… can be > 1
– Precedence constraints
– Caching issues 

Can use rank ordering, A-greedy for adaptation (subject to the caveats)

R
B

NLJ

C

NLJ

A

NLJ

R
C

NLJ

B

NLJ

A

NLJ

(c1, s1) (c2, s2) (c3, s3)



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r ∈ R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ

?



Adapting a Left-deep Pipelined Plan

Key issue: Duplicates
Adapting the choice of driver table

[L+07] Carefully use indexes to achieve this
Adapting the choice of access methods

– Static optimization: explore all possibilities and pick best
– Adaptive: Run multiple plans in parallel for a while, 

and then pick one and discard the rest  [Antoshenkov’ 96]
• Cannot easily explore combinatorial options

SteMs [RDH’03] handle both as well

R
B

NLJ

C

NLJ

A

NLJ



Adaptive Join Processing: Outline

Single streaming relation
– Left-deep pipelined plans

Multiple streaming relations 
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with joins
• Corrective query processing



Example Join Query & Database

Name Level

Joe Junior

Jen Senior

Name Course

Joe CS1

Jen CS2

Course Instructor

CS2 Smith

select *
from students, enrolled, courses
where students.name = enrolled.name

and enrolled.course = courses.course

Students Enrolled

Name Level Course

Joe Junior CS1

Jen Senior CS2

Enrolled Courses

Students Enrolled

Courses

Name Level Course Instructor

Jen Senior CS2 Smith



Symmetric/Pipelined Hash Join 
[RS86, WA91]

Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

select * from students, enrolled where students.name = enrolled.name

Name Level Course
Jen Senior CS2

Joe Junior CS1

StudentsEnrolled

Simultaneously builds and probes 
hash tables on both sides
Widely used: 
– adaptive query processing
– stream joins
– online aggregation 
– …

Naïve version degrades to NLJ 
once memory runs out
– Quadratic time complexity
– memory needed = sum of inputs

Improved by XJoins [UF 00], 
Tukwila DPJ [IFFLW 99]



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

– Using a single n-ary join operator (MJoin) [VNB’03]

– Using unary operators [RDH’03]



Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Enrolled

HashTable
E.Name

HashTable
S.Name

Students

Course Instructor

CS2 Smith

HashTable
E.Course

HashTable
C.course

Courses

Name Level Course
Jen Senior CS2

Joe Junior CS1

Name Level Course Instructor

Jen Senior CS2 Smith
Materialized state 
that depends on the 
query plan used

History-dependent !



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

History-dependent execution
Hard to reason about the impact of adaptation
May need to migrate the state when changing plans

– Using a single n-ary join operator (MJoin) [VNB’03]

– Using unary operators [RDH’03]



Name Course

Joe CS1

Jen CS2

Name Level

Joe Junior

Jen Senior

Students

HashTable
S.Name

HashTable
E.Name

Enrolled

Name Course

Joe CS1

Jen CS2

HashTable
E.Course

HashTable
C.course

Courses

Probing Sequences
Students tuple: Enrolled, then Courses
Enrolled tuple: Students, then Courses
Courses tuple: Enrolled, then Students

Hash tables contain all tuples 
that arrived so far

Irrespective of the probing 
sequences used

History-independent execution !

Course Instructor

CS2 Smith



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

History-dependent execution

– Using a single n-ary join operator (MJoin) [VNB’03]
History-independent execution
Well-defined state easy to reason about 
– Especially in data stream processing

Performance may be suboptimal [DH’04]
– No intermediate tuples stored need to recompute

– Using unary operators [RDH’03]



Breaking the Atomicity of Probes and Builds 
in an N-ary Join [RDH’03]

Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Students

HashTable
S.Name

HashTable
E.Name

Enrolled

Name Level

Jen Senior

Joe Junior

HashTable
E.Course

Name Level

Jen Senior

Joe Junior

HashTable
C.course

Courses

Eddy

SteM S SteM E SteM C



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

History-dependent execution

– Using a single n-ary join operator (MJoin) [VNB’03]
History-independent execution
Well-defined state easy to reason about 
– Especially in data stream processing

Performance may be suboptimal [DH’04]
– No intermediate tuples stored need to recompute

– Using unary operators [RDH’03]
Similar to MJoins, but enables additional adaptation



Adaptive Join Processing: Outline

Single streaming relation
– Left-deep pipelined plans

Multiple streaming relations 
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with joins
• Corrective query processing



MJoins [VNB’03]

Choosing probing sequences
– For each relation, use a left-deep pipelined plan 

(based on hash indexes)
– Can use selection ordering algorithms

Independently for each relation

Adapting MJoins
– Adapt each probing sequence independently 

e.g., StreaMon [BW’01] used A-Greedy for this purpose

A-Caching [BMWM’05]
– Maintain intermediate caches to avoid recomputation
– Alleviates some of the performance concerns



State Modules (SteMs) [RDH’03]

SteM is an abstraction of a unary operator
– Encapsulates the state, access methods and the operations on a 

single relation

By adapting the routing between SteMs, we can 
– Adapt the join ordering (as before)
– Adapt access method choices
– Adapt join algorithms

• Hybridized join algorithms 
– e.g. on memory overflow, switch from hash join index join

• Much larger space of join algorithms
– Adapt join spanning trees

Also useful for sharing state across joins
– Advantageous for continuous queries [MSHR’02, CF’03]



Adaptive Join Processing: Outline

Single streaming relation
– Left-deep pipelined plans

Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with binary joins

– State management using STAIRs
• Corrective query processing



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
s1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
e1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

e1c1

For correctness, must obey routing constraints !!
Use some form of tuple-lineage



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

Can use any join algorithms
But, pipelined operators preferred

Provide quick feedback



Eddies with Symmetric Hash Joins

Eddy
S
E
C

Output

S E
HashTable

S.Name
HashTable

E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith



Burden of Routing History [DH’04]

Eddy
S
E
C

Output

S E
HashTable

S.Name
HashTable

E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith

As a result of routing decisions,
state gets embedded inside 
the operators

History-dependent execution !!



Modifying State:  STAIRs [DH’04]

Observation:
– Changing the operator ordering not sufficient
– Must allow manipulation of state

New operator: STAIR
– Expose join state to the eddy

• By splitting a join into two halves
– Provide state management primitives

• That guarantee correctness of execution
• Able to lift the burden of history

– Enable many other adaptation opportunities
• e.g. adapting spanning trees, selective caching, pre-

computation



Recap: Eddies with Binary Joins

Routing constraints enforced using tuple-level lineage

Must choose access methods, join spanning tree beforehand
– SteMs relax this restriction [RDH’03]

The operator state makes the behavior unpredictable
– Unless only one streaming relation

Routing policies explored are same as for selections
– Can tune policy for interactivity metric [RH’02]



Adaptive Join Processing: Outline

Single streaming relation
– Left-deep pipelined plans

Multiple streaming relations 
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with binary joins

– State management using STAIRs
• Corrective query processing



F(fid,from,to,when)

F0
T(ssn,flight)

T0
C(parent,num)

C0

F1
T1 C1

Carefully Managing State:
Corrective Query Processing (CQP) [I’02,IHW’04]

Group[fid,from] max(num)

Focus on stateful queries:
– Join cost grows over time

• Early: few tuples join
• Late: may get x-products

– Group-by may not produce 
output until end

Consider long-term cost, switch 
in mid-pipeline
– Optimize with cost model
– Use pipelining operators
– Measure cardinalities, 

compare to estimates
– Replan when different
– Execute on new data inputs

Stitch-up phase computes cross-
phase results

F0

T0 C0

Plan 0

1C

T1F1

Plan 1

Shared Group-
by Operator

U

T0 C0

T1 C1

F0

F1

T0C0Except

T0C0Except F0

T1C1F1

Stitch-up Plan

SELECT fid, from, max(num)
FROM F, T, C
WHERE fid=flight 

AND parent=ssn
GROUP BY fid, from



CQP Discussion

Each plan operates on a horizontal partition: Clean algebraic 
interpretation!

Easy to extend to more complex queries
– Aggregation, grouping, subqueries, etc.

Separates two factors, conservatively creates state:
– Scheduling is handled by pipelined operators
– CQP chooses plans using long-term cost estimation
– Postpones cross-phase results to final phase

Assumes settings where computation cost, state are the bottlenecks

– Contrast with STAIRS, which move state around once it’s 
created!



Putting it all in Context



How Do We Understand the
Relationship between Techniques?

Several different axes are useful:
– When are the techniques applicable?

• Adaptive selection ordering
• History-independent joins
• History-dependent joins

– How do they handle the different aspects of adaptivity?

– How to EXPLAIN adaptive query plans?



Adaptivity Loop: Measure

Measure what ? 
Cardinalities/selectivities, operator costs, resource utilization

Measure when ?
Continuously (eddies); using a random sample (A-greedy); 
at materialization points (mid-query reoptimization)

Measurement overhead ?
Simple counter increments (mid-query) to very high

ActuateActuate

PlanPlanAnalyzeAnalyze

MeasureMeasure



Adaptivity Loop: Analyze/Plan

Analyze/replan what decisions ?
(Analyze actual vs. estimated selectivities)
Evaluate costs of alternatives and switching (keep state in mind)

Analyze / replan when ?
Periodically; at materializations (mid-query); at conditions (A-greedy)

Plan how far ahead ?
Next tuple; batch; next stage (staged); possible remainder of plan (CQP)

Planning overhead ?
Switch stmt (parametric) to dynamic programming (CQP, mid-query)

ActuateActuateMeasureMeasure

PlanPlanAnalyzeAnalyze



Adaptivity Loop: Actuate

Actuation:  How do they switch to the new plan/new routing strategy ?

Actuation overhead ?
At the end of pipelines free (mid-query)
During pipelines:

History-independent Essentially free (selections, MJoins)
History-dependent May need to migrate state (STAIRs, CAPE)

MeasureMeasure

PlanPlanAnalyzeAnalyze

ActuateActuate



Adaptive Query Processing “Plans”: 
Post-Mortem Analyses

After an adaptive technique has completed, we can explain 
what it did over time in terms of data partitions and 
relational algebra

e.g., a selection ordering technique may effectively have 
partitioned the input relation into multiple partitions…

… where each partition was run with a different order of 
application of selection predicates

These analyses highlight understanding how the technique 
manipulated the query plan
– See our survey in now Publishers’ Foundations and Trends in 

Databases, Vol. 1 No. 1
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Measurement & Models

Combining static and runtime measurement

Finding the right model granularity / measurement timescale
– How often, how heavyweight?  Active probing?

Dealing with correlation in a tractable way

There are clear connections here to:
– Online algorithms
– Machine learning and control theory

• Bandit problems
• Reinforcement learning

– Operations research scheduling



Understanding Execution Space

Identify the “complete” space of post-mortem executions:
– Partitioning
– Caching
– State migration
– Competition & redundant work
– Sideways information passing
– Distribution / parallelism!

What aspects of this space are important?  When?
– A buried lesson of AQP work: “non-Selingerian” plans can win big! 
– Can we identify robust plans or strategies?

Given this (much!) larger plan space, navigate it efficiently
– Especially on-the-fly



Wrap-up

Adaptivity is the future (and past!) of query processing

Lessons and structure emerging
– The adaptivity “loop” and its separable components

Relationship between measurement, modeling / planning, actuation

– Horizontal partitioning “post-mortems” as a logical framework for 
understanding/explaining adaptive execution in a post-mortem sense

– Selection ordering as a clean “kernel”, and its limitations

– The critical and tricky role of state in join processing

A lot of science and engineering remain!!!
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