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Why a tutorial on graphical models at VLDB?

VLDB
I Many DB tasks use probabilistic modeling

F Core: Selectivity estimation, Imprecise databases,
F Appication: Information extraction, Duplicate elimination,

sensor networks.
F Data mining: Classification (naive Bayes, logistic), clustering

(EM)
I Probabilistic modeling is simultaneously

F intuitive (low barrier to entry)
F subtle (important to understand well for correctness & efficiency)

Graphical models
I Fundamental tools for intuitively and efficiently modeling

probabilities
I Distilled body of knowledge from many fields (let us build upon

them, instead of reinveting)

VLDB wants to broaden, GM a fun and useful candidate for
broadening

2



Probabilistic modeling

Given: several variables: x1, . . . xn , n is large.
Task: build a joint distribution function Pr(x1, . . . xn)
Goal: Answer several kind of projection queries on the
distribution
Basic premise

I Explicit joint distribution is dauntingly large
I Queries are simple aggregates over the joint distribution.
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Example: Selectivity estimation in databases

Variables are columns of a table

Age Income Experience Degree Location
10 ranges 7 scales 7 scales 3 scales 30 places

An explicit joint distribution over all columns not tractable:
number of combinations: 10× 7× 7× 3× 30 = 44100.

Queries: Estimate number of people with
I Income > 200K and Degree=”Bachelors”,
I Income < 200K, Degree=”PhD” and experience > 10 years.
I Many, many more.
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Alternatives to an explicit joint distribution

Assume all columns are independent of each other: bad
assumption

Use data to detect pairs of highly correlated column pairs and
estimate their pairwise frequencies

I Many highly correlated pairs
income 6⊥⊥ age, income 6⊥⊥ experience, age 6⊥⊥experience

I Ad hoc methods of combining these into a single estimate

Go beyond pairwise correlations: understand finer dependencies
I income 6⊥⊥ age, but income ⊥⊥ age | experience
I experience ⊥⊥ degree, but experience 6⊥⊥ degree | income

Graphical models make explicit an efficient joint
distribution from these independencies
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Graphical models

Model joint distribution over several variables as a product of smaller
factors that is

1 Intuitive to represent and visualize
I Graph: represent structure of dependencies
I Potentials over subsets: quantify the dependencies

2 Efficient to query
I given values of any variable subset, reason about probability

distribution of others.
I many efficient exact and approximate inference algorithms

Graphical models = graph theory + probability theory.
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Graphical models in use

Roots in statistical physics for modeling interacting atoms in gas
and solids [ 1900]

Early usage in genetics for modeling properties of species [ 1920]

AI: expert systems ( 1970s-80s)

Now many new applications:
I Error Correcting Codes: Turbo codes, impressive success story

(1990s)
I Robotics and Vision: image denoising, robot navigation.
I Text mining: information extraction, duplicate elimination,

hypertext classification, help systems
I Bio-informatics: Secondary structure prediction, Gene discovery
I Data mining: probabilistic classification and clustering.
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Overall plan
Fundamentals

I Representation
I Exact inference

Applications
I Selectivity estimation
I Probabilistic databases

Applications: Sensor data management

Fundamentals
1 Learning a graphical model
2 Conditional Random Fields

Applications
I Information extraction
I Duplicate elimination
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Part I: Fundamentals of 
Graphical Models



Part I: Outline

1 Representation
Directed graphical models: Bayesian networks
Undirected graphical models

2 Inference Queries
Exact inference on chains
Exact inference on general graphs

3 Constructing a graphical model
Graph Structure
Parameters in Potentials

4 Approximate inference
Generalized belief propagation
Sampling: Gibbs, Particle filters
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Representation

Structure of a graphical model: Graph + Potential

Graph

Nodes: variables x = x1, . . . xn

I Continuous: Sensor temperatures, income
I Discrete: Degree (one of Bachelors,

Masters, PhD), Levels of age

Edges: direct interaction
I Directed edges: Bayesian networks
I Undirected edges: Markov Random fields

Directed

Income

ExperienceDegree

Age
Location

Undirected

Income

ExperienceDegree

Age
Location
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Representation

Potentials: ψc(xc)

Scores for assignment of values to subsets c of directly
interacting variables.

Which subsets? What do the potentials mean?
I Different for directed and undirected graphs

Probability
Factorizes as product of potentials

Pr(x = x1, . . . xn) ∝
∏

ψS(xS)
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Directed graphical models: Bayesian networks
Graph G : directed acyclic

I Parents of a node: Pa(xi ) = set of nodes in G pointing to xi

Potentials: defined at each node in terms of its parents.

ψi(xi ,Pa(xi)) = Pr(xi |Pa(xi)

Probability distribution

Pr(x1 . . . xn) =
n∏

i=1

Pr(xi |pa(xi))
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Example of a directed graph

Income

ExperienceDegree

Age
Location

ψ1(L) = Pr(L)

NY CA London Other
0.2 0.3 0.1 0.4

ψ2(A) = Pr(A)

20–30 30–45 > 45
0.3 0.4 0.3

or, a Guassian distribution
(µ, σ) = (35, 10)

ψ2(E ,A) = Pr(E |A)

0–10 10–15 > 15
20–30 0.9 0.1 0
30–45 0.4 0.5 0.1
> 45 0.1 0.1 0.8

ψ2(I ,E ,D) = Pr(I |D,A)

3 dimensional table, or a
histogram approximation.

Probability distribution

Pa(x = L,D, I ,A,E ) = Pr(L) Pr(D) Pr(A) Pr(E |A) Pr(I |D,E )
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Popular Bayesian networks

Hidden Markov Models: speech recognition, information
extraction
y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

y1y2 y2y3 y3y4 y4y5 y5y6 y6y7

I State variables: discrete phoneme, entity tag
I Observation variables: continuous (speech waveform), discrete

(Word)

Kalman Filters: State variables: continuous
I Discussed later

PRMs: Probabilistic relational networks:
I An important relevant class for relational data
I Discussed later

QMR (Quick Medical Reference) system
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Undirected graphical models

Graph G : arbitrary undirected graph
Useful when variables interact
symmetrically, no natural parent-child
relationship
Example: labeling pixels of an image.
Potentials defined on arbitrary subcliques C
of G . Popular choices:

I Node potentials
I Edge potentials

Probability distribution

Pr(x = y1 . . . yn) =
1

Z

∏
C∈G

ψC (yC )

where Z =
∑

y′
∏

C∈G ψC (y′C )
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Example

yi = 1 (part of foreground), 0 otherwise.

Node potentials
I ψ1(0) = 4, ψ1(1) = 1
I ψ2(0) = 2, ψ2(1) = 3
I ....
I ψ9(0) = 1, ψ9(1) = 1

Edge potentials: Same for all edges
I ψ(0, 0) = 5, ψ(1, 1) = 5, ψ(1, 0) = 1, ψ(0, 1) = 1

Probability: Pr(y1 . . . y9) ∝
∏9

k=1 ψk(yk)
∏

(i ,j)∈E(G) ψ(yi , yj)
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Popular undirected graphical models

Interacting atoms in gas and solids [ 1900]

Markov Random Fields in vision for image segmentation

Conditional Random Fields for information extraction
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Comparing directed and undirected graphs

Some distributions can only be expressed in one and not the
other.
x


x


x x

xx

x

Potentials
I Directed: conditional probabilities, more intuitive
I Undirected: arbitrary scores, easy to set.

Dependence structure
I Directed: Complicated d-separation test
I Undirected: Graph separation: A ⊥⊥ B |C iff C separates A and

B in G .

Often application makes the choice clear.
I Directed: Causality
I Undirected: Symmetric interactions.
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Part I: Outline

1 Representation
Directed graphical models: Bayesian networks
Undirected graphical models

2 Inference Queries
Exact inference on chains
Exact inference on general graphs

3 Constructing a graphical model
Graph Structure
Parameters in Potentials

4 Approximate inference
Generalized belief propagation
Sampling: Gibbs, Particle filters
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Inference queries
1 Marginal probability queries over a small subset of variables:

I Find Pr(Income=’High & Degree=’PhD’)
I Find Pr(pixel y9 = 1)

Pr(x1) =
∑
x2...xn

Pr(x1 . . . xn)

2 Most likely labels of remaining variables: (MAP queries)
I Find most likely entity labels of all words in a sentence
I Find likely temperature at sensors in a room

x∗ = argmaxx1...xn
Pr(x1 . . . xn)
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Exact inference on chains

Given,

I Graph
I Potentials: ψi (yi , yi+1)
I Pr(y1, . . . yn) =

∏
i ψi (yi , yi+1)

Find, Pr(yi) for any i , say Pr(y5 = 1)
I Exact method: Pr(y5 = 1) =

∑
y1,...y4

Pr(y1, . . . y4, 1) requires
exponential number of summations.

I A more efficient alternative...
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Exact inference on chains

Pr(y5 = 1) =
∑

y1,...y4

Pr(y1, . . . y4, 1)

=
∑
y1

∑
y2

∑
y3

∑
y4

ψ1(y1, y2)ψ2(y2, y3)ψ3(y3, y4)ψ4(y4, 1)

=
∑
y1

∑
y2

ψ1(y1, y2)
∑
y3

ψ2(y2, y3)
∑
y4

ψ3(y3, y4)ψ4(y4, 1)

=
∑
y1

∑
y2

ψ1(y1, y2)
∑
y3

ψ2(y2, y3)B3(y3)

=
∑
y1

∑
y2

ψ1(y1, y2)B2(y2)

=
∑
y1

B1(y1)

An alternative view: flow of beliefs Bi(.) from node i + 1 to node i
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Adding evidence

Given fixed values of a subset of variables xe (evidence), find the
1 Marginal probability queries over a small subset of variables:

I Find Pr(Income=’High | Degree=’PhD’)

Pr(x1) =
∑

x2...xm

Pr(x1 . . . xn|xe)

2 Most likely labels of remaining variables: (MAP queries)
I Find likely temperature at sensors in a room given readings

from a subset of them

x∗ = argmaxx1...xm
Pr(x1 . . . xn|xe)

Easy to add evidence, just change the potential.
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Inference in HMMs
Given,

I Graph

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

y1y2 y2y3 y3y4 y4y5 y5y6 y6y7

I Potentials: Pr(yi |yi−1),Pr(xi |yi )
I Evidence variables: x = x1 . . . xn = o1 . . . on.

Find most likely values of the hidden state variables.
y = y1 . . . yn

argmaxy Pr(y|x = o)

Define ψi(yi−1, yi) = Pr(yi |yi−1) Pr(xi = oi |yi)
Reduced graph only a single chain of y nodes.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

y1y2 y2y3 y3y4 y4y5 y5y6 y6y7

Algorithm same as earlier, just replace “Sum” with “Max”

This is the well-known Viterbi algorithm
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Exact inference on trees
Basic steps for marginal and MAP queries.

I Perform sum/max over leaf node potential and send resulting
“belief” to parent.

I Each internal node, on getting beliefs from its children
1 Multiplies incoming beliefs with its own potentials
2 Performs sum/max on the result
3 Sends resulting “belief” factor to parent.

Root has the answer.

Linear in the number of nodes in the graph
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Junction tree algorithms

An optimal general-purpose algorithm for exact marginal/MAP
queries

Simultaneous computation of many queries

Efficient data structures

Complexity: O(mwN) w= size of the largest clique in
(triangulated) graph, m = number of values of each discrete
variable in the clique. → linear for trees.

Basis for many approximate algorithms.

Many popular inference algorithms special cases of junction trees

I Viterbi algorithm of HMMs
I Forward-backward algorithm of Kalman filters
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Creating a junction tree from a graphical model

x
x x

x x

x
x x

x
x

xx

xxx xxx

xx

xxx xxx
xx

x

1.  Starting graph 2.  Triangulate graph 3.  Create clique nodes

4.  Create tree edges such that

variables connected.

5) Assign potentials to exactly

one subsumed clique node.

xx

xxx xxx
xx

x

Ψ23Ψ24 Ψ45Ψ35

Ψ1
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Belief propagation on junction trees
Each node c

I sends belief Bc→c ′(.) to each of its neighbors c ′

F once it has beliefs from every other neighbor N(c)− {c ′}.
I Bc→c ′(.) = belief that clique c has about the distribution of

labels to common variables s = c ∩ c ′

Bc→c ′(xs) =
∑
xc−s

ψc(xc)
∏

d∈N(c)−{c ′}

Bd→c(xd∩c)

Replace “sum” with “max” for MAP queries.

Compute marginal probability of any variable xi as

1 c = clique in JT containing xi

2 Pr(xi) ∝
∑

xc−xi
ψc(xc)

∏
d∈N(c) Bd→c(xd∩c)
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Example

ψ234(y234) = ψ23(y23)ψ34(y34)

ψ345(y345) = ψ35(y35)ψ45(y45)

ψ234(y12) = ψ12(y12)
1 Clique “12” sends belief B12→234(y2) =

∑
y1
ψ12(y12) to its only

neighbor.

2 Clique “345” sends belief B345→234(y34) =
∑

y5
ψ234(y345) to

“234”

3 Clique “234” sends belief
B234→345(y34) =

∑
y2
ψ234(y234)B12→234(y2) to “345”

4 Clique “234” sends belief
B234→12(y2) =

∑
y4
ψ234(y234)B345→234(y34) to “12”

Pr(y1) ∝
∑

y2
ψ12(y12)B234→12(y2)
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Part I: Outline

1 Representation
Directed graphical models: Bayesian networks
Undirected graphical models

2 Inference Queries
Exact inference on chains
Exact inference on general graphs

3 Constructing a graphical model
Graph Structure
Parameters in Potentials

4 Approximate inference
Generalized belief propagation
Sampling: Gibbs, Particle filters

Fundamentals of graphical model Sunita Sarawagi 30



Graph Structure
1 Manual: Designed by domain expert

I Used in applications where dependency structure is
well-understood

I Example: QMR systems, Kalman filters, Vision (Grids), HMM
for speech recognition and IE.

2 Learnt: from examples
I NP hard to find the optimal structure.
I Widely researched, mostly posed as a branch and bound search

problem.
I Useful in dyanmic situations
I Example: Selectivity estimation over attributes of arbitrary

tables.
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Parameters in Potentials
1 Manual: Provided by domain expert

I Used in infrequently constructured graphs, example QMR
systems

I Also where potentials are an easy function of the attributes of
connected graphs, example: vision networks.

2 Learnt: from examples
I More popular since difficult for humans to assign numeric values
I Many variants of parameterizing potentials.

1 Each potential entry a parameter, example, HMMs
2 Potentials: combination of shared parameters and data

attributes: example, CRFs. (Discussed in later with extraction)
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Part I: Outline

1 Representation
Directed graphical models: Bayesian networks
Undirected graphical models

2 Inference Queries
Exact inference on chains
Exact inference on general graphs

3 Constructing a graphical model
Graph Structure
Parameters in Potentials

4 Approximate inference
Generalized belief propagation
Sampling: Gibbs, Particle filters
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Why approximate inference
Exact inference is NP hard. Complexity: O(wm)

I w= tree width = size of the largest clique in (triangulated)
graph-1,

I m = number of values of each discrete variable in the clique.

Many real-life graphs produce large cliques on triangulation
I A n × n grid has a tree width of n
I A Kalman filter on K parallel state variables influencing a

common observation variable, has a tree width of size K + 1
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Generalized belief propagation
Approximate junction tree with a cluster graph where

1 Nodes = arbitrary clusters, not cliques in triangulated graph.
Only ensure all potentials subsumed.

2 Separator nodes on edges = subset of intersecting variables.

Example cluster graph

x1 x2 x3

x4 x5

x1x2 x2x3 x2x4

x1x2

x2x3x4 x3x4x5x3x4

x2

Starting graph

Cluster graphJunction tree.

x3x5 x4x5

x2 x3 x4 x5
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Belief propagation in cluster graphs

Graph can have loops, tree-based two-phase method not
applicable.

Many variants on scheduling order of propagating beliefs.
I Simple loopy belief propagation [Pea88]
I Tree-reweighted message passing [Kol04]
I Residual belief probagation [EMK06]

Most have no guarantees of convergence

Works well in practice, default method of choice.
I Success story: Error correction using Turbo code
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MCMC (Gibbs) sampling

Useful when all else failes, guaranteed to converge to the
optimal over infinite number of samples.

Basic premise: easy to compute conditional probability
Pr(xi |fixed values of remaining variables)

Algorithm
Start with some initial assignment, say
x1 = [x1, . . . , xn] = [0, . . . , 0]

For several iterations
I For each variable xi

Get a new sample xt+1 by replacing value of xi with a new value
sampled according to probability Pr(xi |x t

1, . . . x
t
i−1, x

t
i+1, . . . , x

t
n)
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Others

Combinatorial algorithms for MAP [BVZ01, DTEK07, GDS07]

Greedy algorithms: relaxation labeling

Variational methods

LP and QP based approaches
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Inference Task in DBNs

Xt-1 Xt

Ot-1 Ot

Simplied representation of a dynamic Bayesian network
I Hidden state variables: x; Observed variables: o
I Assumed to be vector valued

Given:
I Prior on the initial state: p(x0)
I How state evolves: p(xt |xt−1)
I How obsevations depend on state: p(ot |xt)

Estimate the state at time t given observations till time t
I The posterior distribution: p(xt |o1:t)
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Alternative Inference Tasks in DBNs

Xt-1 Xt

Ot-1 Ot

Estimate the most likely sequence of states (for discrete x)
I argmaxx1:t

p(o1:t |x1:t) (Cf. Viterbi Algorithm)

Estimate the distribution of all states till time t
I p(x1:t |o1:t)

Estimate the state at time t given measurements till time t + l
(fixed-lag smoothing)

I p(xt |o1:t+l)
I Why ? Belief about the state at time t may change drastically

given future observations
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Exact Inference in DBNs

Xt-1 Xt

Ot-1 Ot

Easy to write down
I Using Bayes rule and Chain rule, we get:

p(xt |o1:t) =
p(ot |xt)

∫
p(xt |xt−1)p(xt−1|o1:t−1)dxt−1

p(ot |o1:t−1)

I Where:
F p(ot |xt) and p(xt |xt−1) are known model parameters
F p(xt−1|o1:t−1) is available from the previous time
F p(ot |o1:t−1) =

∫
p(ot |xt)p(xt |o1:t−1)dxt is a normalization

constant (so may not need to be evaluated)
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Exact Inference in DBNs

Xt-1 Xt

Ot-1 Ot

However, can solve exactly in very few cases:
I Kalman filters: if the system is linear Gaussian

F If p(xt−1|o1:t−1) is Gaussian and the system is linear Gaussian,
p(xt |o1:t) is Gaussian

F Very efficient
F Backward smoothing also easily doable

I Grid-based method: if the state space is discrete and finite
F Can compute the integral as a sum exactly
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Approximate Inference in DBNs

Xt-1 Xt

Ot-1 Ot

Extended Kalman Filter
I Approximate the process as a linear Gaussian system
I Will fail if the posterior density not close to a Gaussian (e.g. if

it is bimodal or heavily skewed)

Approximate Grid-based methods
I Discretize the continuous state space using a grid
I Need sufficiently dense grid for good approximation
I Suffers from “curse of dimensionality”
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Approximate Inference in DBNs: Particle Filters

Xt-1 Xt

Ot-1 Ot

Approximate the state using a set of weighted samples, called
particles

At time t − 1, approximate p(xt−1|o1:t−1) using n particles:
I {x1

t−1,w
1
t−1}, {x2

t−1,w
2
t−1}, · · · , {xn

t−1,w
n
t−1}

Can estimate any statistic using these particles
I e.g. E (xt−1|o1:t−1) ≈ Σn

i=1w
i
t−1x

i
t−1

Inference Task: Generate a set of particles corresponding to
p(xt |o1:t) given ot
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Approximate Inference in DBNs: Particle Filters

Xt-1 Xt

Ot-1 Ot

Generate one sample each from: p(xt |xi
t−1, ot)

Assign weights as:

w i
t ∝ w i

t−1p(ot |xi
t−1) = w i

t−1

∫
p(ot |x′t)p(x′t |xi

t−1)dx′t

Problems:
I Requires sampling from p(xt |...) and computing p(ot |...)
I Requires evaluating complex integrals

Can solve in very few cases:
I xt is discrete, or
I p(xt |xi

t−1, ot) is Gaussian (evolution can still be non-linear)
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Approximate Inference in DBNs: Particle Filters

Xt-1 Xt

Ot-1 Ot

Must use importance sampling
I Use an importance density q() to generate samples from
I ...that closely approximates the true density p()
I No magic bullet for choosing q()

Degeneracy issues
I After a while, a single particle has all the weight
I Need to resample periodically
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Approximate Inference in DBNs: Particle Filters

Xt-1 Xt

Ot-1 Ot

Many other extensions/variations have been considered
I A lot more art than science at this point

For an approachable introduction, see “A Tutorial on Particle Filters
for On-line Nonlinear/Non-Gaussian Bayesian Tracking”;
Arulampalam et al.; IEEE Trans. Signal Processing; 2002

I Our discussion heavily borrows from it
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More on graphical models

Koller and Friedman book (Structured Probabilistic Models) not
published yet but you could request authors for a draft.

Kevin Murphy’s brief online introduction
(http://www.cs.ubc.ca/∼murphyk/Bayes/bnintro.html)

Graphical models. M. I. Jordan. Statistical Science (Special
Issue on Bayesian Statistics), 19, 140-155, 2004. (http:
//www.cs.berkeley.edu/∼jordan/papers/statsci.ps.gz)
Other text books:

I R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J.
Spiegelhalter. ”Probabilistic Networks and Expert Systems”.
Springer-Verlag. 1999.

I J. Pearl. ”Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference.” Morgan Kaufmann. 1988.

I Graphical models by Lauritzen, Oxford science publications F.
V. Jensen. ”Bayesian Networks and Decision Graphs”. Springer.
2001.
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Part II: Outline

Selectivity Estimation and Query 
Optimization

Probabilistic Relational Models

Probabilistic Databases

Sensor/Stream Data Management
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Selectivity Estimation

Estimating the intermediate result sizes that may be 
generated during query processing

Equivalently, selectivities of predicates over tables
Key to obtaining good plans during optimization

SSN .. Income .. Homeowner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

Customer

Single-table predicates:
income > 90000 and homeowner = yes
(on customer)

Multi-table predicates:
p.ssn = c.ssn and c.homeowner = “no”

and p.amount > 10000
(over Customer c and Purchases p)

SSN Store .. Amount

Purchases
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Selectivity Estimation

Optimizers make several independence assumptions
Attribute value independence assumption

Attributes assumed to be independently distributed
Rarely true in practice

SSN .. Income .. Homeowner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

.. .. 50000 .. No

.. .. 30000 .. No

.. .. 200000 .. Yes

Customer
Estimate

p(income > 90000 and homeowner = yes)
as

p(income > 900000) * p(homeowner = yes)

Can result in severe underestimation

In reality:
p(income > 900000, homeowner = yes) 

≈ p(homeowner = yes)
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Selectivity Estimation

Join uniformity assumption
Tuples from one relation assumed equally likely to 
join with tuples from other relation
Real datasets exhibit large skews

SSN .. Income .. Homeowner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

.. .. 50000 .. No

.. .. 30000 .. No

.. .. 200000 .. Yes

Customer

SSN Store .. Amount

Purchases
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Selectivity Estimation
Errors propagate exponentially [IC’91]

Optimizers highly sensitive to underestimation
May choose nested-loop joins

Proposed solutions:
Multi-dimensional histograms, wavelets [PI’97,MVW’98, 
GKTD’00]

Expensive to build and maintain

Suffer from “curse of dimensionality” in high dimensions

Random sampling [CDN’07]

Not as storage efficient

Few matching tuples for high dimensional queries

Need different sampling techniques for joins [AGPR’99]
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Selectivity Estimation using PGMs
Eliminating attribute value independence assumption 
[GTK’01,DGR’01,LWV’03,PMW’03]

SSN age Income zipcode Home
owner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

.. .. 50000 .. No

.. .. 30000 .. No

.. .. 200000 .. Yes

Customer
Learn a PGM Income

Age Home..?

Approximate CPDs
using Histograms

Learning process modified to optimize
for accuracy as well as storage space
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Selectivity Estimation using PGMs
Eliminating attribute value independence assumption 
[GTK’01,DGR’01,LWV’03,PMW’03]

SSN age Income zipcode Home
owner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

.. .. 50000 .. No

.. .. 30000 .. No

.. .. 200000 .. Yes

Customer
Learn a PGM Income

Age Home..?

Approximate CPDs
using Histograms

Inference 
Algorithm

Query

Selectivity
Estimates
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Selectivity Estimation using PGMs

Eliminating join uniformity assumption ??
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Part II: Outline
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Probabilistic Relational Models

Probabilistic Databases

Sensor/Stream Data Management
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Probabilistic Relational Models
Real-world data often has highly relational structure

There are entities and relationships between them etc

Bayesian networks treat each one individually

Will need a huge Bayesian network if we want to represent 
the uncertainties in such data

PRMs: Generalization of PGMs to relational 
framework [FGKP’99]

Allows dependence over attributes in different relations 
through joins

Significantly enrich both Bayesian networks and 
relational model
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Relational Schema

Author
Good Writer

Author of
Has Review

Describes the types of objects and relations 
in the database

Review

Paper
Quality
Accepted

Mood

LengthSmart
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Probabilistic Relational Model

Length

Mood

Author

Good Writer

Paper

Quality

Accepted

Review
Smart

3.07.0
4.06.0
8.02.0
9.01.0

,
,
,
,

,

tt
ft
tf
ff

P(A | Q, M)MQ

Part II: Applications



Amol Deshpande University of Maryland

Fixed relational skeleton
Objects and links between them

Non-key (descriptive) attributes uncertain

Author  A1

Paper  P1
Author: A1

Review  R2
Paper: P2

Review  R1
Paper: P1

Author  A2

PRM: Semantics

Paper  P2
Author: A1

Paper  P3
Author: A2

Primary Keys

Foreign Keys

Review  R3
Paper: P3

Review  R4
Paper: P3
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Author  A1 Paper  P1

Review  R2

Review  R1

Author  A2

PRM defines distribution over instantiations of attributes

PRM: Semantics

Paper  P2

Paper  P3

Good Writer

Smart

Length

Mood

Quality

Accepted

Length

Mood

Review  R3

Length

Mood

Quality

Accepted

Quality

Accepted

Good Writer

Smart

Review  R4

Length

Mood
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Paper  P1

Paper  P2

Paper  P3

Author  A1

Review  R2

Review  R1

Author  A2

PRM: Semantics

Good Writer

Smart

Length

Mood

Quality

Accepted

Length

Mood

Review  R3

Length

Mood

Quality

Accepted

Quality

Accepted

Good Writer

Smart

Review  R4

Length

Moodmode

mode

mode

Any aggregate function can be used: 
sum, min, max, avg, mode, count
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PRMs: Inference/Generalizations
Inference

Option 1: Construct and use the ground Bayesian network
Allows exact inference
Too large for any reasonable dataset

Option 2: Approximate inference
E.g. using loopy belief propagation

Generalizations

Link uncertainty [GGFKT’02]
Finer granularity dependencies using class hierarchies [dGK’00]
Undirected dependencies

Relational Markov networks [TAK’02]
Relational dependency networks [ND’04]

Exciting research area with huge potential impact in databases !!
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Selectivity Estimation using PGMs

Eliminating join uniformity assumption [GTK’01]
Using a Probabilistic Relational Model

Learn a PRM
Income

Age Home..?

SSN .. Income .. Homeowner?

.. .. 100000 .. Yes

.. .. 11000 .. Yes

.. .. 50000 .. No

.. .. 30000 .. No

.. .. 200000 .. Yes

Customer

ssn Store Amt

Purchases

Customer

Store

Amt

Purchases

Can estimate selectivities of joint predicates across 
relations 

Part II: Applications
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Selectivity Estimation using PGMs

Eliminating join uniformity assumption [GTK’01]
Using a Probabilistic Relational Model

Caveat:
Should not use them blindly
Need to add and reason about a new join indicator 
variable

Called a Statistical Relational Model

Details in Getoor, Tasker, Koller; SIGMOD 2001.
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Discussion and Open Problems
Approximate query processing ?

Can use the proposed techniques as they are
However, no guarantees on the accuracy of results

Optimize accuracy for a given storage
To obtain guarantees, optimize for accuracy alone

May result in large CPDs

Using learned PGMs during optimization
Optimizers get better selectivity estimates, but 
otherwise unaware of the modeling
May be beneficial to explore tighter integration
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Discussion and Open Problems
Can exploit new types of query plans

Based on horizontal partitioning of the relations 
[BBDW’05,DGHM’05,P’05]
Use different plans for different partitions of 
relations based on attribute values

Adaptive query processing
PGMs ideal for learning the distribution properties
Significantly fewer parameters easier to learn
Many research challenges
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Probabilistic Databases
Motivation: Increasing amounts of uncertain data

From sensor networks
Imprecise data, data with confidence/accuracy bounds
Human-observed data

Statistical modeling/machine learning
Many models provide a distribution over a set of labels (e.g. 
classification models, HMMs)

Approximate/vague queries
Information extraction

“Probability theory” provides a strong foundation to 
reason about this 

Caveat: It is not always clear if the underlying uncertainty 
measure follows probability theory semantics 
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Probabilistic Databases
Goal: Managing and querying data annotated with 
probabilities using databases

Types of uncertainties
Existence uncertainty

Don’t know if a tuple exists in the database for sure

E.g. a sensor may detect a bird, but not 100% sure

Attribute-value uncertainty

The value of an attribute is not known for sure

Instead a distribution over the possible values is provided

E.g. a sensor detects a bird for sure, but it may be a 
sparrow or a dove or something else

Much work in recent years on both [DS’07]
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Correlations in Probabilistic Databases

Much of the probabilistic data is naturally 
correlated

E.g. sensor data, data integration [AFM’06]

Even if not..
Correlations get introduced during query 
processing
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Example Probabilistic Database

Example from Dalvi and Suciu [2004]

A B

m 1

n 1

prob

0.6

0.5

s1

s2

S

C D
1 p

prob

0.4t1

T

instance probability
{s1, s2, t1} 0.12

{s1, s2} 0.18

{s1, t1} 0.12

{s1} 0.18

{s2, t1} 0.08

{s2} 0.12

{t1} 0.08

{} 0.12

Possible worlds
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Correlations during query processing

Example from Dalvi and Suciu [2004]

A B

m 1

n 1

prob

0.6

0.5
s1

s2

S

C D
1 p

prob

0.4t1

T

A B C D
m 1

1

p

n

1

1 p

prob

0.24

0.20
i1

i2

S        B=C T

Not independent !!!

C D
1 p

prob

0.392r

πD(S        B=C T)
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Correlations in Probabilistic Databases

Much of the probabilistic data is naturally 
correlated

E.g. sensor data, data integration

Even if not..
Correlations get introduced during query 
processing

Can use PGMs to capture such correlations
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Example: Mutual Exclusivity

A B
m 1

n 1

prob

0.6

0.5

s1

s2

S

C D
1 p

prob

0.4t1

T

Xs1 Xt1 f1()
0 0

1

1 0 0.6

1 1 0

0

0

0.4

Xs2 f2()
0 0.5

1 0.5

instance probability
{s1, s2, t1} 0

{s1, s2} 0.3

{s1, t1} 0

{s1} 0.3

{s2, t1} 0.2

{s2} 0

{t1} 0.2

{} 0

Possible worlds

Possible worlds (if desired) computed using inference
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Query Evaluation [SD’07]
Introduce new factors as new tuples generated

A B
m 1

n 1

s1

s2

S

C D
1 pt1

T

A B C D
m 1

1

p

n

1

1 p

i1

i2

S        B=C T

Xs1 Xt1 Xs2

Xi1 Xi2

f AND
s1,t1,i1

f AND
s1,t1,i1

Xs1 Xt1 f1()

0 0

1

1 0 0.6

1 1 0

0

0

0.4

Xs2 f2()

0 0.5

1 0.5
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Query Evaluation [SD’07]
Introduce new factors as new tuples generated

Xs1 Xt1 Xi1
0 0

0

1 0 0 1

1 1 0 0

0 0 1 0

0 1 1 0

1 0 1 0

1

1

1 1 1

fAND

0 1

10

Xs1 Xt1 Xs2

Xi1 Xi2

f AND
s1,t1,i1

f AND
s1,t1,i1
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Query Evaluation [SD’07]
Introduce new factors as new tuples generated

Xi1 Xi2 Xr
0 0

0

1 0 0 0

1 1 0 0

0 0 1 0

0 1 1 1

1 0 1 1

1

1

1 1 1

fOR

0 1

00

Xs1 Xt1 Xs2

Xi1 Xi2

f AND
s1,t1,i1

f AND
s1,t1,i1

Xr f OR
I1,i2,r
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Query Evaluation [SD’07]

Query evaluation ≡ Inference !!
Can use variable elimination or junction tree..
Can also use approximate inference algorithms

Xs1 Xt1 Xs2

Xi1 Xi2

f AND
s1,t1,i1

f AND
s1,t1,i1

Xr f OR
I1,i2,r

Part II: Applications
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Discussion

Similar to intensional semantics [FR’97,DS’04]
Except this exposes the structure of the problem

Can exploit for more efficient execution

“Safe plans” on independent tuples generate 
tree-structured models

Highly efficient inference
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Motivation

Unprecedented, and rapidly increasing, instrumentation 
of our every-day world

Wireless sensor 
networks

RFID

Distributed measurement
networks (e.g. GPS)

Industrial Monitoring
Network Monitoring
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Sensor Data Management: Challenges

Data streams generated at very high rates

Strong spatio-temporal correlations in the data 

In-network, distributed processing tasks
Global inference needed to achieve consistency

Need for higher-level modeling over the data
Typically imprecise, unreliable and incomplete data

Measurement noises, failures, biases …

Application often need higher-level, hidden variables

Pattern recognition, forming stochastic descriptions..
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Sensor Data Management

A statistical/probabilistic model of the data must 
be incorporated in the sensor data processing

Probabilistic graphical models are a natural
Can capture and exploit the spatial and temporal 
nature of the underlying process

Minimize the number of parameters

Amenable to distributed processing
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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1

3

5

2

4

SENSOR
NETWORK

True temperature
at X1 at time t X1,t

X2,t

X5,t

X3,t

X4,t

Interpretation: X4,t
independent of X2,t
given X1,t and X5,t

O1,t

O2,t

O5,t

O3,t

O4,t

Observed temperature
at X1 at time t
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1

3

5

2

4

SENSOR
NETWORK

Yt

Additional hidden
state variables

X1,t

X2,t

X5,t

X3,t

X4,t

O1,t

O2,t

O5,t

O3,t

O4,t
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1

32 SENSOR
NETWORK

X2,t

O2,t

X1,t

O1,t

X3,t

O3,t

X2,t-1

O2,t-1

X1,t-1

O1,t-1

X3,t-1

O3,t-1

X2,t+1

O2,t+1

X1,t+1

O1,t+1

X3,t+1

O3,t+1

Markov Property
Interpretation: {Xi,t+1 } independent of {Xi,t-1 } given {Xi,t }

Part II: Applications



State evolution can be modeled as a Dynamic Bayesian Network

X2,t

O2,t

X1,t

O1,t

X3,t

O3,t

X2,t-1

O2,t-1

X1,t-1

O1,t-1

X3,t-1

O3,t-1

X2,t+1

O2,t+1

X1,t+1

O1,t+1

X3,t+1

O3,t+1
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Parameters ?
(1) System model

Prior: p(X1,0,X2,0,X3,0)
Evolution: p(X1,t,X2,t,X3,t | X1,t-1,X2,t-1,X3,t-1)

X2,t

O2,t

X1,t

O1,t

X3,t

O3,t

X2,t-1

O2,t-1

X1,t-1

O1,t-1

X3,t-1

O3,t-1

X2,t+1

O2,t+1

X1,t+1

O1,t+1

X3,t+1

O3,t+1

Part II: Applications



Parameters ?
(2) Measurement model

p(O1,t,O2,t,O3,t | X1,t,X2,t,X3,t)

X2,t

O2,t

X1,t

O1,t

X3,t

O3,t

X2,t-1

O2,t-1

X1,t-1

O1,t-1

X3,t-1

O3,t-1

X2,t+1

O2,t+1

X1,t+1

O1,t+1

X3,t+1

O3,t+1
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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Application: Online Estimation and Filtering

Using linear Gaussian dynamical systems
E.g. Kalman Filters

Task: Estimating velocity and location from noisy GPS 
readings

Velocity

True location

Observed location

Hidden Variables

Assumed to have 
Gaussian 
Distributions

Xt

Ot

Vt

Ot-1

Xt-1

Vt-1
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Application: Online Estimation and Filtering

Using linear Gaussian dynamical systems
E.g. Kalman Filters

Task: Estimating velocity and location from noisy GPS 
readings

Xt

Ot

Vt

Ot-1

Xt-1

Vt-1
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Application: Online Estimation and Filtering

Using linear Gaussian dynamical systems
E.g. Kalman Filters 

Closed-form equations for state estimation [Kalman’60]
Because of the linear Gaussian assumption

LDS Applications:
Autopilot
Inertial guidance systems
Radar tracker
Economics…

In databases:
Adaptive stream resource management [JCW’04]
Approximate querying in sensor networks [DGHHM’04]
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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Application: Inferring Hidden Variables
Inferring “transportation mode”/ “activities” [P+04]

Using easily obtainable sensor data (GPS, RFID proximity data)
Can do much if we can infer these automatically

office
home

Have access to noisy “GPS” data
Infer the transportation mode:

walking, running, in a car, in a bus
Part II: Applications
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Application: Inferring Hidden Variables
Inferring “transportation mode”/ “activities” [P+04]

Using easily obtainable sensor data (GPS, RFID proximity data)
Can do much if we can infer these automatically

office
home

Desired data:
Clean path annotated with transportation mode
Online, in real-time
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Application: Inferring Hidden Variables

Use a dynamic Bayesian network to model the system state

Time = t

Mt

Xt

Ot

Time = t+1

Mt+1

Xt+1

Ot+1

Transportation Mode:
Walking, Running, Car, Bus

True velocity and location

Observed location
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Application: Inferring Hidden Variables

Given a sequence of observations (Ot), infer most likely Mt’s
that explain it.
Alternatively, could provide a probability distribution on the 
possible Mt’s.

Transportation Mode:
Walking, Running, Car, Bus

True velocity and location

Observed location

Time = t

Mt

Xt

Ot

Time = t+1

Mt+1

Xt+1

Ot+1
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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Application: Model-based Query Processing
[DGMHH’04,SBEMY’06]

Declarative Query
Select nodeID, 
temp ± .1C, conf(.95)
Where nodeID in {1..6}

Observation Plan
{[temp, 1], 
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

USER

SENSOR
NETWORK

1

4

65

2
3

Query Results
1, 22.73, 100%
…
6, 22.1, 99%

Probabilistic
Model

Query
Processor
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Application: Model-based Query Processing 
[DGMHH’04,SBEMY’06]

Declarative Query
Select nodeID, 
temp ± .1C, conf(.95)
Where nodeID in {1..6}

Observation Plan
{[temp, 1], 
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

USER

SENSOR
NETWORK

1

4

65

2
3

Query Results
1, 22.73, 100%
…
6, 22.1, 99%

Probabilistic
Model

Query
Processor

Advantages:
Exploit correlations for efficient approximate    

query processing
Handle noise, biases in the data
Predict missing or future values
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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Application: In-network Inference [PGM’05]

Often need to do in-network, distributed inference 
Target tracking through information fusion

Optimal control (for actuation)

Distributed sensor calibration (using neighboring sensors)

In-network regression or function fitting

Need to reconcile
information across
all sensors
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Application: In-network Inference [PGM’05]

Often need to do in-network, distributed inference 
Target tracking through information fusion

Optimal control (for actuation)

Distributed sensor calibration (using neighboring sensors)

In-network regression or function fitting

Obey a common structure:
Each sensor has/observes some local information

Information across sensors is correlated

The information must be combined together to form a global 
picture

The global picture (or relevant part thereof) should be sent to 
each sensor 
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Application: In-network Inference [PGM’05]
Naïve option:

Collect all data at the centralized base station – too expensive

Using graphical models
Form a junction tree on the nodes directly

Use message passing (or loopy propagation [CP’03]) to form a global 
consistent view
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Application: In-network Inference [PGM’05]
Naïve option:

Collect all data at the centralized base station – too expensive

Using graphical models:
Form a junction tree on the nodes directly

Use message passing (or loopy propagation [CP’03]) to form a global 
consistent view
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Outline

A generic temporal model for sensor 
stream data
Applications

Online estimation and filtering
Inferring hidden variables
Model-based query processing
In-network inference
Miscellaneous
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Applications: Miscellaneous
Data compression [CDHH’06]

Central task in sensor networks
Collect all observed data at the base station at specified 
frequency

Challenge: How to exploit the correlations
Probabilistic graphical models ideally suited:

Can capture the correlations/pattern
Allow for local checking of constraints/correlations

Fault/anomaly detection
Distributed regression 
Sensor calibration

Part II: Applications
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Information Extraction (IE) & Integration

The Extraction task: Given,
 E:  a set of structured elements

 S:  unstructured source S

extract all instances of E from S

 Many versions involving many source types
• Actively researched in varied communities
• Several tools and techniques
• Several commercial applications

The integration task: Given

– database of existing inter-linked entities

Resolve which  entities are the same.
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 Classical Named Entity Recognition 

 Extract person, location, organization names

According to Robert Callahan, president of Eastern's flight attendants union, 
the past practice of Eastern's parent, Houston-based Texas Air Corp., has 
involved ultimatums to unions to accept the carrier's terms

IE from free format text

Several applications
–News tracking

– Monitor events
–Bio-informatics

– Protein and Gene names from publications
–Customer care 

•Part number, problem description from emails in help centers
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Text segmentation

P.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, J.S. Dordick 
(1993) Protein and Solvent Engineering of Subtilising BPN' in 
Nearly Anhydrous Organic Media J.Amer. Chem. Soc. 115, 
12231-12237.

Author Year Title Journal
Volume

Page

4089 Whispering Pines Nobel Drive  San Diego CA 92122

House 

number Building Road City
ZipState
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Information Extraction (IE)

 Many different uses
 Disease outbreaks from news articles

 Addresses/Qualifications from resumes for HR DBs

 Titles/Authors/Venue/Year from citations

 Room attributes from hotel websites

 Many approaches

 Rules-based   -------- Statistical learners

 Varying levels of difficulty

 Wrappers for machine generated pages

 ..

 Fact extraction from speech transcripts
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Graphical models in Extraction & Dedup

 State of the art: Conditional Random Fields

 IE Models

 Basic IE model (Chain)

 IE with collective labeling of repeated words 

 De-duplication models

 Basic  pair-wise model

 Collective de-duplication of relational data

 Collective de-duplication of multiple networked entities
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Special undirected  graphical  model 

1. Conditional distribution Pr (y|x) where y = y1 y2…yn 

2. Graph: over the interdependent components of y

3. Potentials: weighted sum of features over x

Conditional Random Fields

y1 y2 y3 y4 y5

x

[Lafferty et al 2001]
Part III: Information Extraction and Data Integration



Chain model

My review of Fermat’s last theorem by S. Singh

1 2 3 4 5 6 7 8 9

My review of Fermat’s last theorem by S. Singh

Other Other Other Title Title Title other Author Author

t

x

y

y1 y2 y3 y4 y5 y6 y7 y8 y9
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Features
 Feature vector for each position

 Examples

 Parameters:  weight for each feature (vector)

i-th label
Word i & 
neighbors

previous 
label

User provided

Machine learnt
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Features in typical extraction tasks

• Words 
• Orthographic word properties

• Capitalized?  Digit?  Ends-with-dot?

• Part of speech
• Noun?

• Match in a dictionary
• Appears in a dictionary of people names?
• Appears in a list of stop-words?

• Fire these for each label and

• The token,

• W tokens to the left or right, or

• Concatenation of tokens.
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Examples: features with weights 

(publications).

# Name Person Location Other

1 xi is noun 1.2 1.2 -0.5

4 “at” in {xi-1, xi-2 } -0.3 3 0.2

7 xi-1xi  in people names dictionary 3 -0.4 0

10 xi-1  is single caps & dot. 2.1 -1.0 -0.1

13 yi-1  is Location -1.5 0.3 1.0

. ..

.

100000 ..

A large number
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Typical numbers

 Seminars announcements (CMU): 

 speaker, location, timings

 SVMs for start-end boundaries

 250 training examples

 F1: 85% speaker, location, 92% timings (Finn & 

Kushmerick ‟04)

 Jobs postings in news groups

 17 fields: title, location, company,language, etc

 150 training examples

 F1: 84% overall (LP2)         (Lavelli et al 04)
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Graphical models in Extraction & Dedup

 State of the art: Conditional Random Fields

 IE Models

 Basic IE model (Chain)

 IE with collective labeling of repeated words 

 De-duplication models

 Basic  pair-wise model

 Collective de-duplication of relational data

 Collective de-duplication of multiple networked entities
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Collective labeling

 Y has character.

 Mr. X lives in Y.

 X buys Y Times daily.

Associative potentials 
e(i,i) > e(i,j) 

Other applications of associative potentials
Social network analysis: “friends of smokers are smokers”
Image segmentation: “nearby pixels get the same label”
Spam detection:  “spam pages are pointed to by spams”

y11 y21 y31 y41 y51

y11 y21 y31 y41 y51

y11 y21 y31 y41
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Starting graphs  (..of an extraction task from addresses)
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Graph after collective edges
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Algorithms for collective inference
 Exact: intractable

 Approximate
 Loopy Belief Propagation

 Message passing (MP) on edges of the graph

 [Bunescu & Mooney ‟04],  [Sutton & McCallum „04]

 Gibbs Sampling
 [Finkel & Manning. ‟05]

 Greedy local search (ICM)
 [Lu & Getoor‟03]

 A special two-pass variant: [Krishnan & Manning ‟06]

 Generic techniques, no guarantees
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Associative Markov Networks
 Graph with only associative edge potentials and 

node potentials

 Optimal for m=2.  ½ approximation for m > 2
 Min-cut with ®-expansion (Boykov „99)

 LP-based metric labeling algorithms (Klienberg & Tardos „02)

 BP with TRW-S message schedules (Kolmogorov & Wainwright, 
„05)

y11 y21 y31 y41 y51

y11 y21 y31 y41 y51

y11 y21 y31 y41

Not directly usable        Slow       Worse guarantees
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Generalized Belief propagation

 Basic MP step: Compute max-marginals for a 

separator node  MAP for each label of the node.

 MAP algorithms for chains   easy and efficient.

 MAP algorithms for cliques combinatorial 

algorithms can be used for this.      (Gupta et al 2007)

BP on clusters of cliques and chains with single 

node separators

Clique Y

Chain 1

Chain 2

Chain 3

Clique X

y11 y21 y31 y41 y51

y11 y21 y31 y41 y51

y11 y21 y31 y41
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Graphical models in Extraction & Dedup

 State of the art: Conditional Random Fields

 IE Models

 Basic IE model (Chain)

 IE with collective labeling of repeated words 

 De-duplication models

 Basic  pair-wise model

 Collective de-duplication of relational data

 Collective de-duplication of multiple networked entities
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Basic dedup problem

 Given a pair of records x1
, x2

, predict  “y” to 

denote if they are the same or not. 

 CRF: Pr(y| x1
, x2)  where 

 Features: list of similarity functions between record 

pairs. 

 Graph: trivial single node graph

X2 P. N. Johnson-Laird. Mental Models: Towards a 

Cognitive Science of Language, Inference, and 

Consciousness. Cambridge University Press, 1983

X1   Johnson Laird, Philip N. (1983). Mental models. 

Cambridge, Mass.: Harvard University Press.
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Multi Attribute Similarity

f1 f2 …fn
Record 1   D 
Record 2

Record 1   N
Record 3

Record 4   D
Record 5

1.0  0.4  … 0.2   1

0.0  0.1  … 0.3   0

0.3  0.4  … 0.4   1

Mapped examples

Classifier

Record 6  
Record 7
Record 8 
Record 9
Record 10
Record 11

Unlabeled list
0.0  0.1  … 0.3   ?
1.0  0.4  … 0.2   ?
0.6  0.2  … 0.5   ?
0.7  0.1  … 0.6   ?
0.3  0.4  … 0.4   ?
0.0  0.1  … 0.1   ?
0.3  0.8  … 0.1   ?
0.6  0.1  … 0.5   ?

0.0  0.1  … 0.3   0
1.0  0.4  … 0.2   1
0.6  0.2  … 0.5   0
0.7  0.1  … 0.6   0
0.3  0.4  … 0.4   1
0.0  0.1  … 0.1   0
0.3  0.8  … 0.1   1
0.6  0.1  … 0.5   1

AuthorTitleNgrams  0.4

AuthorEditDist  0.8

YearDifference > 1

All-Ngrams  0.48Non-Duplicate 

Non Duplicate 

Duplicate TitleIsNull < 1

PageMatch  0.5

Non-Duplicate 

Duplicat

e 

Duplicate 

Duplicate 

Similarity 
functions

All-Ngrams*0.4 + AuthorTitleNgram*0.2

– 0.3YearDifference + 1.0*AuthorEditDist

+ 0.2*PageMatch – 3 > 0

Learners:

Support Vector Machines (SVM)

Logistic regression, 

Linear regression,

Perceptron

Part III: Information Extraction and Data Integration



Graphical models in Extraction & Dedup

 State of the art: Conditional Random Fields

 IE Models

 Basic IE model (Chain)

 IE with collective labeling of repeated words 

 De-duplication models

 Basic  pair-wise model

 Collective de-duplication of relational data

 Collective de-duplication of set-oriented data

Part III: Information Extraction and Data Integration



De-duplication of relational records

Collectively de-duplicate entities and its many attributes

Associate variables for predictions 
for each attribute k
each record pair (i,j)

for each record pair 
from Parag & Domingos 2005

a1
a2 a3

Ak
ij

Rij
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Graphical model

A1
12

A1
34

A2
12

A2
34

A3
12 = A3

34

R12 R34

Potentials

 Independent scores

 sk(A
k,ai,aj) Attribute-level

 Any classifier on various text 

similarities of attribute pairs

 s(R,bi,bj) Record-level

 Any classifier on various 

similarities of all k attribute pairs

 Dependency scores

 dk(A
k, R): record pair, attribute pair

0 1

0 4 2

1 1 7
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Joint de-duplication steps

 Jointly pick 0/1 labels for all record pairs Rij and 

all K attribute pairs Ak
ij to maximize sum of 

potentials

 Typical graphical model inference problem

 Efficient algorithm possible because of special 

forms of potentials

 dependency scores associative

 dk(1,1) + dk(0,0) >= dk(1,0)+dk(0,1)  
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Graphical models in Extraction & Dedup

 State of the art: Conditional Random Fields

 IE Models

 Basic IE model (Chain)

 IE with collective labeling of repeated words 

 De-duplication models

 Basic  pair-wise model

 Collective de-duplication of relational data

 Collective de-duplication of set-oriented data
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Collective linkage: set-oriented data

P1 D White, J Liu, A Gupta

P2 Liu, Jane & J Gupta & White, Don

P3 Anup Gupta

P4 David White

Scoring functions

 S(Aij) Attribute-level

 Text similarity

 S(Aij, Nij)  Dependency with labels 

of co-author set

 Fraction of co-author set assigned 

label 1.

 Score: a s(Aij) + (1-a) s(Aij, Nij)

Inference Algorithm

• Exact inference hard

• MCMC algorithm in (Bhattacharya 
and Getoor, 2007)

D White
White, Don

J Liu
Liu Jane

A Gupta
Anup GuptaDavid White

D White

A Gupta
J Gupta
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Concluding remarks

 Graphical models provide a unified and flexible 

modeling of many extraction and integration 

tasks

 Much work is still needed in converting these to 

methods of choice in commercial systems

 Scalable algorithms

 Skillful integration of manual rules with statistical 

methods

 Feedback on when the statistical method failes

 Robust feature design so as to not overfit on the 

training data.
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