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Motivation: Sensor Networks

Unprecedented, and rapidly increasing,

instrumentation of our every-day world Wireless sensor

e Huge data volumes generated continuously that networks

must be processed in real-time

e Imprecise, unreliable and incomplete data

Inherent measurement noises (e.g. GPS)
Low success rates (e.g. RFID) Distributed measurement

. . . ) networks (e.q. GPS
Communication link or sensor node failures (.9 )

(e.g. wireless sensor networks)

Spatial and temporal biases

e Typically acquisitional environments

Energy-efficiency the primary concern

Industrial Monitoring



Motivation: Uncertain Data

e Similar challenges in other domains

Data integration
» Noisy data sources, automatically derived schema mappings
o Reputation/trust/staleness issues

Information extraction

» Automatically extracted knowledge from text
Social networks, biological networks

» Noisy, error-prone observations

» Ubiquitous use of entity resolution, link prediction etc...

e Need to develop database systems for efficiently
representing and managing uncertainty



Example: Wireless Sensor Networks

Moteiv Invent:

8Mhz uProc, 250kbps 2.46Hz Transreceiver
10K RAM, 48K program/ 512k data flash
Rechargeable Battery (USB)

Light, temperature, acceleration, and sound
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A wireless sensor network deployed to monitor temperature



Example: Wireless Sensor Networks

User 1. Spatially biased deployment
= these are not true averages

% 2. High data loss rates

=» averages of different sets
{10am, 23.5} of sensors
{11am, 24}

select time, avg(temp)
from sensors
epoch 7 hour

3. Measurement errors

time | id | temp propagated to the user
10 1 20

. £12pm. 70}
10am 2 21
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A wireless sensor network deployed to monitor temperature




Example: Wireless Sensor Networks

Impedance mismatch
User wants to query the “underlying environment’,
and not the sensor readings at selected locations

time | id | temp

10am 1 20

10am 2 21

10am 7 29 Ve
sensors €

\4
\ 'S N

A wireless sensor network deployed to monitor temperature




Example: Inferring High-level Events

e Inferring “transportation mode”/ “activities”
Using easily obtainable sensor data (GPS, RFID proximity data)
Can do much if we can infer these automatically

Have access to noisy “GPS” data
Infer the transportation mode:
walking, running, in a car, in a bus



Example: Inferring High-level Events

e Inferring “transportation mode”/ “activities”
Using easily obtainable sensor data (GPS, RFID proximity data)
Can do much if we can infer these automatically

Preferred end result:
Clean path annotated with transportation mode



Data Processing Step 1

e Apply a statistical model to the data

Eliminate spatial/temporal biases, handle missing data through
extrapolation (e.g. regression, interpolation models)

Filter measurement noise (e.g. Kalman Filters)

Infer hidden variables, pattern recognition (e.g. HMMs)
Fault/anomaly detection

Forecasting/prediction (e.g. ARIMA)

e No support in current database systems !

Temperature monitoring GPS Data

perature vs. Xand ¥ CoordinatesinLab  Kalman Filter Performance

25 T T T

Position (feet)

Kalman Filters ...



Sensor Data Processing: Now

Sensor Database User

Network
Table raw-data 1. Extract all readings into a file
T el LA % 2. Run MATLAB/R/other data
/ o / |:> o | 2 | = ﬁ processing tools

3. Write output to a file/back to

10am 7 29

the database

4. Write data processing tools to
process/aggregate the output
(maybe using DB)

5. Decide new data to acquire

Repeat




Sensor Data Processing: What we want

Sensor Database User
Network

Models to be applied in real-time

for data cleaning, forecasting,
Table raw-data .
_ _ anomaly/event detection efc...

time id temp

10am 1 20

o | 2 | = Continuous (standing) queries
e.g. alert monitoring

Data

& 10am 7 29
472
§-2 %5252 % :

Table processed-data

time id temp

Tasks oom |1 20

10am 2 21

—
=

Results to continuous queries

Ad hoc queries (possibly against
processed, modeled data)



Challenges

e Abstractions and language constructs for pushing
statistical models into databases
Large diversity in the models used in practice

e Efficiently processing high-rate data streams

e Querying over probabilistic model outputs
Naturally exhibit high degrees of correlations

Many different types of uncertainty
e Model-driven data acquisition
Minimize the data acquired to answer a query

e Need for in-network, distributed processing
Global inference needed to achieve consistency
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\ Time  Name = Confidence

Reputation/
Time Source  News
. Trust 2pm John S. or 40% (JS)
3pm  Blogt oﬁclg'g;’;‘ 20% Bob R. 50% (BR)
Possibly stale data, ~a 4~ 2pm  Janes. ab:\?zoig?:nﬂs.)

from untrusted sources
Probabilistic data

Sensor Data Fqsnon w/ complex correlations
and Aggregation

Time  Lane Speed N
20am 1 50+ 5 mph Time (X,Y) Te:-np Confidence
$02m o 40+ 2 mph 2pm (20,20) 20*05 99%
Automatically extracted 2:10pm  (20,20) 22%1.5 20%
t imprecise data Data with confidence and
accuracy bounds T

==
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Caption: Even if the sensor web data sources were to publish data using intuitive well-defined interfaces,
the complex and semantically disparate measures of data quality and uncertainty typically associated with it

make sensor data fusion and aggregation a challenging task.



e Motivation

e Statistical modeling of sensor data
Abstraction of model-based views
Regression-based views
Views based on dynamic Bayesian networks

e Query processing over model outputs

e Some interesting sensor network problems

Model-driven data acquisition
Distributed inference in sensor networks



Outline

e Statistical modeling of sensor data
Abstraction of model-based views
Regression-based views

Model-based User Views for Sensor Data; A. Deshpande, S. Madden; SIGMOD 2006



Abstraction: Model-based Views

e An abstraction analogous to traditional database views
e Provides independence from the messy measurement details

A traditional database view No difference A model-based database view
(defined using an SQL query) from a user’s (defined using a statistical model)
User User

perspective
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10am 7 29
accounts raw-temp-data




Grid Abstraction

User

A Regression-based View

User Continuous ﬁ Consistent uniform view

ﬁ Function
/ ® °

pd ° ° °
/ ° ° ° °
> X
ﬁ Apply regression;
Compute “temp” at grid

e | = | oom points
10am 1 20 AL 0 AL
10am 2 21 y v @ (é lé
N / e y
10am 7 29 y & y
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raw-temp-data




MauveDB System

e Being written using the Apache Derby Java open source
database system codebase

e Supports the abstraction of Model-based User Views
Declarative language constructs for creating such views
SQL queries over model-based views
Keep the models up-to-date as new data is inserted in database



MauveDB System Architecture

View Creation

User Queries

SELECT * CREATE VIEW regression-view
FROM regression-view AS ...

WHERE ... TRAINING DATA ...

EPOCH 30 min

Query View

Processor } Model-based view [ Manager
A

\ /
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\ g 8 8 | Mair\:;gr:gnce \\«\/"//
10 1 20




MauveDB System Architecture

CREATE VIEW
RegView(time [0::1], x [0:100:10], y[0:100:10], temp)
AS
FIT temp USING time, X, y
BASES 1, x, x>y, y?
FOR EACH time T
TRAINING DATA
SELECT temp, time, x, y
FROM raw-temp-data
WHERE raw-temp-data.time = T

Details specific to the model being used




Query Processing

e Key challenge: Integrating in a traditional database system

e Two operators per view type that support get next() API
ScanView: Returns the contents of the view one-by-one

IndexView (condition): Returns tuples that match a condition

¢ e.g. return temperature where (x, y) = (10, 20)

select * Plan 1 Plan 2
from locations I, reg-view r
where (I.x, L.y) = (r.x, r.y) T T
and r.time = "10am ><] Hash join > Index join

SN N

Seqgscan(l) Scanview(r) Seqgscan(l) Indexview(r)




View Maintenance Strategies

e Option 1: Compute the view as needed from base data
For regression view, scan the tuples and compute the weights
e Option 2: Keep the view materialized
Sometimes too large to be practical
o E.g.if the grid is very fine
May need to be recomputed with every new tuple insertion

» E.g. aregression view that fits a single function to the entire data
e Option 3: Lazy materialization/caching

Materialize query results as computed

e Generic options shared between all view types



View Maintenance Strategies

e Option 4: Maintain an efficient intermediate representation
e Typically model-specific
e Regression-based Views

Say temp =f(x, y) =w, h,(x, y) + ... +w, h(x, y)

Maintain the weights for f(x, y) and a sufficient statistic

» Two matrices (O(k?) space) that can be incrementally updated
ScanView: Execute f(x, y) on all grid points
IndexView: Execute f(x, y) on the specified point

InsertTuple: Recompute the coefficients

« Can be done very efficiently using the sufficient statistic



Thoughts

e Table functions/User-defined functions

Can be used to apply a statistical model to a raw data table
» Using code written in C or Java etc

Must be applied repeatedly as new data items arrive
No optimization opportunities
Not declarative

e Complex data analysis tasks

May not be doable using our primitives

Our focus is on easy application of statistical models to data
» By a layperson not familiar with Matlab (or other tools)



Outline

e Motivation
e Statistical modeling of sensor data

Abstraction of model-based views
Regression-based views
Views based on dynamic Bayesian networks

e Query processing over model outputs
e Some interesting sensor network problems

Model-driven data acquisition
Distributed inference in sensor networks

Online filtering, smoothing, and modeling of streaming data; B. Kanagal, A. Deshpande; ICDE 2008



Dynamic Bayesian Networks

e A class of models that can capture temporal evolution
of a complex stochastic process

e Widely used for many tasks
Eliminating measurement noise (Kalman Filters)
Anomaly/failure detection
Inferring high-level hidden variables (HMMs)

» e.g. working status of a remote sensor, activity recognition



Example: Inferring High-level Events

e Inferring “transportation mode”/ “activities”
Using easily obtainable sensor data (GPS, RFID proximity data)
Can do much if we can infer these automatically

Preferred end result:
Clean path annotated with transportation mode



Dynamic Bayesian Networks

Use a “generative model” that describes how the
observations were generated

Time =t
Need conditional probability
distributions that capture the process

Transportation Mode:
Walking, Car, Bus M,

1. p(X;| M,): How (position,velocity)
depends on mode

2. p(O;| X)): The noise model for
observations

True velocity and location

Prior knowledge or learned from

Observed location data



Dynamic Bayesian Networks

Use a “generative model” that describes how the
observations were generated

Time =t Time = t+1
Transportation Mode: Need conditional pdfs:
Walking, Car, Bus M, m% M.
J ; o 1. p(Myy | My Xiiq)

2. p(Xt+1 |Xt)

True velocity and location —> @
Prior knowledge or learned
from data

Observed location e @



Dynamic Bayesian Networks

Inference task:
Given a sequence of observations (O,), find most likely M,’s that explain it.
Alternatively, could provide a probability distribution on the possible M,’s.

Time =t Time = t+1 Time = t+2

Transportation Mode:
Walking, Car, Bus

M, /—'
True velocity and location G(é—>
Oy

Observed location

M

——————»
t+1/
— >

Ope1 Otz

M t+2




Example DBN-based View

User
ﬁ User view of the data
- Smoothed locations
TIME USER MODE Location - Inferred variables
(INFERRED) (INFERRED)
5pm John Walking: 0.9
> Car: 0.1 A
. Can query inferred variables:
Spm Jane  Walking: 0.9
P Car: 0.1 e\ select count(”)
5:05pm John Walking0 | group by mode
Car: 1 sliding window & min

i

TIME USER Location
(Observed)

S5pm John (x1,y1)
S5pm Jane (x1’,y1’)

Original noisy GPS data
5:05pm John (x2,y2)



Representing DBN-based Views

TIME

5:05pm

id TIME

S5pm
5pm

A W0 DN

5pm

USER

John

USER

John
John
John
John

MODE Location
(NEERRED) _ _ _(ﬂFERRED)
Walking: 0.9 B
Car: 0.1 ,{TE:_’
Walking: 0.9
Car:0.1 ///\A\
Walking: 0
Car: 1 __JL__
MODE LOCATION weight
w (a1,b1) 0.01
w (a2,b2) 0.02
W (a3,b3) 0.01
C (a4,b4) 0.01

PARTICLE TABLE

Challenges

L Probabilistic attributes

O Strong spatial and temporal
Correlations

Particle-based Representation

O Each tuple stored as a set
of weighted samples

O Naturally ties in with inference

Q Efficient query processing using
existing infrastructure



Architecture

User Queries

SELECT time, user, location
FROM dpmview

WHERE mode = “W”

WITH CONFIDENCE 0.95

4

e

Query
Processor

TIME USER M.?BE
S5pm John  Walking: 0.9
Car: 0.1
Spm Jane  Walking: 0.9
Car:0.1
5:05pm John  Walking: 0

Car: 1

Model-based view

A

C

id TIME  USER MODE LOCATION

1 5pm John W (a1,b1)
2 5pm John W

s

weight Particle Tables

-

Location
e

# Node Properties
numNodes:4
hidden: {1,3}
discrete: {1,3}
node(1):['Wo' 'Fa’]
node(3):['Wo' 'Fa’]

# Graph adjacency matrix

'k

001;
CREATE VIEW dpmviewC )< looo]
DPM hmm.dpm C ) [Nodes
STREAM sensors A5 Lo
O O al(1),[N(50,0.05);
u(0,100)]);
cpd(3): (val(1),[[0.99;0.01];
[0.01;0.99]]);
cpd(4): (val(3),[N(val(2),0.05);
\ u(0,100)]);
View
Manager
v
] Sensor
View ~ Data
Maintenance Streams
(& 1 3 25

0.01
0.02

e.g. using o ®)

particle filters © ©




Query Processing

User Queries

SELECT time, user, location

FROM dpmview
WHERE mode = “W”
WITH CONFIDENCE 0.95
/4
SELECT time, user, SUM(location*weight)
FROM particles p1
GROUP BY time
HAVING
0.95 <

SELECT SUM(weight) FROM patrticles p2
WHERE p1.time = p2.time AND status = “W”

8 " Able to support single-table select, project\
& aggregate queries

Can reason about spatial correlations

4

id TIME  USER MODE LOCATION

1 5pm John W (a1,b1)

2 5pm John W 0.02

. However, temporal correlations ignored




Outline

e Motivation
e Statistical modeling of sensor data

Abstraction of model-based views
Regression-based views
Views based on dynamic Bayesian networks

e Query processing over model outputs
e Some interesting sensor network problems

Model-driven data acquisition
Distributed inference in sensor networks

Representing and Querying Correlated Tuples in Probabilistic Databases; P. Sen, A. Deshpande; ICDE 2007
Efficient Query Evaluation over Temporally Correlated Probabilistic Streams; B. Kanagal, A. Deshpande; ICDE 2009
Shared Correlations in Probabilistic Databases; P.Sen, A. Deshpande, L. Getoor, VLDB 2008



Querying Model Outputs

e Challenges:
The model outputs typically probabilistic
Strong spatial and temporal correlations
Continuous queries over streaming data

e Numerous approaches proposed in recent years

Typically make strong independence assumptions
Limited support for attribute-value uncertainty
In spite of that, query evaluation known to be #P-Hard

e QOur goal: Develop a general, uniform framework that...

Captures both tuple-existence and attribute-value uncertainties
Can reason about correlations in the data
Can handle continuous queries over probabilistic streams



Overview of Our Approach

e Represent the uncertainties and correlations graphically using
small functions called factors

Concepts borrowed from the graphical models literature

5pm John m P A
John John
50m Jane M P B
5pm John  Walking: 0.9 faf?e fb_ag;
Car: 0.1 A 5:05pm  John M 5:05pm g S
John John
spm Jane  Walking: 0.9 5:05pm  Jane M 5:05pm | 5:05pm
Car:0.1 /\/\ . Jane Jane
5:05pm  John  Walking: 0.1 jl>
Car: 0.9 H
5:05pm Jane  Walking: 0.1 ---
Car: 0.9 “ - -

O o S
O = 0O
A O O -




Overview of Our Approach

e Represent the uncertainties and correlations graphically using
small functions called factors

Concepts borrowed from the graphical models literature

S fi(s1) f,(s2, t1)
A B st f(s1) st ezt
S1 ﬁm! 1 O 0-6
82 in, 1 1 0.4
0 0 0.1
C D s2 and t1
0 1 0.5
t17 1 ‘o -~ mutually
1 0 0.4 exclusive
1 1 0



Overview of Our Approach

e During query processing, add new factors corresponding to
intermediate tuples

e Example query: T(SD><lp_c T)

f1(s1) f,(s2, t1
S A B C D 1 (82, 11)
A B i1 'm 1 1
st 'm 1 2 n 1 1 P
s2 ‘n A Il
TrD
¥ fAND (s1,1,i1)
1 REE r1op FOR(i1,i2,r1)



Overview of Our Approach

| See Prithvi’s talk for more details ||

e Query evaluation = Inference !!
Can use standard techniques like variable elimination

Can exploit the structure in probabilistic databases for scalable inference

fi(s1) f,(s2, t1
S A B C D 1 2(52. 17)
A B i1 m 1 1 P
31 ‘m, 1 2 sn’ 1 1 :p,
s2 ‘n 1 *
TrD
\ } fAND(i1,i2,r1) fAND(.. )
C D D
t1 1 ‘o "

rit'p fOR(i1,i2,r1)



Querying Probabilistic Streams

e Need to support “continuous™ queries over “sliding windows”
“alert me when the number of people in a mall exceeds 1000”
o Must take spatial correlations into account
‘how many people drove for at least one hour yesterday”
o Can’tignore the temporal correlations in the data

e Observations:
Probabilistic streams typically obey “Markovian” property

o Variables at times ‘t” and “t+2” are independent given the values
of the variables at time “t+1”

Although the actual parameters change, the correlation
“structure” remains unchanged across time

o At every instance, we get the same set of input factors with
different probability numbers



Querying Probabilistic Streams

e Brief summary of the key ideas:

Extend the query language to support MAP (using Viterby’s
algorithm) and ML operations over probabilistic streams

Augment the “schema” of the probabilistic streams to include
the correlation structure

Implement the operators to support the iterator interface

o Only the parameters are transferred from operator to
operator

o Enables efficient, incremental processing of new inputs

Choose query plans that postpone generation of intermediate
non-Markovian streams as long as possible



Ongoing and Future Work

e Developing APIs for adding arbitrary models

Minimize the work of the model developer
|dentify intermediate representations useful across classes of

models
e Designing index structures for querying, updating large
collections of uncertain facts
e Approximate inference techniques for more efficient

guery processing



Outline

e Some interesting sensor network problems
Model-driven data acquisition

Model-Driven Data Acquisition in Sensor Networks; A. Deshpande et al., VLDB 2004



Model-based Query Processing

Declarative Query USER Query Results

Select nodelD, 1, 22.73, 100%

temp £ .1C, conf(.95) T

Where nodelD in {1..6} 6, 22.1, 99% e

Probabilistic Query
Model Processor

Observation Plan Data
{[temp, 1], 1 1, temp = 22.73,
1

[voltage, 3], 3, voltage = 2.73
[voltage, 6]} 6, voltage = 2.65

NETWORK




Model-based Query Processing

Advantages:

- Exploit correlations for efficient approximate
guery processing

- Handle noise, biases in the data

- Predict missing or future values




Model-based Query Processing

Many interesting research challenges:
- Finding optimal data collection paths
- Different type of queries (max/min, top-k)
- Learning, re-training models
- Long-term planning, Continuous queries




e Some interesting sensor network problems

Distributed inference in sensor networks



Distributed, In-network Inference

e Often need to do in-network, distributed inference
Target tracking through information fusion

Optimal control (for actuation)

Distributed sensor calibration (using neighboring sensors)

In-network regression or function fitting

Need to reconcile

PRSION 2CTOSS
Y> F IS




Distributed, In-network Inference

e Often need to do in-network, distributed inference
Target tracking through information fusion

Optimal control (for actuation)

Distributed sensor calibration (using neighboring sensors)

In-network regression or function fitting

e Obey a common structure:
Each sensor has/observes some /ocal information
Information across sensors is correlated
» ... must be combined together to form a global picture

The global picture (or relevant part thereof) should be sent to each
sensor



Distributed, In-network Inference

e Naive option:
Collect all data at the centralized base station — too expensive
e Using graphical models

Form a junction tree on the nodes directly

Use message passing/loopy propagation for globally consistent view




Distributed, In-network Inference

e Naive option:
Collect all data at the centralized base station — too expensive
e Using graphical models

Form a junction tree on the nodes directly

Use message passing/loopy propagation for globally consistent view




Conclusions

e Increasing number of applications generate and need
to process uncertain data

e Statistical/probabilistic modeling provide an elegant
framework to handle such data
But little support in current database systems

e MauveDB
Supports the abstraction of Model-based User Views
Enables declarative querying over noisy, imprecise data
Exploits commonalities to define, to create, and to process

queries over such views



Conclusions

e Prototype implementation
Using the Apache Derby open source DBMS
Supports Regression-, Interpolation-, and DBN-based views

Supports many different view maintenance strategies

e Probabilistic databases

Increasingly important research area
Designed a uniform and general framework for representing and
guerying uncertain data with correlations

New inference techniques that exploit the structure in probabilistic

databases



Thank you !!

® Questions ?



