Uncertain Data Management for Sensor Networks

Amol Deshpande, University of Maryland

(joint work w/ Bhargav Kanagal, Prithviraj Sen, Lise Getoor, Sam Madden)
Motivation: Sensor Networks

- Unprecedented, and rapidly increasing, instrumentation of our every-day world
- Huge data volumes generated continuously that must be processed in real-time
- Imprecise, unreliable and incomplete data
 - Inherent measurement noises (e.g. GPS)
 - Low success rates (e.g. RFID)
 - Communication link or sensor node failures (e.g. wireless sensor networks)
 - Spatial and temporal biases
- Typically acquisitional environments
 - Energy-efficiency the primary concern
Motivation: Uncertain Data

- Similar challenges in other domains
 - Data integration
 - Noisy data sources, automatically derived schema mappings
 - Reputation/trust/staleness issues
 - Information extraction
 - Automatically extracted knowledge from text
 - Social networks, biological networks
 - Noisy, error-prone observations
 - Ubiquitous use of entity resolution, link prediction etc…
- Need to develop database systems for efficiently representing and managing uncertainty
Example: Wireless Sensor Networks

Moteiv Invent:
8Mhz uProc, 250kbps 2.4GHz Transceiver
10K RAM, 48K program/ 512k data flash

Rechargeable Battery (USB)
Light, temperature, acceleration, and sound sensors

A wireless sensor network deployed to monitor temperature
Example: Wireless Sensor Networks

User

1. Spatially biased deployment
 ➞ these are not true averages

2. High data loss rates
 ➞ averages of different sets of sensors

3. Measurement errors propagated to the user

{sensors

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

{sensors

A wireless sensor network deployed to monitor temperature
Example: Wireless Sensor Networks

User wants to query the "underlying environment", and not the sensor readings at selected locations.

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

A wireless sensor network deployed to monitor temperature.
Example: Inferring High-level Events

- Inferring “transportation mode”/ “activities”
 - Using easily obtainable sensor data (GPS, RFID proximity data)
 - Can do much if we can infer these automatically

Have access to noisy “GPS” data

Infer the transportation mode:
- walking, running, in a car, in a bus
Example: Inferring High-level Events

- Inferring “transportation mode”/ “activities”
 - Using easily obtainable sensor data (GPS, RFID proximity data)
 - Can do much if we can infer these automatically

Preferred end result:
Clean path annotated with transportation mode
Data Processing Step 1

- Apply a statistical model to the data
 - Eliminate spatial/temporal biases, handle missing data through extrapolation (e.g. regression, interpolation models)
 - Filter measurement noise (e.g. Kalman Filters)
 - Infer hidden variables, pattern recognition (e.g. HMMs)
 - Fault/anomaly detection
 - Forecasting/prediction (e.g. ARIMA)

- **No support in current database systems!**

Temperature monitoring

GPS Data

Regression/interpolation models

Kalman Filters …
Sensor Data Processing: Now

1. Extract all readings into a file
2. Run MATLAB/R/other data processing tools
3. Write output to a file/back to the database
4. Write data processing tools to process/aggregate the output (maybe using DB)
5. Decide new data to acquire

Repeat
Sensor Data Processing: What we want

Sensor Network

Database

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

Table raw-data

User

Models to be applied in real-time for data cleaning, forecasting, anomaly/event detection etc…

Continuous (standing) queries e.g. alert monitoring

Results to continuous queries

Ad hoc queries (possibly against processed, modeled data)
Challenges

- Abstractions and language constructs for pushing statistical models into databases
 - Large diversity in the models used in practice
- Efficiently processing high-rate data streams
- Querying over probabilistic model outputs
 - Naturally exhibit high degrees of correlations
 - Many different types of uncertainty
- Model-driven data acquisition
 - Minimize the data acquired to answer a query
- Need for in-network, distributed processing
 - Global inference needed to achieve consistency
Caption: Even if the sensor web data sources were to publish data using intuitive well-defined interfaces, the complex and semantically disparate measures of data quality and uncertainty typically associated with it make sensor data fusion and aggregation a challenging task.
Outline

- Motivation
- Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks
Outline

- Motivation
- Statistical modeling of sensor data
 - Abstraction of model-based views
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Model-based User Views for Sensor Data; A. Deshpande, S. Madden; SIGMOD 2006
Abstraction: Model-based Views

- An abstraction analogous to traditional database views
- Provides independence from the messy measurement details

A traditional database view (defined using an SQL query)

```
select zipcode, avg(balance)
from accounts
group by zipcode
```

A model-based database view (defined using a statistical model)

```
Use Regression to predict missing values and to remove spatial bias
```

No difference from a user’s perspective

User

accounts

<table>
<thead>
<tr>
<th>acct-no</th>
<th>balance</th>
<th>zipcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>a</td>
<td>20001</td>
</tr>
<tr>
<td>102</td>
<td>b</td>
<td>20002</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

raw-temp-data

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>
Grid Abstraction

A Regression-based View

User

Continuous Function

raw-temp-data

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>10am</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10am</td>
<td>7</td>
<td>29</td>
</tr>
</tbody>
</table>

Use Regression to model temperature as:

\[
\text{temp} = w_1 + w_2 x + w_3 x^2 + w_4 y + w_5 y^2
\]

Consistent uniform view

Apply regression; Compute “temp” at grid points
MauveDB System

- Being written using the *Apache Derby* Java open source database system codebase
- Supports the abstraction of **Model-based User Views**
 - Declarative language constructs for creating such views
 - SQL queries over model-based views
 - Keep the models up-to-date as new data is inserted in database
MauveDB System Architecture

User Queries
SELECT *
FROM regression-view
WHERE ...
EPOCH 30 min

View Creation
CREATE VIEW regression-view
AS ...
TRAINING DATA ...

Query Processor
Model-based view
View Manager
View Maintenance

Sensor Data Streams
CREATE VIEW

\[\text{RegView}(\text{time}[0:1:1], x[0:100:10], y[0:100:10], \text{temp}) \]

AS

\[\text{FIT} \text{ temp USING time, x, y} \]

BASES \(1, x, x^2, y, y^2\)

FOR EACH time \(T\)

TRAINING DATA

\[\text{SELECT temp, time, x, y} \]

FROM \(\text{raw-temp-data}\)

WHERE \(\text{raw-temp-data.time} = T\)

Details specific to the model being used
Key challenge: Integrating in a traditional database system

Two operators per view type that support `get_next()` API

- **ScanView**: Returns the contents of the view one-by-one
- **IndexView (condition)**: Returns tuples that match a condition
 - e.g. return `temperature` where `(x, y) = (10, 20)`

```
select *
from locations l, reg-view r
where (l.x, l.y) = (r.x, r.y)
  and r.time = "10am"
```
View Maintenance Strategies

- Option 1: Compute the view as needed from base data
 - For regression view, scan the tuples and compute the weights

- Option 2: Keep the view materialized
 - Sometimes too large to be practical
 - E.g. if the grid is very fine
 - May need to be recomputed with every new tuple insertion
 - E.g. a regression view that fits a single function to the entire data

- Option 3: Lazy materialization/caching
 - Materialize query results as computed

- Generic options shared between all view types
View Maintenance Strategies

- **Option 4: Maintain an efficient intermediate representation**
- Typically model-specific
- Regression-based Views
 - Say $\text{temp} = f(x, y) = w_1 h_1(x, y) + \ldots + w_k h_k(x, y)$
 - Maintain the weights for $f(x, y)$ and a sufficient statistic
 - Two matrices ($O(k^2)$ space) that can be incrementally updated
 - ScanView: Execute $f(x, y)$ on all grid points
 - IndexView: Execute $f(x, y)$ on the specified point
 - InsertTuple: Recompute the coefficients
 - Can be done very efficiently using the sufficient statistic
Thoughts

- Table functions/User-defined functions
 - Can be used to apply a statistical model to a raw data table
 - Using code written in C or Java etc
 - Must be applied repeatedly as new data items arrive
 - No optimization opportunities
 - Not declarative

- Complex data analysis tasks
 - May not be doable using our primitives
 - Our focus is on easy application of statistical models to data
 - By a layperson not familiar with Matlab (or other tools)
Outline

- Motivation

- **Statistical modeling of sensor data**
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks

- Query processing over model outputs

- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Online filtering, smoothing, and modeling of streaming data; B. Kanagal, A. Deshpande; ICDE 2008
Dynamic Bayesian Networks

- A class of models that can capture *temporal evolution* of a complex stochastic process

- Widely used for many tasks
 - Eliminating measurement noise (Kalman Filters)
 - Anomaly/failure detection
 - Inferring high-level hidden variables (HMMs)
 - e.g. *working status* of a remote sensor, *activity recognition*
Inferring “transportation mode”/ “activities”
- Using easily obtainable sensor data (GPS, RFID proximity data)
- Can do much if we can infer these automatically

Preferred end result:
Clean path annotated with transportation mode
Dynamic Bayesian Networks

Use a “generative model” that describes how the observations were generated

Time = t

Transportation Mode: Walking, Car, Bus

True velocity and location

Observed location

Need conditional probability distributions that capture the process

1. \(p(X_t | M_t) \): How (position, velocity) depends on mode
2. \(p(O_t | X_t) \): The noise model for observations

Prior knowledge or learned from data
Dynamic Bayesian Networks

Use a “generative model” that describes how the observations were generated

Transportation Mode: Walking, Car, Bus

True velocity and location

Observed location

Need conditional pdfs:
1. \(p(M_{t+1} | M_t, X_{t+1}) \)
2. \(p(X_{t+1} | X_t) \)

Prior knowledge or learned from data
Dynamic Bayesian Networks

Inference task:

Given a sequence of observations \(O_t \), find most likely \(M_t \)'s that explain it. Alternatively, could provide a probability distribution on the possible \(M_t \)'s.

Transportation Mode: Walking, Car, Bus

True velocity and location

Observed location

\[
\begin{align*}
\text{Time} = t & \quad \text{Time} = t+1 & \quad \text{Time} = t+2 \\
M_t & \quad M_{t+1} & \quad M_{t+2} \\
X_t & \quad X_{t+1} & \quad X_{t+2} \\
O_t & \quad O_{t+1} & \quad O_{t+2}
\end{align*}
\]
Example DBN-based View

User view of the data
- Smoothed locations
- Inferred variables

Can query inferred variables:
\[
\text{select count(*)} \\
\text{group by mode} \\
\text{sliding window 5 min}
\]

Original noisy GPS data

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>Location (Observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>(x1,y1)</td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>(x1',y1')</td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>(x2,y2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>Mode (Inferred)</th>
<th>Location (Inferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>Walking: 0.9, Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>Walking: 0.9, Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>Walking: 0, Car: 1</td>
<td></td>
</tr>
</tbody>
</table>
Representing DBN-based Views

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>MODE (INFERRED)</th>
<th>Location (INFERRED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>Walking: 0.9</td>
<td>Car: 0.1</td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>Walking: 0.9</td>
<td>Car: 0.1</td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>Walking: 0</td>
<td>Car: 1</td>
</tr>
</tbody>
</table>

Challenges

- Probabilistic attributes
- Strong spatial and temporal Correlations

Particle-based Representation

- Each tuple stored as a set of weighted samples
- Naturally ties in with inference
- Efficient query processing using existing infrastructure
SELECT time, user, location
FROM dpmview
WHERE mode = "W"
WITH CONFIDENCE 0.95

CREATE VIEW dpmview
DPM hmm.dpm
STREAM sensors

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>MODE</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>Walking: 0.9 Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>Walking: 0.9 Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>Walking: 0</td>
<td>Car: 1</td>
</tr>
</tbody>
</table>
User Queries

SELECT time, user, location
FROM dpmview
WHERE mode = "W"
WITH CONFIDENCE 0.95

SELECT time, user, SUM(location*weight)
FROM particles p1
GROUP BY time
HAVING 0.95 <
SELECT SUM(weight) FROM particles p2
WHERE p1.time = p2.time AND status = "W"

Particle Tables

Able to support single-table select, project & aggregate queries
Can reason about spatial correlations
However, temporal correlations ignored
Outline

● Motivation

● Statistical modeling of sensor data
 ● Abstraction of *model-based views*
 ● Regression-based views
 ● Views based on dynamic Bayesian networks

● Query processing over model outputs

● Some interesting sensor network problems
 ● Model-driven data acquisition
 ● Distributed inference in sensor networks

Representing and Querying Correlated Tuples in Probabilistic Databases; P. Sen, A. Deshpande; ICDE 2007
Efficient Query Evaluation over Temporally Correlated Probabilistic Streams; B. Kanagal, A. Deshpande; ICDE 2009
Shared Correlations in Probabilistic Databases; P. Sen, A. Deshpande, L. Getoor, VLDB 2008
Querying Model Outputs

- **Challenges:**
 - The model outputs typically probabilistic
 - Strong spatial and temporal correlations
 - Continuous queries over streaming data

- **Numerous approaches proposed in recent years**
 - Typically make strong independence assumptions
 - Limited support for attribute-value uncertainty
 - In spite of that, query evaluation known to be \#P-Hard

- **Our goal:** Develop a general, uniform framework that...
 - Captures both tuple-existence and attribute-value uncertainties
 - Can reason about correlations in the data
 - Can handle continuous queries over probabilistic streams
Overview of Our Approach

- Represent the uncertainties and correlations \textit{graphically} using small functions called \textit{factors}
- Concepts borrowed from the \textit{graphical models} literature

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>MODE (inferred)</th>
<th>LOCATION (inferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>Walking: 0.9, Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>Walking: 0.9, Car: 0.1</td>
<td></td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>Walking: 0.1, Car: 0.9</td>
<td></td>
</tr>
<tr>
<td>5:05pm</td>
<td>Jane</td>
<td>Walking: 0.1, Car: 0.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>USER</th>
<th>MODE (inferred)</th>
<th>LOCATION (inferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pm</td>
<td>John</td>
<td>(M_{5pm John})</td>
<td>(L_{5pm John})</td>
</tr>
<tr>
<td>5pm</td>
<td>Jane</td>
<td>(M_{5pm Jane})</td>
<td>(L_{5pm Jane})</td>
</tr>
<tr>
<td>5:05pm</td>
<td>John</td>
<td>(M_{5:05pm John})</td>
<td>(L_{5:05pm John})</td>
</tr>
<tr>
<td>5:05pm</td>
<td>Jane</td>
<td>(M_{5:05pm Jane})</td>
<td>(L_{5:05pm Jane})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[f() \]

\[
\begin{array}{ccc}
W & W & 1 \\
W & C & 0 \\
C & W & 0 \\
C & C & 1 \\
\end{array}
\]
Overview of Our Approach

- Represent the uncertainties and correlations *graphically* using small functions called *factors*
- Concepts borrowed from the *graphical models* literature

S

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>'m'</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>'n'</td>
<td>1</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1</td>
<td>'p'</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>s2</th>
<th>t1</th>
<th>f_2(s2, t1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

f_1(s1)

- f_1(s1) = 0.6 when s1 = 0
- f_1(s1) = 0.4 when s1 = 1

f_2(s2, t1)

- s2 and t1 mutually exclusive
Overview of Our Approach

- During query processing, add new factors corresponding to intermediate tuples
- Example query: \(\pi_D(S \bowtie_{B=C} T) \)
Overview of Our Approach

- Query evaluation \(\equiv\) Inference !!
 - Can use standard techniques like \textit{variable elimination}
 - Can exploit the structure in probabilistic databases for scalable inference

\[
\begin{array}{llll}
S & A & B & C \\
\hline
s1 & 'm' & 1 & \\
s2 & 'n' & 1 & \\
T & C & D & \\
\hline
t1 & 1 & 'p' & \\
\end{array}
\]

See Prithvi’s talk for more details
Querying Probabilistic Streams

- Need to support “continuous” queries over “sliding windows”
 - “alert me when the number of people in a mall exceeds 1000”
 - Must take spatial correlations into account
 - “how many people drove for at least one hour yesterday”
 - Can’t ignore the temporal correlations in the data

- Observations:
 - Probabilistic streams typically obey “Markovian” property
 - Variables at times “t” and “t+2” are independent given the values of the variables at time “t+1”
 - Although the actual parameters change, the correlation “structure” remains unchanged across time
 - At every instance, we get the same set of input factors with different probability numbers
Querying Probabilistic Streams

Brief summary of the key ideas:

- Extend the query language to support MAP (using Viterby’s algorithm) and ML operations over probabilistic streams
- Augment the “schema” of the probabilistic streams to include the correlation structure
- Implement the operators to support the iterator interface
 - Only the parameters are transferred from operator to operator
 - Enables efficient, incremental processing of new inputs
- Choose query plans that postpone generation of intermediate non-Markovian streams as long as possible
Ongoing and Future Work

- Developing APIs for adding arbitrary models
 - Minimize the work of the model developer
 - Identify intermediate representations useful across classes of models
- Designing index structures for querying, updating large collections of uncertain facts
- Approximate inference techniques for more efficient query processing
Outline

- Motivation
- Statistical modeling of sensor data
 - Abstraction of model-based views
 - Regression-based views
 - Views based on dynamic Bayesian networks
- Query processing over model outputs
- Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks

Model-Driven Data Acquisition in Sensor Networks; A. Deshpande et al., VLDB 2004
Model-based Query Processing

Declarative Query
Select nodeID, temp ± .1C, conf(.95)
Where nodeID in {1..6}

USER

Query Results
1, 22.73, 100%
...
6, 22.1, 99%

Probabilistic Model
Query Processor

Observation Plan
{[temp, 1],
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

SENSOR NETWORK
Model-based Query Processing

Declarative Query
Select nodeID, temp ± .1C, conf(.95)
Where nodeID in {1..6}

USER

Observation Plan
{[temp, 1], [voltage, 3], [voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

Query Results
1, 22.73, 100%
...
6, 22.1, 99%

Advantages:
- Exploit correlations for efficient approximate query processing
- Handle noise, biases in the data
- Predict missing or future values
Model-based Query Processing

Declarative Query
Select nodeID, temp ± .1C, conf(.95)
Where nodeID in {1..6}

Observation Plan
{[temp, 1],
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73,
6, voltage = 2.65

USER

Query Results
1, 22.73, 100%
...
6, 22.1, 99%

Many interesting research challenges:
- Finding optimal data collection paths
- Different type of queries (max/min, top-k)
- Learning, re-training models
- Long-term planning, Continuous queries
- …
Motivation

Statistical modeling of sensor data
 - Abstraction of *model-based views*
 - Regression-based views
 - Views based on dynamic Bayesian networks

Query processing over model outputs

Some interesting sensor network problems
 - Model-driven data acquisition
 - Distributed inference in sensor networks
Distributed, In-network Inference

- Often need to do in-network, distributed inference
 - Target tracking through information fusion
 - Optimal control (for actuation)
 - Distributed sensor calibration (using neighboring sensors)
 - In-network regression or function fitting

Need to reconcile information across sensors
Distributed, In-network Inference

- Often need to do in-network, distributed inference
 - Target tracking through information fusion
 - Optimal control (for actuation)
 - Distributed sensor calibration (using neighboring sensors)
 - In-network regression or function fitting

- Obey a common structure:
 - Each sensor has/observes some local information
 - Information across sensors is correlated
 - … must be combined together to form a global picture
 - The global picture (or relevant part thereof) should be sent to each sensor
Distributed, In-network Inference

- **Naïve option:**
 - Collect all data at the centralized base station – too expensive

- **Using graphical models**
 - Form a junction tree on the nodes directly
 - Use message passing/loopy propagation for globally consistent view
Distributed, In-network Inference

- Naïve option:
 - Collect all data at the centralized base station – too expensive

- Using graphical models
 - Form a junction tree on the nodes directly
 - Use message passing/loopy propagation for globally consistent view
Conclusions

- Increasing number of applications generate and need to process uncertain data

- Statistical/probabilistic modeling provide an elegant framework to handle such data
 - But little support in current database systems

- MauveDB
 - Supports the abstraction of Model-based User Views
 - Enables declarative querying over noisy, imprecise data
 - Exploits commonalities to define, to create, and to process queries over such views
Conclusions

● Prototype implementation
 ● Using the Apache Derby open source DBMS
 ● Supports Regression-, Interpolation-, and DBN-based views
 ● Supports many different view maintenance strategies

● Probabilistic databases
 ● Increasingly important research area
 ● Designed a uniform and general framework for representing and querying uncertain data with correlations
 ● New inference techniques that exploit the structure in probabilistic databases
Thank you!!

- Questions?