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Motivation: Sensor Networks 

  Unprecedented, and rapidly increasing, 
instrumentation of our every-day world 

  Huge data volumes generated continuously that 
must be processed in real-time 

  Imprecise, unreliable and incomplete data 

  Inherent measurement noises (e.g. GPS) 

  Low success rates (e.g. RFID) 

  Communication link or sensor node failures 
(e.g. wireless sensor networks) 

  Spatial and temporal biases 

  Typically acquisitional environments 
  Energy-efficiency the primary concern 

Wireless sensor  
networks 

RFID 

Distributed measurement 
networks (e.g. GPS) 

Industrial Monitoring 



Motivation: Uncertain Data 

  Similar challenges in other domains 
  Data integration 

  Noisy data sources, automatically derived schema mappings 
  Reputation/trust/staleness issues 

  Information extraction 
  Automatically extracted knowledge from text 

  Social networks, biological networks 
  Noisy, error-prone observations 
  Ubiquitous use of entity resolution, link prediction etc… 

  Need to develop database systems for efficiently 
representing and managing uncertainty 



Example: Wireless Sensor Networks 

A wireless sensor network deployed to monitor temperature 

Moteiv Invent: 
8Mhz uProc, 250kbps 2.4GHz Transreceiver  
10K RAM, 48K program/ 512k data flash  
Rechargeable Battery (USB) 
Light, temperature, acceleration, and sound 
sensors 



Example: Wireless Sensor Networks 

A wireless sensor network deployed to monitor temperature 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 
sensors 

select time, avg(temp) 
from sensors 
epoch 1 hour 

User 

2. High data loss rates 
         averages of different sets 
             of sensors 

1. Spatially biased deployment 
         these are not true averages 

{10am, 23.5} 
{11am, 24} 

{12pm, 70} 

3. Measurement errors  
       propagated to the user 



Example: Wireless Sensor Networks 

A wireless sensor network deployed to monitor temperature 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 
sensors 

User 

Impedance mismatch 
        User wants to query the “underlying environment”, 
         and not the sensor readings at selected locations 



Example: Inferring High-level Events 

  Inferring “transportation mode”/ “activities”  
  Using easily obtainable sensor data (GPS, RFID proximity data) 
  Can do much if we can infer these automatically 

Have access to noisy “GPS” data 
Infer the transportation mode: 
    walking, running, in a car, in a bus 

home 

office 



  Inferring “transportation mode”/ “activities” 
  Using easily obtainable sensor data (GPS, RFID proximity data) 
  Can do much if we can infer these automatically 

office 

home 

Preferred end result: 
      Clean path annotated with transportation mode 

Example: Inferring High-level Events 



Data Processing Step 1 

  Apply a statistical model to the data 
  Eliminate spatial/temporal biases, handle missing data through 

extrapolation (e.g. regression, interpolation models) 
  Filter measurement noise (e.g. Kalman Filters) 
  Infer hidden variables, pattern recognition (e.g. HMMs) 
  Fault/anomaly detection 
  Forecasting/prediction (e.g. ARIMA) 

  No support in current database systems ! 

Regression/interpolation models 

Temperature monitoring 

Kalman Filters … 

GPS Data 



Sensor Data Processing: Now 

Database 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

Table raw-data 

Sensor 
Network 

1.  Extract all readings into a file 
2.  Run MATLAB/R/other data 

processing tools 
3.  Write output to a file/back to 

the database 
4.  Write data processing tools to 

process/aggregate the output 
(maybe using DB) 

5.  Decide new data to acquire 

User 

Repeat 



Sensor Data Processing: What we want 

Database 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

Table raw-data 

Sensor 
Network 

Models to be applied in real-time  
    for data cleaning, forecasting,  
    anomaly/event detection etc… 

User 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

Table processed-data 

Tasks 

Data 
Continuous (standing) queries 
e.g. alert monitoring 

Results to continuous queries 

Ad hoc queries (possibly against 
processed, modeled data) 



Challenges 

  Abstractions and language constructs for pushing 
statistical models into databases 
  Large diversity in the models used in practice 

  Efficiently processing high-rate data streams 

  Querying over probabilistic model outputs 
  Naturally exhibit high degrees of correlations 
  Many different types of uncertainty 

  Model-driven data acquisition 
  Minimize the data acquired to answer a query 

  Need for in-network, distributed processing 
  Global inference needed to achieve consistency 





Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 



Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 

Model-based User Views for Sensor Data; A. Deshpande, S. Madden; SIGMOD 2006 



Abstraction: Model-based Views 

  An abstraction analogous to traditional database views 
  Provides independence from the messy measurement details 

acct-no balance zipcode 

101 a 20001 

102 b 20002 

.. .. 

.. .. 

User 

            avg-balances 
select zipcode, avg(balance) 
from accounts 
group by zipcode 

A traditional database view 
(defined using an SQL query) 

accounts 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

         temperatures 
Use Regression to predict 
missing values and to  
remove spatial bias 

A model-based database view 
(defined using a statistical model) 

raw-temp-data 

User 

No difference 
from a user’s  
perspective 



Grid Abstraction 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

         temperatures 
Use Regression to model 
temperature as: 
     temp = w1 + w2 x +  w3 x2  
                  + w4 y + w5 y2 

A Regression-based View 

raw-temp-data 

User 

x 

y

Continuous 
Function 

User 

x 

y

Consistent uniform view 

Apply regression; 
Compute “temp” at grid 
       points 



MauveDB System 

  Being written using the Apache Derby Java open source 
database system codebase 

  Supports the abstraction of Model-based User Views 
  Declarative language constructs for creating such views 
  SQL queries over model-based views 
  Keep the models up-to-date as new data is inserted in database 



MauveDB System Architecture 

Query 
Processor 

View 
Manager Model-based view 

USER 

10  1  20 

View 
Maintenance 

SELECT * 
FROM regression-view 
WHERE … 
EPOCH 30 min 

User Queries 
CREATE VIEW regression-view 
AS … 
TRAINING DATA … 

View Creation 

Sensor 
Data 

Streams 



MauveDB System Architecture 

Query 
Processor 

View 
Manager Model-based view 

USER 

10  1  20 

View 
Maintenance 

SELECT * 
FROM regression-view 
WHERE … 
EPOCH 30 min 

User Queries 
CREATE VIEW regression-view 
AS … 
TRAINING DATA … 

View Creation 

Sensor 
Data 

Streams 

CREATE VIEW  

      RegView(time [0::1], x [0:100:10], y[0:100:10], temp) 

AS  

     FIT temp USING time, x, y 

     BASES 1, x, x2, y, y2 

       FOR EACH time T 

     TRAINING DATA  

                SELECT temp, time, x, y 

                FROM raw-temp-data 

                WHERE raw-temp-data.time = T 

Details specific to the model being used 



Query Processing 

  Key challenge: Integrating in a traditional database system 
  Two operators per view type that support get_next() API 

  ScanView: Returns the contents of the view one-by-one 
  IndexView (condition): Returns tuples that match a condition 

  e.g. return temperature where (x, y) = (10, 20) 

select *  
from locations l, reg-view r 
where  (l.x, l.y) = (r.x, r.y)  
           and r.time = “10am” 

Seqscan(l) Scanview(r) 

Hash join 

Plan 1 

Seqscan(l) Indexview(r) 

Index join 

Plan 2 



View Maintenance Strategies 

  Option 1: Compute the view as needed from base data 
  For regression view, scan the tuples and compute the weights 

  Option 2: Keep the view materialized 
  Sometimes too large to be practical  

  E.g. if the grid is very fine 

  May need to be recomputed with every new tuple insertion 
  E.g. a regression view that fits a single function to the entire data 

  Option 3: Lazy materialization/caching 
  Materialize query results as computed 

  Generic options shared between all view types 



View Maintenance Strategies 

  Option 4: Maintain an efficient intermediate representation 

  Typically model-specific 

  Regression-based Views 

  Say temp = f(x, y) = w1 h1(x, y) + … + wk hk(x, y) 

  Maintain the weights for f(x, y) and a sufficient statistic 

  Two matrices (O(k2) space) that can be incrementally updated  

  ScanView: Execute f(x, y) on all grid points 

  IndexView: Execute f(x, y) on the specified point 

  InsertTuple: Recompute the coefficients 

  Can be done very efficiently using the sufficient statistic 



Thoughts 

  Table functions/User-defined functions 
  Can be used to apply a statistical model to a raw data table 

  Using code written in C or Java etc 

  Must be applied repeatedly as new data items arrive 
  No optimization opportunities 
  Not declarative  

  Complex data analysis tasks 
  May not be doable using our primitives 
  Our focus is on easy application of statistical models to data 

  By a layperson not familiar with Matlab (or other tools) 



Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 

Online filtering, smoothing, and modeling of streaming data; B. Kanagal, A. Deshpande; ICDE 2008 



Dynamic Bayesian Networks 

  A class of models that can capture temporal evolution 
of a complex stochastic process 

  Widely used for many tasks 
  Eliminating measurement noise (Kalman Filters) 
  Anomaly/failure detection 
  Inferring high-level hidden variables (HMMs) 

  e.g. working status of a remote sensor, activity recognition 



  Inferring “transportation mode”/ “activities” 
  Using easily obtainable sensor data (GPS, RFID proximity data) 
  Can do much if we can infer these automatically 

office 

home 

Preferred end result: 
      Clean path annotated with transportation mode 

Example: Inferring High-level Events 



Dynamic Bayesian Networks 

Use a “generative model” that describes how the  
observations were generated 

Time = t 

Mt 

Xt 

Ot 

Transportation Mode: 
    Walking, Car, Bus 

True velocity and location 

Observed location 

Need conditional probability  
distributions that capture the process 

1.  p(Xt | Mt): How (position,velocity)  
                      depends on mode 
2.  p(Ot | Xt): The noise model for  
                      observations 

Prior knowledge or learned from 
data 



Dynamic Bayesian Networks 

Use a “generative model” that describes how the  
observations were generated 

Time = t 

Mt 

Xt 

Ot 

Transportation Mode: 
    Walking, Car, Bus 

True velocity and location 

Observed location 

Need conditional pdfs:  

1.   p(Mt+1 | Mt, Xt+1) 
2.   p(Xt+1 | Xt) 

Prior knowledge or learned  
from data 

Time = t+1 

Mt+1 

Xt+1 

Ot+1 



Dynamic Bayesian Networks 
Inference task: 
      Given a sequence of observations (Ot), find most likely Mt’s that explain it. 
      Alternatively, could provide a probability distribution on the possible Mt’s. 

Time = t 

Mt 

Xt 

Ot 

Transportation Mode: 
    Walking, Car, Bus 

True velocity and location 

Observed location 

Time = t+1 

Mt+1 

Xt+1 

Ot+1 

Time = t+2 

Ot+2 

Mt+2 

Xt+2 



Example DBN-based View 

Original noisy GPS data 

TIME  USER  MODE 
(INFERRED) 

Loca6on 
(INFERRED) 

5pm  John  Walking: 0.9 
Car: 0.1 

5pm  Jane  Walking: 0.9 
Car : 0.1 

5:05pm  John  Walking: 0 
Car: 1 

TIME  USER  Loca6on 
(Observed) 

5pm  John  (x1,y1) 

5pm  Jane  (x1’,y1’) 

5:05pm  John  (x2,y2) 

User view of the data 
    - Smoothed locations 
    - Inferred variables 

Can query inferred variables: 
    select count(*) 
    group by mode 
    sliding window 5 min 

User 



Representing DBN-based Views 
TIME  USER  MODE 

(INFERRED) 
Loca6on 
(INFERRED) 

5pm  John  Walking: 0.9 
Car: 0.1 

5pm  Jane  Walking: 0.9 
Car : 0.1 

5:05pm  John  Walking: 0 
Car: 1 

Challenges 
  Probabilistic attributes 
  Strong spatial and temporal   
    Correlations 

Particle-based Representation 
  Each tuple stored as a set   
    of weighted samples 
  Naturally ties in with inference 
  Efficient query processing using      
    existing infrastructure 

id  TIME  USER  MODE  LOCATION  weight 

... ... ... … … … 

1 5pm John W (a1,b1) 0.01 

2 5pm John W (a2,b2) 0.02 

3 5pm John W (a3,b3) 0.01 

4 5pm John C (a4,b4) 0.01 

… … … … … … 

PARTICLE TABLE 



Architecture 

Query 
Processor 

View 
Manager Model-based view 

USER 

1  3  25 

View 
Maintenance 

Sensor 
Data 

Streams 

CREATE VIEW dpmview 
DPM  hmm.dpm 
STREAM sensors 

View Creation 

Particle Tables 

TIME  USER  MODE 
(INFERRED) 

Loca6on 
(INFERRED) 

5pm  John  Walking: 0.9 
Car: 0.1 

5pm  Jane  Walking: 0.9 
Car : 0.1 

5:05pm  John  Walking: 0 
Car: 1 

id  TIME  USER  MODE  LOCATION  weight 

1 5pm John W (a1,b1) 0.01 

2 5pm John W … 0.02 

e.g. using  
particle filters 

SELECT time, user, location  
FROM dpmview 
WHERE mode = “W” 
WITH CONFIDENCE 0.95 

User Queries 



USER 

TIME  USER  MODE 
(INFERRED) 

Loca6on 
(INFERRED) 

5pm  John  Walking: 0.9 
Car: 0.1 

5pm  Jane  Walking: 0.9 
Car : 0.1 

5:05pm  John  Walking: 0 
Car: 1 

View 
Manager 

Query 
Processor Model-based view 

View 
Maintenance 

Query Processing 

id  TIME  USER  MODE  LOCATION  weight 

1 5pm John W (a1,b1) 0.01 

2 5pm John W … 0.02 

Particle Tables 

SELECT time, user, SUM(location*weight) 
FROM particles p1 
GROUP BY time 
HAVING  
0.95 < SELECT SUM(weight) FROM particles p2 

WHERE p1.time = p2.time AND status = “W” 

Able to support single-table select, project 
& aggregate queries 
Can reason about spatial correlations 
However, temporal correlations ignored 

SELECT time, user, location  
FROM dpmview 
WHERE mode = “W” 
WITH CONFIDENCE 0.95 

User Queries 



Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 

Representing and Querying Correlated Tuples in Probabilistic Databases; P.  Sen, A. Deshpande; ICDE 2007 
Efficient Query Evaluation over Temporally Correlated Probabilistic Streams; B. Kanagal, A. Deshpande; ICDE 2009 

Shared Correlations in Probabilistic Databases; P.Sen, A. Deshpande, L. Getoor, VLDB 2008 



Querying Model Outputs 

  Challenges: 
  The model outputs typically probabilistic 
  Strong spatial and temporal correlations 
  Continuous queries over streaming data 

  Numerous approaches proposed in recent years 
  Typically make strong independence assumptions 
  Limited support for attribute-value uncertainty 
  In spite of that, query evaluation known to be #P-Hard 

  Our goal: Develop a general, uniform framework that…  
  Captures both tuple-existence and attribute-value uncertainties 
  Can reason about correlations in the data 
  Can handle continuous queries over probabilistic streams   



Overview of  Our Approach 

  Represent the uncertainties and correlations graphically using 
small functions called factors 
  Concepts borrowed from the graphical models literature 

TIME USER MODE 
(inferred) 

LOCATION 
(inferred) 

5pm John Walking: 0.9 
Car: 0.1 

5pm Jane Walking: 0.9 
Car : 0.1 

5:05pm John Walking: 0.1 
Car: 0.9  

5:05pm Jane Walking: 0.1 
Car: 0.9 

… … … … 

TIME USER MODE 
(inferred) 

LOCATION 
(inferred) 

5pm John 

5pm Jane 

5:05pm John 

5:05pm Jane 

… … … … 

f() 

W W 1 

W C 0 

C W 0 

C C 1 

M  5pm 
John 

M  5pm 
Jane 

M  5:05pm 
John 

M  5:05pm 
Jane 

L 
5pm 
John 

L 
5pm 
Jane 

L 
5:05pm 
John 

L 
5:05pm 
Jane 

M 5pm 
John M 5pm 

Jane 



Overview of  Our Approach 

  Represent the uncertainties and correlations graphically using 
small functions called factors 
  Concepts borrowed from the graphical models literature 

S 
A B prob 

s1 ‘m’ 1 0.6 

s2 ‘n’ 1 0.5 

T 
C D prob 

t1 1 ‘p’ 0.4 

s1 f1(s1) 

0 0.6 
1 0.4 

s2 t1 f2(s2, t1) 

0 0 0.1 
0 1 0.5 
1 0 0.4 
1 1 0 

s2 and t1 
mutually  
exclusive 

s1 s2 t1 

f1(s1) f2(s2, t1) 



Overview of  Our Approach 

  During query processing, add new factors corresponding to 
intermediate tuples 

  Example query:  

S 
A B 

s1 ‘m’ 1 

s2 ‘n’ 1 

T 
C D 

t1 1 ‘p’ 

s1 s2 t1 

f1(s1) f2(s2, t1) 

πD(S        B=C T) 

A B C D 
i1 ‘m’ 1 1 ‘p’ 

i2 ‘n’ 1 1 ‘p’ 

πD 

D 
r1 ‘p’ r1 f OR(i1,i2,r1) 

i1 

f AND(s1,t1,i1) 

i2 

f AND(…) 



Overview of  Our Approach 

  Query evaluation ≡ Inference !! 
  Can use standard techniques like variable elimination 
  Can exploit the structure in probabilistic databases for scalable inference 

s1 s2 t1 

f1(s1) f2(s2, t1) 

i1 i2 

r1 f OR(i1,i2,r1) 

f AND(i1,i2,r1) f AND(…) 

S 
A B 

s1 ‘m’ 1 

s2 ‘n’ 1 

T 
C D 

t1 1 ‘p’ 

A B C D 
i1 ‘m’ 1 1 ‘p’ 

i2 ‘n’ 1 1 ‘p’ 

πD 

D 
r1 ‘p’ 

See Prithvi’s talk for more details 



Querying Probabilistic Streams 

  Need to support “continuous” queries over “sliding windows” 
  “alert me when the number of people in a mall exceeds 1000” 

  Must take spatial correlations into account 

  “how many people drove for at least one hour yesterday” 
  Can’t ignore the temporal correlations in the data 

  Observations: 
  Probabilistic streams typically obey “Markovian” property 

  Variables at times “t” and “t+2” are independent given the values 
of the variables at time “t+1” 

  Although the actual parameters change, the correlation 
“structure” remains unchanged across time 
  At every instance, we get the same set of input factors with 

different probability numbers 



Querying Probabilistic Streams 

  Brief summary of the key ideas: 
  Extend the query language to support MAP (using Viterby’s 

algorithm) and ML operations over probabilistic streams 

  Augment the “schema” of the probabilistic streams to include 
the correlation structure 

  Implement the operators to support the iterator interface 

  Only the parameters are transferred from operator to 
operator 

  Enables efficient, incremental processing of new inputs 

  Choose query plans that postpone generation of intermediate 
non-Markovian streams as long as possible 



Ongoing and Future Work 

  Developing APIs for adding arbitrary models 
  Minimize the work of the model developer 

  Identify intermediate representations useful across classes of 
models 

  Designing index structures for querying, updating large 
collections of uncertain facts 

  Approximate inference techniques for more efficient 
query processing 



Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 

Model-Driven Data Acquisition in Sensor Networks; A. Deshpande et al., VLDB 2004 



Model-based Query Processing 

Declarative Query 
Select nodeID,  
temp ± .1C, conf(.95) 
Where nodeID in {1..6} 

Observation Plan 
{[temp, 1],  
 [voltage, 3], 
 [voltage, 6]} 

Data 
  1, temp = 22.73, 
  3, voltage = 2.73 
  6, voltage = 2.65 

USER 

SENSOR 
NETWORK 

1 

4 

6 5 

2 
3 

Query Results 
  1, 22.73, 100% 
  … 
  6, 22.1, 99% 

Probabilistic 
Model 

Query 
Processor 



Model-based Query Processing 

Declarative Query 
Select nodeID,  
temp ± .1C, conf(.95) 
Where nodeID in {1..6} 

Observation Plan 
{[temp, 1],  
 [voltage, 3], 
 [voltage, 6]} 

Data 
  1, temp = 22.73, 
  3, voltage = 2.73 
  6, voltage = 2.65 

USER 

SENSOR 
NETWORK 

1 

4 

6 5 

2 
3 

Query Results 
  1, 22.73, 100% 
  … 
  6, 22.1, 99% 

Probabilistic 
Model 

Query 
Processor 

Advantages: 
- Exploit correlations for efficient approximate 

 query processing 
- Handle noise, biases in the data 
- Predict missing or future values 



Model-based Query Processing 

Declarative Query 
Select nodeID,  
temp ± .1C, conf(.95) 
Where nodeID in {1..6} 

Observation Plan 
{[temp, 1],  
 [voltage, 3], 
 [voltage, 6]} 

Data 
  1, temp = 22.73, 
  3, voltage = 2.73 
  6, voltage = 2.65 

USER 

SENSOR 
NETWORK 

1 

4 

6 5 

2 
3 

Query Results 
  1, 22.73, 100% 
  … 
  6, 22.1, 99% 

Probabilistic 
Model 

Query 
Processor 

Advantages: 
- Exploit correlations for efficient approximate 

 query processing 
- Handle noise, biases in the data 
- Predict missing or future values 

Many interesting research challenges: 
   - Finding optimal data collection paths 
   - Different type of queries (max/min, top-k) 
   - Learning, re-training models 
   - Long-term planning, Continuous queries 
   - … 



Outline 

 Motivation 
 Statistical modeling of sensor data 

  Abstraction of model-based views 
  Regression-based views 
  Views based on dynamic Bayesian networks 

 Query processing over model outputs 
 Some interesting sensor network problems 

  Model-driven data acquisition 
  Distributed inference in sensor networks 



Distributed, In-network Inference 

  Often need to do in-network, distributed inference  
  Target tracking through information fusion 

  Optimal control (for actuation) 

  Distributed sensor calibration (using neighboring sensors) 

  In-network regression or function fitting 

Need to reconcile 
information across 
all sensors 



Distributed, In-network Inference 

  Often need to do in-network, distributed inference  
  Target tracking through information fusion 

  Optimal control (for actuation) 

  Distributed sensor calibration (using neighboring sensors) 

  In-network regression or function fitting 

  Obey a common structure: 
  Each sensor has/observes some local information 

  Information across sensors is correlated  

  … must be combined together to form a global picture 

  The global picture (or relevant part thereof) should be sent to each 
sensor  



Distributed, In-network Inference 

  Naïve option: 
  Collect all data at the centralized base station – too expensive 

  Using graphical models 
  Form a junction tree on the nodes directly 

  Use message passing/loopy propagation for globally consistent view 
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Conclusions 

  Increasing number of applications generate and need 
to process uncertain data 

  Statistical/probabilistic modeling provide an elegant 
framework to handle such data 
  But little support in current database systems 

  MauveDB 
  Supports the abstraction of Model-based User Views 
  Enables declarative querying over noisy, imprecise data 

  Exploits commonalities to define, to create, and to process 
queries over such views 



Conclusions 

  Prototype implementation 
  Using the Apache Derby open source DBMS 

  Supports Regression-, Interpolation-, and DBN-based views 

  Supports many different view maintenance strategies 

  Probabilistic databases 
  Increasingly important research area 

  Designed a uniform and general framework for representing and 
querying uncertain data with correlations 

  New inference techniques that exploit the structure in probabilistic 
databases 



Thank you !! 

 Questions ? 


