Uncertain Data Management for Sensor Networks

Amol Deshpande, University of Maryland

(joint work w/ Bhargav Kanagal, Prithviraj Sen, Lise Getoor, Sam Madden)

Motivation: Sensor Networks

- Unprecedented, and rapidly increasing, instrumentation of our every-day world
- Huge data volumes generated <u>continuously</u> that must be processed in <u>real-time</u>
- <u>Imprecise</u>, <u>unreliable</u> and <u>incomplete</u> data
 - Inherent measurement noises (e.g. GPS)
 - Low success rates (e.g. RFID)
 - Communication link or sensor node failures (e.g. wireless sensor networks)
 - Spatial and temporal biases
- Typically <u>acquisitional</u> environments
 - Energy-efficiency the primary concern

Wireless sensor networks

Distributed measurement networks (e.g. GPS)

RFID

Industrial Monitoring

Motivation: Uncertain Data

- Similar challenges in other domains
 - Data integration
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Information extraction
 - Automatically extracted knowledge from text
 - Social networks, biological networks
 - Noisy, error-prone observations
 - Ubiquitous use of *entity resolution, link prediction* etc...
- Need to develop database systems for efficiently representing and managing uncertainty

Example: Wireless Sensor Networks

Moteiv Invent:

8Mhz uProc, 250kbps 2.4GHz Transreceiver 10K RAM, 48K program/ 512k data flash

Rechargeable Battery (USB)

Light, *temperature*, acceleration, and sound sensors

A wireless sensor network deployed to monitor temperature

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

Example: Inferring High-level Events

Inferring "transportation mode"/ "activities"

- Using easily obtainable sensor data (GPS, RFID proximity data)
- Can do much if we can infer these automatically

Example: Inferring High-level Events

Inferring "transportation mode"/ "activities"

- Using easily obtainable sensor data (GPS, RFID proximity data)
- Can do much if we can infer these automatically

Data Processing Step 1

- Apply a statistical model to the data
 - Eliminate spatial/temporal biases, handle missing data through extrapolation (e.g. regression, interpolation models)
 - Filter measurement noise (e.g. Kalman Filters)
 - Infer hidden variables, pattern recognition (e.g. HMMs)
 - Fault/anomaly detection
 - Forecasting/prediction (e.g. ARIMA)
- No support in current database systems !

Temperature monitoring

Sensor Data Processing: Now

Sensor Data Processing: What we want

Challenges

- Abstractions and language constructs for pushing statistical models into databases
 - Large diversity in the models used in practice
- Efficiently processing high-rate data streams
- Querying over probabilistic model outputs
 - Naturally exhibit high degrees of correlations
 - Many different types of uncertainty
- Model-driven data acquisition
 - Minimize the data acquired to answer a query
- Need for in-network, distributed processing
 - Global inference needed to achieve consistency

<u>Caption</u>: Even if the sensor web data sources were to publish data using intuitive well-defined interfaces, the complex and semantically disparate measures of data quality and uncertainty typically associated with it make sensor data fusion and aggregation a challenging task.

Outline

Motivation

- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Outline

Motivation

- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Model-based User Views for Sensor Data; A. Deshpande, S. Madden; SIGMOD 2006

Abstraction: Model-based Views

- An abstraction analogous to *traditional database views*
- Provides independence from the messy measurement details

Grid Abstraction

MauveDB System

- Being written using the <u>Apache Derby</u> Java open source database system codebase
- Supports the abstraction of <u>Model-based</u> <u>User</u> <u>Views</u>
 - Declarative language constructs for creating such views
 - SQL queries over model-based views
 - Keep the models up-to-date as new data is inserted in database

MauveDB System Architecture

MauveDB System Architecture

CREATE VIEW

RegView(time [0::1], x [0:100:10], y[0:100:10], temp)

AS

FIT temp USING time, x, y

BASES 1, x, x^{2,} y, y²

FOR EACH time T

TRAINING DATA

SELECT temp, time, x, y

FROM raw-temp-data

WHERE raw-temp-data.time = T

Details specific to the model being used

10 1 20

Query Processing

- Key challenge: Integrating in a traditional database system
- Two operators per view type that support get_next() API
 - <u>ScanView</u>: Returns the contents of the view one-by-one
 - <u>IndexView (condition)</u>: Returns tuples that match a condition

• e.g. return *temperature* where (x, y) = (10, 20)

View Maintenance Strategies

- Option 1: Compute the view as needed from base data
 - For regression view, scan the tuples and compute the weights
- Option 2: Keep the view materialized
 - Sometimes too large to be practical
 - E.g. if the grid is very fine
 - May need to be recomputed with every new tuple insertion
 - E.g. a regression view that fits a single function to the entire data
- Option 3: Lazy materialization/caching
 - Materialize query results as computed
- Generic options shared between all view types

View Maintenance Strategies

- Option 4: Maintain an efficient intermediate representation
- Typically model-specific
- Regression-based Views
 - Say temp = $f(x, y) = w_1 h_1(x, y) + ... + w_k h_k(x, y)$
 - Maintain the *weights* for *f*(*x*, *y*) and a *sufficient statistic*
 - Two matrices ($O(k^2)$ space) that can be incrementally updated
 - ScanView: Execute f(x, y) on all grid points
 - IndexView: Execute *f*(*x*, *y*) on the specified point
 - InsertTuple: Recompute the coefficients
 - Can be done very efficiently using the sufficient statistic

Thoughts

- Table functions/User-defined functions
 - Can be used to apply a statistical model to a raw data table
 - Using code written in C or Java etc
 - Must be applied repeatedly as new data items arrive
 - No optimization opportunities
 - Not declarative
- Complex data analysis tasks
 - May not be doable using our primitives
 - Our focus is on easy application of statistical models to data
 - By a layperson not familiar with Matlab (or other tools)

Outline

Motivation

Statistical modeling of sensor data

- Abstraction of *model-based views*
- Regression-based views
- Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Online filtering, smoothing, and modeling of streaming data; B. Kanagal, A. Deshpande; ICDE 2008

- A class of models that can capture *temporal evolution* of a complex stochastic process
- Widely used for many tasks
 - Eliminating measurement noise (Kalman Filters)
 - Anomaly/failure detection
 - Inferring high-level hidden variables (HMMs)
 - e.g. working status of a remote sensor, activity recognition

Example: Inferring High-level Events

Inferring "transportation mode"/ "activities"

- Using easily obtainable sensor data (GPS, RFID proximity data)
- Can do much if we can infer these automatically

Use a "generative model" that describes how the observations were generated

Need conditional probability distributions that capture the process

- 1. $p(X_t | M_t)$: How (position, velocity) depends on mode
- 2. $p(O_t | X_t)$: The noise model for observations

Prior knowledge or learned from data

Use a "generative model" that describes how the observations were generated

Need conditional pdfs:

1.
$$p(M_{t+1} | M_{t}, X_{t+1})$$

2. $p(X_{t+1} | X_t)$

Prior knowledge or learned from data

Inference task:

Given a sequence of observations (O_t), find most likely M_t 's that explain it. Alternatively, could provide a probability distribution on the possible M_t 's.

Example DBN-based View

User view of the data

- Smoothed locations
- Inferred variables

Can query inferred variables: select count(*) group by mode sliding window 5 min

Original noisy GPS data

Representing DBN-based Views

Challenges

- Probabilistic attributes
- Strong spatial and temporal Correlations

id	TIME	USER	MODE	LOCATION	weight
1	5pm	John	W	(a1,b1)	0.01
2	5pm	John	W	(a2,b2)	0.02
3	5pm	John	W	(a3,b3)	0.01
4	5pm	John	С	(a4,b4)	0.01

PARTICLE TABLE

Particle-based Representation

- Each tuple stored as a set of weighted samples
- □ Naturally ties in with inference
- Efficient query processing using existing infrastructure

Query Processing

User Queries

Outline

Motivation

- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Representing and Querying Correlated Tuples in Probabilistic Databases; P. Sen, A. Deshpande; ICDE 2007 Efficient Query Evaluation over Temporally Correlated Probabilistic Streams; B. Kanagal, A. Deshpande; ICDE 2009 Shared Correlations in Probabilistic Databases; P.Sen, A. Deshpande, L. Getoor, VLDB 2008

Querying Model Outputs

• Challenges:

- The model outputs typically probabilistic
- Strong spatial and temporal correlations
- Continuous queries over streaming data
- Numerous approaches proposed in recent years
 - Typically make strong independence assumptions
 - Limited support for attribute-value uncertainty
 - In spite of that, query evaluation known to be #P-Hard
- Our goal: Develop a general, uniform framework that...
 - Captures both tuple-existence and attribute-value uncertainties
 - Can reason about correlations in the data
 - Can handle continuous queries over probabilistic streams

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the *graphical models* literature

TIME	USER	MODE (inferred)	LOCATION (inferred)
5pm	John	Walking: 0.9 Car: 0.1	
5pm	Jane	Walking: 0.9 Car : 0.1	\nearrow
5:05pm	John	Walking: 0.1 Car: 0.9	
5:05pm	Jane	Walking: 0.1 Car: 0.9	

TIME	USER	MODE (inferred)	LOCATION (inferred)
5pm	John	М ^{5рт} _{John}	L ^{5pm} John
5pm	Jane	М ^{5рт} _{Jane}	L ^{5pm} Jane
5:05pm	John	M ^{5:05pm} _{John}	L ^{5:05pm} John
5:05pm	Jane	M ^{5:05pm} Jane	L ^{5:05pm} Jane

M ^{5pm} John	М ^{5рт} Jane	f()
W	W	1
W	С	0
С	W	0
С	С	1

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
 - Concepts borrowed from the *graphical models* literature

- During query processing, add new factors corresponding to intermediate tuples
- Example query: $\pi_D(S \Join_{B=C} T)$

• Query evaluation ≡ Inference !!

See Prithvi's talk for more details

- Can use standard techniques like variable elimination
- Can exploit the structure in probabilistic databases for scalable inference

Querying Probabilistic Streams

- Need to support "continuous" queries over "sliding windows"
 - "alert me when the number of people in a mall exceeds 1000"
 - Must take spatial correlations into account
 - "how many people drove for at least one hour yesterday"
 - Can't ignore the temporal correlations in the data
- Observations:
 - Probabilistic streams typically obey "Markovian" property
 - Variables at times "t" and "t+2" are independent given the values of the variables at time "t+1"
 - Although the actual parameters change, the correlation "structure" remains unchanged across time
 - At every instance, we get the same set of input factors with different probability numbers

Querying Probabilistic Streams

- Brief summary of the key ideas:
 - Extend the query language to support MAP (using Viterby's algorithm) and ML operations over probabilistic streams
 - Augment the "schema" of the probabilistic streams to include the correlation structure
 - Implement the operators to support the *iterator* interface
 - Only the parameters are transferred from operator to operator
 - Enables efficient, incremental processing of new inputs
 - Choose query plans that postpone generation of intermediate non-Markovian streams as long as possible

Ongoing and Future Work

- Developing APIs for adding arbitrary models
 - Minimize the work of the model developer
 - Identify intermediate representations useful across classes of models
- Designing index structures for querying, updating large collections of uncertain facts
- Approximate inference techniques for more efficient query processing

Outline

Motivation

- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Model-Driven Data Acquisition in Sensor Networks; A. Deshpande et al., VLDB 2004

Model-based Query Processing

Model-based Query Processing

<u>Declarative Query</u> Select nodeID, temp ± .1C, conf(.95) Where nodeID in {1..6}

R Query Results 1, 22.73, 100% ... 6, 22.1, 99%

Advantages:

- Exploit correlations for efficient approximate query processing
- Handle noise, biases in the data
- Predict missing or future values

Model-based Query Processing

Many interesting research challenges:

- Finding optimal data collection paths
- Different type of queries (max/min, top-k)
- Learning, re-training models
- Long-term planning, Continuous queries
- . . .

Outline

Motivation

- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

- Often need to do in-network, distributed inference
 - Target tracking through information fusion
 - Optimal control (for actuation)
 - Distributed sensor calibration (using neighboring sensors)
 - In-network regression or function fitting

- Often need to do in-network, distributed inference
 - Target tracking through information fusion
 - Optimal control (for actuation)
 - Distributed sensor calibration (using neighboring sensors)
 - In-network regression or function fitting
- Obey a common structure:
 - Each sensor has/observes some *local* information
 - Information across sensors is correlated
 - ... must be combined together to form a global picture
 - The global picture (or relevant part thereof) should be sent to each sensor

Naïve option:

- Collect all data at the centralized base station too expensive
- Using graphical models
 - Form a junction tree on the nodes directly
 - Use message passing/loopy propagation for globally consistent view

Naïve option:

- Collect all data at the centralized base station too expensive
- Using graphical models
 - Form a junction tree on the nodes directly
 - Use message passing/loopy propagation for globally consistent view

Conclusions

- Increasing number of applications generate and need to process uncertain data
- Statistical/probabilistic modeling provide an elegant framework to handle such data
 - But little support in current database systems
- MauveDB
 - Supports the abstraction of Model-based User Views
 - Enables declarative querying over noisy, imprecise data
 - Exploits commonalities to define, to create, and to process queries over such views

Conclusions

- Prototype implementation
 - Using the Apache Derby open source DBMS
 - Supports Regression-, Interpolation-, and DBN-based views
 - Supports many different view maintenance strategies
- Probabilistic databases
 - Increasingly important research area
 - Designed a uniform and general framework for representing and querying uncertain data with correlations
 - New inference techniques that exploit the structure in probabilistic databases

Thank you !!

• Questions ?