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l  Increasing	  interest	  in	  querying	  and	  reasoning	  about	  the	  underlying	  
graph	  structure	  in	  a	  variety	  of	  disciplines	  

Mo-va-on	  
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Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily



l  Underlying	  data	  hasn’t	  necessarily	  changed	  that	  much	  
l  …	  aside	  from	  larger	  data	  volumes	  and	  easier	  availability	  

l  …	  but	  increasing	  realiza-on	  of	  the	  importance	  of	  reasoning	  about	  
the	  graph	  structure	  to	  extract	  ac-onable	  insights	  

l  Intense	  amount	  of	  work	  already	  on:	  
l  …	  understanding	  proper-es	  of	  informa-on	  networks	  	  

l  …	  community	  detec-on,	  models	  of	  evolu-on,	  visualiza-ons	  

l  …	  execu-ng	  different	  types	  of	  graph	  structure-‐focused	  queries	  

l  …	  cleaning	  noisy	  observa-onal	  data	  

l  …	  and	  so	  on	  

l  Lack	  of	  established	  data	  management	  tools	  
l  Most	  of	  the	  work	  done	  outside	  of	  general-‐purpose	  data	  
management	  systems	  

Mo-va-on	  



Background:	  Popular	  Graph	  Data	  Models	  
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l  Queries	  permit	  focused	  explora-on	  of	  the	  data	  
l  Result	  typically	  a	  small	  por-on	  of	  the	  graph	  (oSen	  just	  a	  node)	  

l  Examples:	  
l  Subgraph	  pa3ern	  matching:	  Given	  a	  “query”	  graph,	  	  

	  	  find	  where	  it	  occurs	  in	  a	  given	  “data”	  graph	  	  

	  

l  Reachability;	  Shortest	  path;	  	  

l  Keyword	  search:	  Find	  smallest	  subgraph	  that	  contains	  all	  the	  given	  
keywords	  

l  Historical	  or	  Temporal	  queries	  over	  a	  historical	  trace	  of	  the	  
network	  over	  a	  period	  of	  -me	  
l  “Find	  most	  important	  nodes	  in	  a	  communica@on	  network	  in	  2002?”	  

Graph	  Queries	  vs	  Analysis	  Tasks	  

Query 
Graph 

Data Graph 



l  Con-nuous	  queries	  
l  Tell	  me	  when	  a	  topic	  is	  suddenly	  “trending”	  in	  my	  friend	  circle	  

l  Alert	  me	  if	  the	  communica@on	  ac@vity	  around	  a	  node	  changes	  
dras@cally	  (anomaly	  detec@on)	  

l  Monitor	  constraints	  on	  the	  data	  being	  generated	  by	  the	  nodes	  
(constraint	  monitoring)	  

Graph	  Queries	  vs	  Analysis	  Tasks	  

Continuous  
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Processor 

Continuously arriving 
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-- Updates to graph structure 
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l  Analysis	  tasks	  typically	  require	  processing	  the	  en-re	  graph	  
l  Centrality	  analysis:	  Find	  the	  most	  central	  nodes	  in	  a	  network	  

l  Many	  different	  no-ons	  of	  centrality…	  

l  Community	  detecAon:	  Par--on	  the	  ver-ces	  into	  (poten-ally	  
overlapping)	  groups	  with	  dense	  interac-on	  pa[erns	  

l  Network	  evoluAon:	  Build	  models	  for	  network	  forma-on	  and	  
evolu-on	  over	  -me	  

l  Network	  measurements:	  Measuring	  sta-s-cal	  proper-es	  of	  the	  
graph	  or	  local	  neighborhoods	  in	  the	  graphs	  

l  Inferring	  historical	  traces:	  Complete	  historical	  data	  unlikely	  to	  
be	  available	  –	  how	  to	  fill	  in	  the	  gaps?	  

l  Graph	  cleaning/inference:	  Removing	  noise	  and	  uncertainty	  in	  
the	  observed	  network	  data	  

Graph	  Queries	  vs	  Analysis	  Tasks	  



l  Analysis	  tasks:	  
l  Graph	  cleaning/inference:	  Removing	  noise	  and	  uncertainty	  in	  
the	  observed	  data	  through	  –	  	  	  
l  A[ribute	  Predic-on:	  predict	  values	  of	  missing	  aKributes	  
l  Link	  Predic-on:	  infer	  missing	  links	  
l  En-ty	  Resolu-on:	  decide	  if	  two	  nodes	  refer	  to	  the	  same	  en@ty	  

l  Inference	  techniques	  typically	  u-lize	  the	  graph	  structure	  

Graph	  Queries	  vs	  Analysis	  Tasks	  
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Data	  Management:	  State	  of	  the	  Art	  
l  Most	  data	  probably	  in	  flat	  files	  or	  rela@onal	  databases	  

l  Some	  types	  of	  queries	  can	  be	  converted	  into	  SQL	  queries	  
l  E.g.,	  SPARQL	  queries	  over	  RDF	  data	  

l  Otherwise	  most	  of	  the	  querying	  and	  analysis	  func-onality	  
implemented	  on	  top	  

l  Much	  research	  on	  building	  specialized	  indexes	  for	  specific	  types	  of	  
queries	  (e.g.,	  pa[ern	  matching,	  keyword	  search,	  reachability,	  …)	  

l  Emergence	  of	  specialized	  graph	  databases	  in	  recent	  years	  

l  Neo4j,	  InfiniteGraph,	  DEX,	  AllegroGraph,	  HyperGraphDB,	  …	  

l  Key	  disadvantages:	  
l  Fairly	  rudimentary	  declara-ve	  interfaces	  -‐-‐	  most	  applica-ons	  need	  to	  be	  
wri[en	  using	  programma-c	  interfaces	  

l  Or	  using	  provided	  toolkits/libraries	  



Data	  Management:	  State	  of	  the	  Art	  
l  Several	  batch	  analysis	  frameworks	  proposed	  for	  analyzing	  graph	  

data	  in	  recent	  years	  

l  Analogous	  to	  Map-‐Reduce/Hadoop	  
l  Map-‐Reduce	  not	  suitable	  for	  most	  graph	  analysis	  tasks	  

l  Work	  in	  recent	  years	  on	  designing	  Map-‐Reduce	  programs	  for	  specific	  
tasks	  

l  Pregel,	  Giraph,	  GraphLab,	  GRACE	  
l  Vertex-‐centric:	  Programs	  wri[en	  from	  the	  point	  of	  view	  of	  a	  vertex	  

l  Most	  based	  on	  message	  passing	  between	  nodes	  

l  Vertex-‐centric	  frameworks	  somewhat	  limited	  and	  inefficient	  
l  Unclear	  how	  to	  do	  many	  complex	  graph	  analysis	  tasks	  

l  Not	  widely	  used	  yet	  



l  Lack	  of	  declara-ve	  query	  languages	  and	  expressive	  programming	  
frameworks	  for	  processing	  graph-‐structured	  data	  

l  Inherent	  noise	  and	  uncertainty	  in	  the	  raw	  observa-on	  data 	  	  
à  Support	  for	  graph	  cleaning	  must	  be	  integrated	  into	  the	  system	  

à  Need	  to	  reason	  about	  uncertainty	  during	  query	  execu-on	  

l  Very	  large	  volumes	  of	  heterogeneous	  data	  over	  -me	  
à  Distributed/parallel	  storage	  and	  query	  processing	  needed	  

à  Graph	  par--oning	  notoriously	  hard	  to	  do	  effec-vely	  

à  Historical	  traces	  need	  to	  be	  stored	  in	  a	  compressed	  fashion	  

l  Highly	  dynamic	  and	  rapidly	  changing	  data	  as	  well	  as	  workloads	  

à  Need	  aggressive	  pre-‐computa-on	  to	  enable	  low-‐latency	  query	  
execu-on	  

Key	  Data	  Management	  Challenges	  



l  Address	  the	  data	  management	  challenges	  in	  enabling	  a	  variety	  of	  
queries	  and	  analy-cs	  

	  

l  Aim	  to	  support	  three	  declara-ve	  user-‐level	  abstrac-ons	  for	  
specifying	  queries	  or	  tasks	  
l  A	  declara-ve	  Datalog-‐based	  query	  language	  for	  specifying	  queries	  
(including	  historical	  and	  con-nuous)	  

l  A	  high-‐level	  Datalog-‐based	  framework	  for	  graph	  cleaning	  tasks	  

l  An	  expressive	  programming	  framework	  for	  domain-‐specific	  queries	  
or	  analysis	  tasks	  

l  Analogous	  to	  MapReduce	  

l  Handle	  very	  large	  volumes	  of	  data	  (including	  historical	  traces)	  
through	  developing	  distributed	  and	  cloud	  compu-ng	  techniques	  

What	  we	  are	  doing 	  	  
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l  Work	  so	  far:	  
l  NScale:	  An	  end-‐to-‐end	  distributed	  programming	  framework	  for	  
wri-ng	  graph	  analy-cs	  tasks	  

l  Declara-ve	  graph	  cleaning	  [GDM’11,	  SIGMOD	  Demo’13]	  
l  Real-‐-me	  con-nuous	  query	  processing	  

l  Aggressive	  replica-on	  to	  manage	  very	  large	  dynamic	  graphs	  efficiently	  in	  
the	  cloud,	  and	  to	  execute	  con-nuous	  queries	  over	  them	  [SIGMOD’12]	  	  

l  New	  techniques	  for	  sharing	  [under	  submission]	  

l  Historical	  graph	  management	  
l  Efficient	  single-‐point	  or	  mul--‐point	  snapshot	  retrieval	  over	  very	  large	  
historical	  graph	  traces	  [ICDE’13,	  ,	  SIGMOD	  Demo’13]	  

l  Ego-‐centric	  pa[ern	  census	  [ICDE’12]	  	  
l  Subgraph	  pa[ern	  matching	  over	  uncertain	  graphs	  [under	  submission]	  

What	  we	  are	  doing 	  	  



l Overview	  

l NScale	  Distributed	  Programming	  Framework	  
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•  MapReduce-‐based	  (e.g.,	  Gbase,	  Pegasus,	  Hadapt)	  
•  Use	  MR	  as	  the	  underlying	  distributed	  processing	  framework	  	  
•  Disadvantages:	  

•  Not	  intui-ve	  to	  program	  graph	  analysis	  tasks	  using	  MR	  
•  Each	  "traversal"	  effec-vely	  requires	  a	  new	  MapReduce	  phase:	  
Inefficient	  

•  Vertex-‐centric	  itera-ve	  programming	  frameworks	  
•  Synchronous	  (Pregel,	  Giraph),	  Asynchronous	  (GraphLab,	  GRACE)..	  	  
•  No	  inherent	  support	  for	  applica-ons	  that	  require	  analy-cs	  on	  the	  
neighborhoods	  of	  a	  subset	  of	  nodes	  

•  Not	  sufficient	  or	  natural	  for	  many	  query	  analysis	  tasks	  (Ego	  
network	  analysis)	  

•  May	  be	  inefficient	  for	  analy-cs	  that	  require	  traversing	  beyond	  1-‐
hop	  neighbors	  

Graph  Programming  Frameworks



• An	  end-‐to-‐end	  distributed	  graph	  
programming	  framework	  

• Users/applica-on	  programs	  
specify:	  	  

•  Neighborhoods	  or	  subgraphs	  of	  
interest	  

•  A	  kernel	  computa-on	  to	  operate	  
upon	  those	  subgraphs	  

•  Framework:	  
•  Extracts	  the	  relevant	  subgraphs	  
from	  underlying	  data	  and	  loads	  in	  
memory	  

•  Execu-on	  engine:	  Executes	  user	  
computa-on	  on	  materialized	  
subgraphs	  

•  Communica-on:	  Shared	  state/
message	  passing	  

	  
	  

NScale  Programming  Framework



NScale	  User	  API	  

Underlying	  graph	  	  
data	  

Flat	  files	  

Special	  purpose	  indexes	  

<>	  

<K1,V1>	  
<K2,V2>	  

.	  

.	  

.	  
Key-‐Value	  stores	  
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and	  Loading	  
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NScale  Programming  Framework
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Example:  Local  Clustering  Coefficient



NScale:  Summary
•  User	  writes	  programs	  at	  the	  abstrac-on	  of	  a	  graph	  

•  More	  intui-ve	  for	  graph	  analy-cs	  

•  Captures	  mechanics	  of	  common	  graph	  analysis/cleaning	  tasks	  
•  Complex	  analy-cs:	  

•  Union	  or	  intersec-on	  of	  neighborhoods	  (Link	  predic-on,	  En-ty	  resolu-on)	  
•  Induced	  subgraph	  of	  a	  hashtag	  (Influence	  analysis	  on	  hashtag	  ego	  networks)	  

•  Scalability:	  Only	  relevant	  por-ons	  of	  the	  graph	  data	  loaded	  into	  
memory	  

•  User	  can	  specify	  subgraphs	  of	  interest,	  and	  select	  nodes	  or	  edges	  based	  on	  
proper-es	  

•  E.g.	  Edges	  with	  recent	  communica-on	  

•  Generaliza-on:	  Flexibility	  in	  subgraph	  defini-on	  
•  Handle	  vertex-‐centric	  programs	  

•  Subgraph:	  vertex	  and	  associated	  edges	  
•  Global	  programs	  

•  Subgraph	  is	  the	  en-re	  graph	  

NScale:  Summary
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Mo-va-on	  
l  The	  observed,	  automa@cally-‐extracted	  informa@on	  networks	  are	  

oSen	  noisy	  and	  incomplete	  

l  Need	  to	  extract	  the	  underlying	  true	  informa@on	  network	  through:	  
l  A[ribute	  Predic-on:	  to	  predict	  values	  of	  missing	  aKributes	  
l  Link	  Predic-on:	  to	  infer	  missing	  links	  
l  En-ty	  Resolu-on:	  to	  decide	  if	  two	  references	  refer	  to	  the	  same	  en@ty	  

l  Typically	  itera-ve	  and	  interleaved	  applica-on	  of	  the	  techniques	  
l  Use	  results	  of	  one	  to	  improve	  the	  accuracy	  of	  other	  opera-ons	  
	  

l  Numerous	  techniques	  developed	  for	  the	  tasks	  in	  isola-on	  
l  No	  support	  from	  data	  management	  systems	  
l  Hard	  to	  easily	  construct	  and	  compare	  new	  techniques,	  especially	  for	  
joint	  inteference	  



1.	  Declara-ve	  Graph	  Cleaning	  
l  Enable	  declara-ve	  specifica-on	  of	  graph	  cleaning	  tasks	  
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Overview	  of	  the	  Approach	  
l  Declara-ve	  specifica-on	  of	  the	  cleaning	  task	  

l  Datalog-‐based	  language	  for	  specifying	  -‐-‐	  
l  Predic-on	  features	  (including	  local	  and	  rela-onal	  features)	  
l  The	  details	  of	  how	  to	  accomplish	  the	  cleaning	  task	  
l  Arbitrary	  interleaving	  or	  pipelining	  of	  different	  tasks 	  	  

l  A	  mix	  of	  declara-ve	  constructs	  and	  user-‐defined	  
func-ons	  to	  specify	  complex	  predic-on	  func-ons	  

l  Op-mize	  the	  execu-on	  through	  caching,	  incremental	  
evalua-on,	  pre-‐computed	  data	  structures	  …	  



Proposed	  Framework	  

Specify the domain 

Compute features 
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Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

For attribute prediction, 
the domain is a subset of 
the graph nodes. 
 
For link prediction and 
entity resolution, the 
domain is a subset of 
pairs of nodes. 
 

Local: word frequency, 
income, etc. 
Relational: degree, 
clustering coeff., no. of 
neighbors with each 
attribute value, common 
neighbors between pairs 
of nodes, etc.  



Proposed	  Framework	  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

Attribute prediction: the 
missing attribute 
 
Link prediction: add link 
or not? 
 
Entity resolution: merge 
two nodes or not? 

After predictions are made, 
the graph changes: 
Attribute prediction 
changes local attributes. 
Link prediction changes the 
graph links. 
Entity resolution changes 
both local attributes and 
graph links. 



Some	  Details	  
l  Declara-ve	  framework	  based	  on	  Datalog	  

l  A	  declara-ve	  logic	  programming	  language	  (subset	  of	  Prolog)	  
l  Cleaner	  and	  more	  compact	  syntax	  than	  SQL	  
l  Not	  considered	  prac-cal	  in	  past,	  but	  resurgence	  in	  recent	  years	  

l  Declara-ve	  networking,	  data	  integra-on,	  cloud	  compu-ng,	  …	  
l  Several	  recent	  workshops	  on	  Datalog	  

l  We	  use	  Datalog	  to	  express:	  
l  Domains	  
l  Local	  and	  rela-onal	  features	  

l  Extend	  Datalog	  with	  opera-onal	  seman-cs	  to	  express:	  
l  Predic-ons	  (in	  the	  form	  of	  updates)	  
l  Itera-on	  



Specifying	  Features	  

Degree: 
Degree(X, COUNT<Y>) :-Edge(X, Y) 
 
Number of Neighbors with attribute ‘A’ 
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’) 
 
Clustering Coefficient 
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z) 
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1)) 

Jaccard Coefficient 
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z) 
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,   
                                      IntersectionCount(X, Y, D3)  
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D 
 



Update	  Opera-on	  
•  Ac-on	  to	  be	  taken	  itself	  specified	  declara-vely	  
•  Enables	  specifying,	  e.g.,	  different	  ways	  to	  merge	  in	  case	  of	  en-ty	  

resolu-on	  (i.e.,	  how	  to	  canonicalize)	  
	  

DEFINE	  Merge(X,	  Y)	  
{	  

	  INSERT	  Edge(X,	  Z)	  :-‐	  Edge(Y,	  Z)	  
	  DELETE	  Edge(Y,	  Z)	  
	  UPDATE	  Node(X,	  A=ANew)	  :-‐	  Node(X,A=AX),	  Node(Y,A=AY),	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ANew=(AX+AY)/2	  
	  UPDATE	  Node(X,	  B=BNew)	  :-‐	  Node(X,B=BX),	  Node(X,B=BX),	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BNew=max(BX,BY)	  
	  DELETE	  Node(Y)	  

}	  
Merge(X,	  Y)	  :-‐	  Features	  (X,	  Y,	  F1,…,Fn),	  predict-‐ER(F1,…,Fn)	  =	  true,	  	  

	   	   	   	   	   	   	  confidence-‐ER(F1,…,Fn)	  >	  0.95	  



Example	  
l  Real-‐world	  PubMed	  graph	  

l  Set	  of	  publica-ons	  from	  the	  medical	  domain,	  their	  abstracts,	  and	  cita-ons	  
l  50,634	  publica-ons,	  115,323	  cita-on	  edges	  
l  Task:	  A[ribute	  predic-on	  

l  Predict	  if	  the	  paper	  is	  categorized	  as	  Cogni-on,	  Learning,	  Percep-on	  or	  Thinking	  
l  Choose	  top	  10%	  predic-ons	  aSer	  each	  itera-on,	  for	  10	  itera-ons	  
	   DOMAIN	  Uncommi[ed(X):-‐Node(X,Commi[ed=‘no’)	  
{	  
	  	  	  ThinkingNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Thinking’)	  
	  	  	  Percep-onNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Percep-on’)	  
	  	  	  Cogni-onNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Cogni-on’)	  
	  	  	  LearningNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Learning’)	  
	  	  	  Features-‐AP(X,A,B,C,D,Abstract):-‐	  ThinkingNeighbors(X,A),	  Percep-onNeighbors(X,B),	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Cogni-onNeighbors(X,C),	  LearningNeighbors(X,D),Node(X,Abstract,	  _,_)	  
}	  
ITERATE(10)	  	  
{	  
	  	  	  UPDATE	  Node(X,_,P,‘yes’):-‐	  Features-‐AP(X,A,B,C,D,Text),	  P	  =	  predict-‐AP(X,A,B,C,D,Text),	  

	   	   	  	  	  	  	  	  	  	  confidence-‐AP(X,A,B,C,D,Text)	  IN	  TOP	  10%	  
}	  



l  Using	  a	  simple	  RDBMS	  built	  on	  top	  of	  Java	  Berkeley	  DB	  
l  Predicates	  in	  the	  program	  correspond	  to	  materialized	  tables	  
l  Datalog	  rules	  converted	  into	  SQL	  

l  Incremental	  maintenance:	  
l  Every	  set	  of	  changes	  done	  by	  AP,	  LP,	  or	  ER	  logged	  into	  two	  change	  tables	  

ΔNodes	  and	  ΔEdges	  
l  Aggregate	  maintenance	  is	  performed	  by	  aggrega-ng	  the	  change	  table	  then	  

refreshing	  the	  old	  table	  

l  Proved	  hard	  to	  scale	  
l  Incremental	  evalua-on	  much	  faster	  than	  recompute,	  but	  SQL-‐based	  

evalua-on	  was	  inherently	  a	  bo[leneck	  
l  Hard	  to	  do	  complex	  features	  like	  centrality	  measures	  
l  In	  the	  process	  of	  changing	  the	  backend	  to	  use	  a	  new	  distributed	  graph	  

processing	  framework	  	  

Prototype	  Implementa-on	  
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l  Increasing	  interest	  in	  temporal	  analysis	  of	  informa-on	  networks	  to:	  
l  Understand	  evolu-onary	  trends	  (e.g.,	  how	  communi-es	  evolve)	  	  

l  Perform	  compara-ve	  analysis	  and	  iden-fy	  major	  changes	  

l  Develop	  models	  of	  evolu-on	  or	  informa-on	  diffusion	  

l  Visualiza-ons	  over	  -me	  
l  For	  be[er	  predic-ons	  in	  the	  future	  

l  Focused	  explora-on	  and	  querying	  
l  “Who	  had	  the	  highest	  PageRank	  in	  a	  cita@on	  network	  in	  1960?”	  

l  “Iden@fy	  nodes	  most	  similar	  to	  X	  as	  of	  one	  year	  ago”	  

l  “Iden@fy	  the	  days	  when	  the	  network	  diameter	  (over	  some	  transient	  edges	  
like	  messages)	  is	  smallest”	  

l  “Find	  a	  temporal	  subgraph	  paKern	  in	  a	  graph”	  

Historical	  Graph	  Data	  Management	  

ti tj tk



Hinge:	  A	  System	  for	  Temporal	  Explora-on	  

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

Key-Value Store
DeltaGraph

GraphManager
Manage GraphPool - 
Overlaying historical 
graphs and cleanup

HistoryManager
Manage DeltaGraph - 
Query Planning, Disk 

Read/Write

HiNGE

Analyst JUNG

QueryManager
Translate user query into 

Graph Retrieval and execute 
Algorithms on graphs 

Figure 2: System Architecture: HiNGE, DeltaGraph and
GraphPool.

the network, and perhaps, certain anomalies as well. Exploration
is considered to be the stepping stone for more specific inquiries
into the nature of the network. Exploration of a temporal graph
is enabled using – (a) a time-slider, (b) an interactive, zoomable
snapshot viewer, and (c) a metric calculator. The time-slider is
an interactive timeline that the user can adjust to go to a specific
time of interest. The snapshot viewer presents a view of the graph
at the desired time as indicated by the time-slider. The user may
pan, zoom or rotate the pane with mouse operations to focus on the
area of interest in the graph. The layout, color and other factors of
appearance of the graph can also be changed by customizing the
choices in the Settings menu. The metric calculator provides the
choice of several metrics such as PageRank, betweenness central-
ity, clustering coefficient, etc., to be computed for the vertices of
the network at the time indicated by the time slider. The metric val-
ues may be chosen as a part of vertex labels in the snapshot view,
or can be used to make the graph display more appropriate. Simul-
taneously, the k top or bottom-valued vertices are displayed on the
side. These can be seen in Figure 3.
Query: The Query mode is meant to provide a comparative and
detailed temporal evolutionary analysis of the vertices of interest
that the user may have identified during the exploration phase. It
shows the structural evolution as well as the change in the metrics
of interest, such as the clustering coefficient. To specify a query,
the user must specify the vertex, the start and end times, the metric
of interest, and the number of time points to be compared. Figure
4 shows the results of an example query for node 12.
Search: An interesting and slightly different kind of query is a sub-
graph pattern matching query. Subgraph pattern matching queries
can be used to find subgraphs that satisfy certain properties, and
are one of the most widely studied queries over graph data. HiNGE
supports subgraph pattern matching queries over the history of a
network. The user may specify the query by drawing the structure
of a subgraph, assigning labels to the nodes, and specifying the time
interval during which to perform the search. The result lists all the
matches found for the query, i.e., the subgraph layouts and times

Figure 3: Temporal exploration using time-slider

at which the particular subgraph exists. This functionality is imple-
mented by using the ability to build and maintain auxiliary indexes
in DeltaGraph (specifically, we build auxiliary path indexes) [4].

Another very useful feature is node search that helps the user
to find nodes given attribute values. This is implemented using
an auxiliary inverted index in DeltaGraph. Hence, the user may
constrain the search by specifying a time interval. Figure 5 shows
the node search and subgraph pattern search features. By keeping
the time range open, we can specify a search across all times; on
the other hand, if the end point and the start point are the same, we
only search in that particular snapshot.

Figure 5: (a) Node Search; (b) Subgraph Pattern Search

3.2 Working with HiNGE
The expected input graph specification is as described in [4].

The evolving network is described as a set of chronological events.
Each node is required to have a unique identification, the nodeid.
Nodes and edges may carry any number of attributes, e.g., name,
label, etc. While specifying the node in a query, the user must spec-
ify the nodeid. Node search can be used to locate the nodeid for the
node when only the attributes of the node are known. Here is a list
of the major options/parameters, all of which can be accessed from
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l  Focus	  of	  the	  work	  so	  far:	  snapshot	  retrieval	  queries	  
l  Given	  one	  @mepoint	  or	  a	  set	  of	  @mepoints	  in	  the	  past,	  retrieve	  the	  

corresponding	  snapshots	  of	  the	  network	  in	  memory	  

l  Queries	  may	  specify	  only	  a	  subset	  of	  the	  columns	  to	  be	  fetched	  

l  Some	  more	  complex	  types	  of	  queries	  can	  be	  specified	  

l  Given	  the	  ad	  hoc	  nature	  of	  much	  of	  the	  analysis,	  one	  of	  the	  most	  
important	  query	  types	  

l  Key	  challenges:	  
l  Needs	  to	  be	  very	  fast	  to	  support	  interac-ve	  analysis	  

l  Should	  support	  analyzing	  100’s	  or	  more	  snapshots	  simultaneously	  

l  Support	  for	  distributed	  retrieval	  and	  distributed	  analysis	  (e.g.,	  using	  Pregel)	  

Snapshot	  Retrieval	  Queries	  



l  Temporal	  rela-onal	  databases	  
l  Vast	  body	  of	  work	  on	  models,	  query	  languages,	  and	  systems	  

l  Dis-nc-on	  between	  transac@on-‐@me	  and	  valid-‐@me	  temporal	  databases	  

l  Snapshot	  retrieval	  queries	  also	  called	  valid	  @meslice	  queries	  

l  Op-ons	  for	  execu-ng	  snapshot	  queries	  
l  External	  Interval	  Trees	  [Arge	  and	  Vi[er,	  1996],	  External	  Segment	  Trees	  

[Blakenagal	  and	  Gu-ng,	  1994],	  Snapshot	  index	  [Slazberg	  et	  al.,	  1999],	  …	  

l  Key	  limita-ons	  
l  Not	  flexible	  or	  tunable;	  not	  easily	  parallelizable;	  no	  support	  for	  mul--‐point	  

queries;	  intended	  mainly	  for	  disks	  

Prior	  Work	  
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Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki
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Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki
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l  Edge	  deltas	  stored	  in	  a	  key-‐value	  store	  
l  Currently	  uses	  Kyoto	  Cabinet	  disk-‐based	  key-‐value	  store	  

l  Parallelized	  by	  running	  a	  separate	  instance	  on	  each	  machine	  

l  Snapshot	  retrieval	  arbitrarily	  parallelizable	  
l  Can	  load	  the	  snapshot(s)	  in	  parallel	  on	  any	  number	  of	  machines	  

l  Supports	  a	  simplified	  Pregel-‐like	  abstrac-on	  on	  top	  

l  Highly	  tunable	  
l  Can	  control	  the	  access	  -mes,	  latencies,	  storage	  requirements	  by	  appropriate	  

choice	  of	  parameter	  values	  

l  Supports	  pre-‐fetching	  to	  reduce	  online	  query	  latencies	  

l  Extensible	  
l  APIs	  to	  extend	  the	  basic	  structure	  to	  support	  subgraph	  paKern	  matching,	  

reachability	  etc.	  

Summary	  



Empirical	  Results	  
l  DeltaGraph	  vs	  In-‐Memory	  Interval	  Tree	  
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l Overview	  

l NScale	  Distributed	  Programming	  Framework	  

l Declara-ve	  Graph	  Cleaning	  

l Historical	  Graph	  Data	  Management	  

l Con-nuous	  Queries	  over	  Distributed	  Graphs	  

l Conclusions	  

Outline 	  	  
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l  Increasing	  need	  for	  execu-ng	  queries	  and	  analysis	  tasks	  in	  real-‐-me	  
on	  “data	  streams”	  
l  Ranging	  from	  simple	  “monitor	  updates	  in	  the	  neighborhood”	  to	  
complex	  “trend	  discovery”	  or	  “anomaly	  detec-on”	  queries	  

l  Very	  low	  latencies	  desired	  
l  Trade-‐offs	  between	  push/pre-‐computa-on	  vs	  pull/on-‐demand	  

l  Sharing	  and	  adap-ve	  execu-on	  necessary	  

l  Parallel/distributed	  solu-ons	  needed	  to	  handle	  the	  scale	  
l  Random	  graph	  par--oning	  typically	  results	  in	  large	  edge	  cuts	  	  

l  Distributed	  traversals	  to	  answer	  queries	  leading	  to	  high	  latencies	  and	  
high	  network	  communica-on	  

l  Sophis-cated	  par--oning	  techniques	  oSen	  do	  not	  work	  either	  

Real-‐-me	  Graph	  Queries	  and	  Analy-cs	  



l  Dominant	  type	  of	  queries	  in	  many	  scenarios	  (e.g.,	  social	  networks)	  
l  How	  to	  execute	  if	  the	  graph	  is	  par@@oned	  across	  many	  machines?	  
l  A	  node’s	  neighbors	  may	  be	  on	  a	  different	  machine	  

l  Prior	  approaches	  
l  On-‐demand	  à	  High	  latencies	  because	  of	  network	  communica-on	  
l  Local	  seman-cs	  [Pujol	  et	  al.,	  SIGCOMM’11]	  

l  For	  every	  node,	  all	  neighbors	  replicated	  locally	  
l  High,	  oSen	  unnecessary	  network	  communica-on	  overhead	  

l  Our	  approach	  [SIGMOD’12]	  
l  How	  to	  choose	  what	  to	  replicate?	  –	  A	  new	  “fairness”	  criterion	  
l  Push	  vs	  Pull?	  –	  Fine-‐grained	  access	  pa[ern	  monitoring	  
l  Decentralized	  decision	  making	  

Example:	  Fetch	  Neighbors’	  Updates	  



Our	  Approach	  
l  Key	  idea	  1	  	  

l  Use	  a	  “fairness”	  criterion	  to	  decide	  what	  to	  replicate	  
l  For	  every	  node,	  at	  least	  t	  frac-on	  of	  nodes	  should	  be	  present	  locally	  

l  Can	  make	  some	  progress	  for	  all	  queries	  
l  Guaranteeing	  fairness	  NP-‐Hard	  

	  

Local Semantics 

Fair with t = 2/3 

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair ⟨Cij , Pj⟩, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair ⟨Cij , Pk⟩
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different
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Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij ).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence
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Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway 

Pairwise decisions Optimal 



l  Con-nuously	  evaluate	  an	  aggregate	  in	  the	  local	  neighborhoods	  of	  
all	  nodes	  of	  a	  graph	  
l  For	  example,	  to	  do	  “ego-‐centric	  trend	  analysis	  in	  social	  networks”,	  or	  
“detec@ng	  nodes	  with	  anomalous	  communica@on	  ac@vity”	  

l  Challenging	  even	  if	  data	  all	  on	  a	  single	  machine	  

l  Prior	  approaches	  
l  On-‐demand	  à	  High	  latencies	  because	  of	  computa-onal	  cost	  

l  Con-nuously	  maintain	  all	  the	  query	  results	  (pre-‐computa-on):	  

l  Poten-ally	  wasted	  computa-on	  	  

l  Too	  many	  queries	  to	  be	  executed	  

l  Our	  approach	  [ongoing	  work]	  
l  Access-‐pa[ern	  based	  on-‐demand	  vs	  pre-‐computa-on	  decisions	  

l  Aggressive	  sharing	  across	  different	  queries	  

Example:	  Ego-‐centric	  Aggregates	  



Our	  Approach	  
l  Key	  idea	  4	  	  

l  Exploit	  commonali-es	  across	  queries	  to	  share	  par-al	  computa-on	  
l  Use	  graph	  compression-‐like	  techniques	  to	  minimize	  the	  computa-on	  

Original dataflow graph for aggregate 
computation – each edge 
denotes a potential computation 

Computation cost can be reduced by 
identifying “bi-cliques” 



Conclusions	  and	  Ongoing	  Work	  
l  Graph	  data	  management	  becoming	  increasingly	  important	  
l  Many	  challenges	  in	  dealing	  with	  the	  scale,	  the	  noise,	  and	  the	  

variety	  of	  analy-cal	  tasks	  
l  Presented:	  	  

l  A	  declara-ve	  framework	  for	  cleaning	  noisy	  graphs	  
l  A	  system	  for	  managing	  historical	  data	  and	  snapshot	  retrieval	  
l  Techniques	  for	  managing	  and	  querying	  highly	  dynamic	  graphs	  

l  Ongoing	  work	  on	  improving	  and	  extending	  this	  preliminary	  work	  
l  Developing	  a	  unified	  query	  language	  based	  on	  Datalog	  
l  Replica-on	  and	  pre-‐computa-on	  for	  con-nuous	  queries	  
l  Efficiently	  suppor-ng	  distributed	  graph	  analy-cs	  
l  Developing	  effec-ve	  graph	  compression	  techniques	  
l  New	  graph	  par--oning	  techniques	  


