
Enabling	
 Declara-ve	
 Graph	
 Analy-cs	
 over	
 Large,	

Noisy	
 Informa-on	
 Networks	

Amol	
 Deshpande	

	

Department	
 of	
 Computer	
 Science	
 and	
 UMIACS	

University	
 of	
 Maryland	
 at	
 College	
 Park	

Joint work with: Prof. Lise Getoor, Walaa Moustafa,
Udayan Khurana, Jayanta Mondal, Abdul Quamar,
Hui Miao

l Mo-va-on	
 and	
 Background	
 	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Con-nuous	
 Queries	
 over	
 Distributed	
 Graphs	

l Conclusions	

Outline 	
 	

l  Increasing	
 interest	
 in	
 querying	
 and	
 reasoning	
 about	
 the	
 underlying	

graph	
 structure	
 in	
 a	
 variety	
 of	
 disciplines	

Mo-va-on	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Stock Trading Networks

Federal funds networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;

HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8
*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

World Wide Web

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P
(>

k)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

l  Underlying	
 data	
 hasn’t	
 necessarily	
 changed	
 that	
 much	

l  …	
 aside	
 from	
 larger	
 data	
 volumes	
 and	
 easier	
 availability	

l  …	
 but	
 increasing	
 realiza-on	
 of	
 the	
 importance	
 of	
 reasoning	
 about	

the	
 graph	
 structure	
 to	
 extract	
 ac-onable	
 insights	

l  Intense	
 amount	
 of	
 work	
 already	
 on:	

l  …	
 understanding	
 proper-es	
 of	
 informa-on	
 networks	
 	

l  …	
 community	
 detec-on,	
 models	
 of	
 evolu-on,	
 visualiza-ons	

l  …	
 execu-ng	
 different	
 types	
 of	
 graph	
 structure-­‐focused	
 queries	

l  …	
 cleaning	
 noisy	
 observa-onal	
 data	

l  …	
 and	
 so	
 on	

l  Lack	
 of	
 established	
 data	
 management	
 tools	

l  Most	
 of	
 the	
 work	
 done	
 outside	
 of	
 general-­‐purpose	
 data	

management	
 systems	

Mo-va-on	

Background:	
 Popular	
 Graph	
 Data	
 Models	

1

2

4

3

5

Name = Tom Cruise
Born = 7/3/1962

acted-in

Name = Top Gun
Release Date = …

married

Year = 1990

Property graph model:
commonly used by open-
source software

XML: Semi-structured data model
In essence: a directed, labeled “tree”

Tom Cruise

was married to

Nicole
Kidman

born on

7/3/1962

acted in Top
Gun

RDF (Resource Description Framework)
 Commonly used for knowledge-bases
 Each edge captures:
 <subject, predicate, object>

l  Queries	
 permit	
 focused	
 explora-on	
 of	
 the	
 data	

l  Result	
 typically	
 a	
 small	
 por-on	
 of	
 the	
 graph	
 (oSen	
 just	
 a	
 node)	

l  Examples:	

l  Subgraph	
 pa3ern	
 matching:	
 Given	
 a	
 “query”	
 graph,	
 	

	
 	
 find	
 where	
 it	
 occurs	
 in	
 a	
 given	
 “data”	
 graph	
 	

	

l  Reachability;	
 Shortest	
 path;	
 	

l  Keyword	
 search:	
 Find	
 smallest	
 subgraph	
 that	
 contains	
 all	
 the	
 given	

keywords	

l  Historical	
 or	
 Temporal	
 queries	
 over	
 a	
 historical	
 trace	
 of	
 the	

network	
 over	
 a	
 period	
 of	
 -me	

l  “Find	
 most	
 important	
 nodes	
 in	
 a	
 communica@on	
 network	
 in	
 2002?”	

Graph	
 Queries	
 vs	
 Analysis	
 Tasks	

Query
Graph

Data Graph

l  Con-nuous	
 queries	

l  Tell	
 me	
 when	
 a	
 topic	
 is	
 suddenly	
 “trending”	
 in	
 my	
 friend	
 circle	

l  Alert	
 me	
 if	
 the	
 communica@on	
 ac@vity	
 around	
 a	
 node	
 changes	

dras@cally	
 (anomaly	
 detec@on)	

l  Monitor	
 constraints	
 on	
 the	
 data	
 being	
 generated	
 by	
 the	
 nodes	

(constraint	
 monitoring)	

Graph	
 Queries	
 vs	
 Analysis	
 Tasks	

Continuous
Query

Processor

Continuously arriving
input data streams
-- Updates to graph structure
-- Updates to node values

Real-time results generated
and sent to the users
continuously

User queries posed once

l  Analysis	
 tasks	
 typically	
 require	
 processing	
 the	
 en-re	
 graph	

l  Centrality	
 analysis:	
 Find	
 the	
 most	
 central	
 nodes	
 in	
 a	
 network	

l  Many	
 different	
 no-ons	
 of	
 centrality…	

l  Community	
 detecAon:	
 Par--on	
 the	
 ver-ces	
 into	
 (poten-ally	

overlapping)	
 groups	
 with	
 dense	
 interac-on	
 pa[erns	

l  Network	
 evoluAon:	
 Build	
 models	
 for	
 network	
 forma-on	
 and	

evolu-on	
 over	
 -me	

l  Network	
 measurements:	
 Measuring	
 sta-s-cal	
 proper-es	
 of	
 the	

graph	
 or	
 local	
 neighborhoods	
 in	
 the	
 graphs	

l  Inferring	
 historical	
 traces:	
 Complete	
 historical	
 data	
 unlikely	
 to	

be	
 available	
 –	
 how	
 to	
 fill	
 in	
 the	
 gaps?	

l  Graph	
 cleaning/inference:	
 Removing	
 noise	
 and	
 uncertainty	
 in	

the	
 observed	
 network	
 data	

Graph	
 Queries	
 vs	
 Analysis	
 Tasks	

l  Analysis	
 tasks:	

l  Graph	
 cleaning/inference:	
 Removing	
 noise	
 and	
 uncertainty	
 in	

the	
 observed	
 data	
 through	
 –	
 	
 	

l  A[ribute	
 Predic-on:	
 predict	
 values	
 of	
 missing	
 aKributes	

l  Link	
 Predic-on:	
 infer	
 missing	
 links	

l  En-ty	
 Resolu-on:	
 decide	
 if	
 two	
 nodes	
 refer	
 to	
 the	
 same	
 en@ty	

l  Inference	
 techniques	
 typically	
 u-lize	
 the	
 graph	
 structure	

Graph	
 Queries	
 vs	
 Analysis	
 Tasks	

Divesh
Srivastava

Vladislav
Shkapenyuk Nick

Koudas

Avishek
Saha

Graham
Cormode Flip Korn

Lukasz
Golab

Theodore
Johnson

William
Roberts

Petre
Stoica

Jian
Li

Prabhu
Babu

Amol
Deshpande

Samir
Khuller

Barna
Saha

Jian
Li

Link prediction Entity resolution

Data	
 Management:	
 State	
 of	
 the	
 Art	

l  Most	
 data	
 probably	
 in	
 flat	
 files	
 or	
 rela@onal	
 databases	

l  Some	
 types	
 of	
 queries	
 can	
 be	
 converted	
 into	
 SQL	
 queries	

l  E.g.,	
 SPARQL	
 queries	
 over	
 RDF	
 data	

l  Otherwise	
 most	
 of	
 the	
 querying	
 and	
 analysis	
 func-onality	

implemented	
 on	
 top	

l  Much	
 research	
 on	
 building	
 specialized	
 indexes	
 for	
 specific	
 types	
 of	

queries	
 (e.g.,	
 pa[ern	
 matching,	
 keyword	
 search,	
 reachability,	
 …)	

l  Emergence	
 of	
 specialized	
 graph	
 databases	
 in	
 recent	
 years	

l  Neo4j,	
 InfiniteGraph,	
 DEX,	
 AllegroGraph,	
 HyperGraphDB,	
 …	

l  Key	
 disadvantages:	

l  Fairly	
 rudimentary	
 declara-ve	
 interfaces	
 -­‐-­‐	
 most	
 applica-ons	
 need	
 to	
 be	

wri[en	
 using	
 programma-c	
 interfaces	

l  Or	
 using	
 provided	
 toolkits/libraries	

Data	
 Management:	
 State	
 of	
 the	
 Art	

l  Several	
 batch	
 analysis	
 frameworks	
 proposed	
 for	
 analyzing	
 graph	

data	
 in	
 recent	
 years	

l  Analogous	
 to	
 Map-­‐Reduce/Hadoop	

l  Map-­‐Reduce	
 not	
 suitable	
 for	
 most	
 graph	
 analysis	
 tasks	

l  Work	
 in	
 recent	
 years	
 on	
 designing	
 Map-­‐Reduce	
 programs	
 for	
 specific	

tasks	

l  Pregel,	
 Giraph,	
 GraphLab,	
 GRACE	

l  Vertex-­‐centric:	
 Programs	
 wri[en	
 from	
 the	
 point	
 of	
 view	
 of	
 a	
 vertex	

l  Most	
 based	
 on	
 message	
 passing	
 between	
 nodes	

l  Vertex-­‐centric	
 frameworks	
 somewhat	
 limited	
 and	
 inefficient	

l  Unclear	
 how	
 to	
 do	
 many	
 complex	
 graph	
 analysis	
 tasks	

l  Not	
 widely	
 used	
 yet	

l  Lack	
 of	
 declara-ve	
 query	
 languages	
 and	
 expressive	
 programming	

frameworks	
 for	
 processing	
 graph-­‐structured	
 data	

l  Inherent	
 noise	
 and	
 uncertainty	
 in	
 the	
 raw	
 observa-on	
 data 	
 	

à  Support	
 for	
 graph	
 cleaning	
 must	
 be	
 integrated	
 into	
 the	
 system	

à  Need	
 to	
 reason	
 about	
 uncertainty	
 during	
 query	
 execu-on	

l  Very	
 large	
 volumes	
 of	
 heterogeneous	
 data	
 over	
 -me	

à  Distributed/parallel	
 storage	
 and	
 query	
 processing	
 needed	

à  Graph	
 par--oning	
 notoriously	
 hard	
 to	
 do	
 effec-vely	

à  Historical	
 traces	
 need	
 to	
 be	
 stored	
 in	
 a	
 compressed	
 fashion	

l  Highly	
 dynamic	
 and	
 rapidly	
 changing	
 data	
 as	
 well	
 as	
 workloads	

à  Need	
 aggressive	
 pre-­‐computa-on	
 to	
 enable	
 low-­‐latency	
 query	

execu-on	

Key	
 Data	
 Management	
 Challenges	

l  Address	
 the	
 data	
 management	
 challenges	
 in	
 enabling	
 a	
 variety	
 of	

queries	
 and	
 analy-cs	

	

l  Aim	
 to	
 support	
 three	
 declara-ve	
 user-­‐level	
 abstrac-ons	
 for	

specifying	
 queries	
 or	
 tasks	

l  A	
 declara-ve	
 Datalog-­‐based	
 query	
 language	
 for	
 specifying	
 queries	

(including	
 historical	
 and	
 con-nuous)	

l  A	
 high-­‐level	
 Datalog-­‐based	
 framework	
 for	
 graph	
 cleaning	
 tasks	

l  An	
 expressive	
 programming	
 framework	
 for	
 domain-­‐specific	
 queries	

or	
 analysis	
 tasks	

l  Analogous	
 to	
 MapReduce	

l  Handle	
 very	
 large	
 volumes	
 of	
 data	
 (including	
 historical	
 traces)	

through	
 developing	
 distributed	
 and	
 cloud	
 compu-ng	
 techniques	

What	
 we	
 are	
 doing 	
 	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Compressed	
 Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Compressed	
 Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

A disk-based or
cloud-based
key-value store

Standard API
used to write graph
algorithms/libraries

Many graphs maintained
in an overlaid, memory-efficient
manner

l  Work	
 so	
 far:	

l  NScale:	
 An	
 end-­‐to-­‐end	
 distributed	
 programming	
 framework	
 for	

wri-ng	
 graph	
 analy-cs	
 tasks	

l  Declara-ve	
 graph	
 cleaning	
 [GDM’11,	
 SIGMOD	
 Demo’13]	

l  Real-­‐-me	
 con-nuous	
 query	
 processing	

l  Aggressive	
 replica-on	
 to	
 manage	
 very	
 large	
 dynamic	
 graphs	
 efficiently	
 in	

the	
 cloud,	
 and	
 to	
 execute	
 con-nuous	
 queries	
 over	
 them	
 [SIGMOD’12]	
 	

l  New	
 techniques	
 for	
 sharing	
 [under	
 submission]	

l  Historical	
 graph	
 management	

l  Efficient	
 single-­‐point	
 or	
 mul--­‐point	
 snapshot	
 retrieval	
 over	
 very	
 large	

historical	
 graph	
 traces	
 [ICDE’13,	
 ,	
 SIGMOD	
 Demo’13]	

l  Ego-­‐centric	
 pa[ern	
 census	
 [ICDE’12]	
 	

l  Subgraph	
 pa[ern	
 matching	
 over	
 uncertain	
 graphs	
 [under	
 submission]	

What	
 we	
 are	
 doing 	
 	

l Overview	

l NScale	
 Distributed	
 Programming	
 Framework	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Con-nuous	
 Queries	
 over	
 Distributed	
 Graphs	

l Conclusions	

Outline 	
 	

•  MapReduce-­‐based	
 (e.g.,	
 Gbase,	
 Pegasus,	
 Hadapt)	

•  Use	
 MR	
 as	
 the	
 underlying	
 distributed	
 processing	
 framework	
 	

•  Disadvantages:	

•  Not	
 intui-ve	
 to	
 program	
 graph	
 analysis	
 tasks	
 using	
 MR	

•  Each	
 "traversal"	
 effec-vely	
 requires	
 a	
 new	
 MapReduce	
 phase:	

Inefficient	

•  Vertex-­‐centric	
 itera-ve	
 programming	
 frameworks	

•  Synchronous	
 (Pregel,	
 Giraph),	
 Asynchronous	
 (GraphLab,	
 GRACE)..	
 	

•  No	
 inherent	
 support	
 for	
 applica-ons	
 that	
 require	
 analy-cs	
 on	
 the	

neighborhoods	
 of	
 a	
 subset	
 of	
 nodes	

•  Not	
 sufficient	
 or	
 natural	
 for	
 many	
 query	
 analysis	
 tasks	
 (Ego	

network	
 analysis)	

•  May	
 be	
 inefficient	
 for	
 analy-cs	
 that	
 require	
 traversing	
 beyond	
 1-­‐
hop	
 neighbors	

Graph Programming Frameworks

• An	
 end-­‐to-­‐end	
 distributed	
 graph	

programming	
 framework	

• Users/applica-on	
 programs	

specify:	
 	

•  Neighborhoods	
 or	
 subgraphs	
 of	

interest	

•  A	
 kernel	
 computa-on	
 to	
 operate	

upon	
 those	
 subgraphs	

•  Framework:	

•  Extracts	
 the	
 relevant	
 subgraphs	

from	
 underlying	
 data	
 and	
 loads	
 in	

memory	

•  Execu-on	
 engine:	
 Executes	
 user	

computa-on	
 on	
 materialized	

subgraphs	

•  Communica-on:	
 Shared	
 state/
message	
 passing	

	

	

NScale Programming Framework

NScale	
 User	
 API	

Underlying	
 graph	
 	

data	

Flat	
 files	

Special	
 purpose	
 indexes	

<>	

<K1,V1>	

<K2,V2>	

.	

.	

.	

Key-­‐Value	
 stores	

Graph	
 ExtracAon	
 	

and	
 Loading	

MapReduce	
 	

(Apache	

Yarn)	

Graph	
 	

extrac-on	
 	

Graph	

analyAcs	

In-­‐Memory	

Distributed	
 	

Execu-on	
 	

Engine	

Output	

Materializa-on	

Checkpoin-ng	

	

	

Output	

Users	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Analysts	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Applica-ons/Visualiza-on	
 Tools	

NScale Programming Framework

1

6

4

2

5

3

10	

7

9
8

1
1	

Underlying	
 graph	
 	

data	
 on	
 HDFS	

1

6

2

5

3

7

10	

7

9
8

11	

Subgraphs	
 in	

Distributed	

Memory	

Graph	
 Extrac-on	
 	

and	
 Loading	

MapReduce	
 	

(Apache	

Yarn)	

Graph	
 	

extrac-on	
 	

Nscale	
 User	
 API	
 (Datalog,	
 BluePrints):	
 Query:	
 Compute	
 LCC	
 for	
 nodes	

where	
 node.color=red	
 	

Distributed	
 	

Execu-on	
 	

Engine	

Distributed	
 	

Execu-on	
 	

Engine	

Graph	

analy-cs	

Output	

Materializa-on	

Checkpoin-ng	

	

	

Output	

Example: Local Clustering Coefficient

NScale: Summary

•  User	
 writes	
 programs	
 at	
 the	
 abstrac-on	
 of	
 a	
 graph	

•  More	
 intui-ve	
 for	
 graph	
 analy-cs	

•  Captures	
 mechanics	
 of	
 common	
 graph	
 analysis/cleaning	
 tasks	

•  Complex	
 analy-cs:	

•  Union	
 or	
 intersec-on	
 of	
 neighborhoods	
 (Link	
 predic-on,	
 En-ty	
 resolu-on)	

•  Induced	
 subgraph	
 of	
 a	
 hashtag	
 (Influence	
 analysis	
 on	
 hashtag	
 ego	
 networks)	

•  Scalability:	
 Only	
 relevant	
 por-ons	
 of	
 the	
 graph	
 data	
 loaded	
 into	

memory	

•  User	
 can	
 specify	
 subgraphs	
 of	
 interest,	
 and	
 select	
 nodes	
 or	
 edges	
 based	
 on	

proper-es	

•  E.g.	
 Edges	
 with	
 recent	
 communica-on	

•  Generaliza-on:	
 Flexibility	
 in	
 subgraph	
 defini-on	

•  Handle	
 vertex-­‐centric	
 programs	

•  Subgraph:	
 vertex	
 and	
 associated	
 edges	

•  Global	
 programs	

•  Subgraph	
 is	
 the	
 en-re	
 graph	

NScale: Summary

l Overview	

l NScale	
 Distributed	
 Programming	
 Framework	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Con-nuous	
 Queries	
 over	
 Distributed	
 Graphs	

l Conclusions	

Outline 	
 	

Mo-va-on	

l  The	
 observed,	
 automa@cally-­‐extracted	
 informa@on	
 networks	
 are	

oSen	
 noisy	
 and	
 incomplete	

l  Need	
 to	
 extract	
 the	
 underlying	
 true	
 informa@on	
 network	
 through:	

l  A[ribute	
 Predic-on:	
 to	
 predict	
 values	
 of	
 missing	
 aKributes	

l  Link	
 Predic-on:	
 to	
 infer	
 missing	
 links	

l  En-ty	
 Resolu-on:	
 to	
 decide	
 if	
 two	
 references	
 refer	
 to	
 the	
 same	
 en@ty	

l  Typically	
 itera-ve	
 and	
 interleaved	
 applica-on	
 of	
 the	
 techniques	

l  Use	
 results	
 of	
 one	
 to	
 improve	
 the	
 accuracy	
 of	
 other	
 opera-ons	

	

l  Numerous	
 techniques	
 developed	
 for	
 the	
 tasks	
 in	
 isola-on	

l  No	
 support	
 from	
 data	
 management	
 systems	

l  Hard	
 to	
 easily	
 construct	
 and	
 compare	
 new	
 techniques,	
 especially	
 for	

joint	
 inteference	

1.	
 Declara-ve	
 Graph	
 Cleaning	

l  Enable	
 declara-ve	
 specifica-on	
 of	
 graph	
 cleaning	
 tasks	

l  i.e.,	
 a[ribute	
 predic-on,	
 link	
 predic-on,	
 en-ty	
 resolu-on	

l  Interac-ve	
 system	
 for	
 execu-ng	
 them	
 over	
 large	
 datasets	

1.	
 Declara-ve	
 Graph	
 Cleaning	

l  Enable	
 declara-ve	
 specifica-on	
 of	
 graph	
 cleaning	
 tasks	

l  i.e.,	
 a[ribute	
 predic-on,	
 link	
 predic-on,	
 en-ty	
 resolu-on	

l  Interac-ve	
 system	
 for	
 execu-ng	
 them	
 over	
 large	
 datasets	

Overview	
 of	
 the	
 Approach	

l  Declara-ve	
 specifica-on	
 of	
 the	
 cleaning	
 task	

l  Datalog-­‐based	
 language	
 for	
 specifying	
 -­‐-­‐	

l  Predic-on	
 features	
 (including	
 local	
 and	
 rela-onal	
 features)	

l  The	
 details	
 of	
 how	
 to	
 accomplish	
 the	
 cleaning	
 task	

l  Arbitrary	
 interleaving	
 or	
 pipelining	
 of	
 different	
 tasks 	
 	

l  A	
 mix	
 of	
 declara-ve	
 constructs	
 and	
 user-­‐defined	

func-ons	
 to	
 specify	
 complex	
 predic-on	
 func-ons	

l  Op-mize	
 the	
 execu-on	
 through	
 caching,	
 incremental	

evalua-on,	
 pre-­‐computed	
 data	
 structures	
 …	

Proposed	
 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Proposed	
 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

For attribute prediction,
the domain is a subset of
the graph nodes.

For link prediction and
entity resolution, the
domain is a subset of
pairs of nodes.

Local: word frequency,
income, etc.
Relational: degree,
clustering coeff., no. of
neighbors with each
attribute value, common
neighbors between pairs
of nodes, etc.

Proposed	
 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Attribute prediction: the
missing attribute

Link prediction: add link
or not?

Entity resolution: merge
two nodes or not?

After predictions are made,
the graph changes:
Attribute prediction
changes local attributes.
Link prediction changes the
graph links.
Entity resolution changes
both local attributes and
graph links.

Some	
 Details	

l  Declara-ve	
 framework	
 based	
 on	
 Datalog	

l  A	
 declara-ve	
 logic	
 programming	
 language	
 (subset	
 of	
 Prolog)	

l  Cleaner	
 and	
 more	
 compact	
 syntax	
 than	
 SQL	

l  Not	
 considered	
 prac-cal	
 in	
 past,	
 but	
 resurgence	
 in	
 recent	
 years	

l  Declara-ve	
 networking,	
 data	
 integra-on,	
 cloud	
 compu-ng,	
 …	

l  Several	
 recent	
 workshops	
 on	
 Datalog	

l  We	
 use	
 Datalog	
 to	
 express:	

l  Domains	

l  Local	
 and	
 rela-onal	
 features	

l  Extend	
 Datalog	
 with	
 opera-onal	
 seman-cs	
 to	
 express:	

l  Predic-ons	
 (in	
 the	
 form	
 of	
 updates)	

l  Itera-on	

Specifying	
 Features	

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
 IntersectionCount(X, Y, D3)
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Update	
 Opera-on	

•  Ac-on	
 to	
 be	
 taken	
 itself	
 specified	
 declara-vely	

•  Enables	
 specifying,	
 e.g.,	
 different	
 ways	
 to	
 merge	
 in	
 case	
 of	
 en-ty	

resolu-on	
 (i.e.,	
 how	
 to	
 canonicalize)	

	

DEFINE	
 Merge(X,	
 Y)	

{	

	
 INSERT	
 Edge(X,	
 Z)	
 :-­‐	
 Edge(Y,	
 Z)	

	
 DELETE	
 Edge(Y,	
 Z)	

	
 UPDATE	
 Node(X,	
 A=ANew)	
 :-­‐	
 Node(X,A=AX),	
 Node(Y,A=AY),	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ANew=(AX+AY)/2	

	
 UPDATE	
 Node(X,	
 B=BNew)	
 :-­‐	
 Node(X,B=BX),	
 Node(X,B=BX),	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 BNew=max(BX,BY)	

	
 DELETE	
 Node(Y)	

}	

Merge(X,	
 Y)	
 :-­‐	
 Features	
 (X,	
 Y,	
 F1,…,Fn),	
 predict-­‐ER(F1,…,Fn)	
 =	
 true,	
 	

	
 	
 	
 	
 	
 	
 	
 confidence-­‐ER(F1,…,Fn)	
 >	
 0.95	

Example	

l  Real-­‐world	
 PubMed	
 graph	

l  Set	
 of	
 publica-ons	
 from	
 the	
 medical	
 domain,	
 their	
 abstracts,	
 and	
 cita-ons	

l  50,634	
 publica-ons,	
 115,323	
 cita-on	
 edges	

l  Task:	
 A[ribute	
 predic-on	

l  Predict	
 if	
 the	
 paper	
 is	
 categorized	
 as	
 Cogni-on,	
 Learning,	
 Percep-on	
 or	
 Thinking	

l  Choose	
 top	
 10%	
 predic-ons	
 aSer	
 each	
 itera-on,	
 for	
 10	
 itera-ons	

	
 DOMAIN	
 Uncommi[ed(X):-­‐Node(X,Commi[ed=‘no’)	

{	

	
 	
 	
 ThinkingNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Thinking’)	

	
 	
 	
 Percep-onNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Percep-on’)	

	
 	
 	
 Cogni-onNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Cogni-on’)	

	
 	
 	
 LearningNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Learning’)	

	
 	
 	
 Features-­‐AP(X,A,B,C,D,Abstract):-­‐	
 ThinkingNeighbors(X,A),	
 Percep-onNeighbors(X,B),	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Cogni-onNeighbors(X,C),	
 LearningNeighbors(X,D),Node(X,Abstract,	
 ,)	

}	

ITERATE(10)	
 	

{	

	
 	
 	
 UPDATE	
 Node(X,_,P,‘yes’):-­‐	
 Features-­‐AP(X,A,B,C,D,Text),	
 P	
 =	
 predict-­‐AP(X,A,B,C,D,Text),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 confidence-­‐AP(X,A,B,C,D,Text)	
 IN	
 TOP	
 10%	

}	

l  Using	
 a	
 simple	
 RDBMS	
 built	
 on	
 top	
 of	
 Java	
 Berkeley	
 DB	

l  Predicates	
 in	
 the	
 program	
 correspond	
 to	
 materialized	
 tables	

l  Datalog	
 rules	
 converted	
 into	
 SQL	

l  Incremental	
 maintenance:	

l  Every	
 set	
 of	
 changes	
 done	
 by	
 AP,	
 LP,	
 or	
 ER	
 logged	
 into	
 two	
 change	
 tables	

ΔNodes	
 and	
 ΔEdges	

l  Aggregate	
 maintenance	
 is	
 performed	
 by	
 aggrega-ng	
 the	
 change	
 table	
 then	

refreshing	
 the	
 old	
 table	

l  Proved	
 hard	
 to	
 scale	

l  Incremental	
 evalua-on	
 much	
 faster	
 than	
 recompute,	
 but	
 SQL-­‐based	

evalua-on	
 was	
 inherently	
 a	
 bo[leneck	

l  Hard	
 to	
 do	
 complex	
 features	
 like	
 centrality	
 measures	

l  In	
 the	
 process	
 of	
 changing	
 the	
 backend	
 to	
 use	
 a	
 new	
 distributed	
 graph	

processing	
 framework	
 	

Prototype	
 Implementa-on	

l Overview	

l NScale	
 Distributed	
 Programming	
 Framework	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Con-nuous	
 Queries	
 over	
 Distributed	
 Graphs	

l Conclusions	

Outline 	
 	

l  Increasing	
 interest	
 in	
 temporal	
 analysis	
 of	
 informa-on	
 networks	
 to:	

l  Understand	
 evolu-onary	
 trends	
 (e.g.,	
 how	
 communi-es	
 evolve)	
 	

l  Perform	
 compara-ve	
 analysis	
 and	
 iden-fy	
 major	
 changes	

l  Develop	
 models	
 of	
 evolu-on	
 or	
 informa-on	
 diffusion	

l  Visualiza-ons	
 over	
 -me	

l  For	
 be[er	
 predic-ons	
 in	
 the	
 future	

l  Focused	
 explora-on	
 and	
 querying	

l  “Who	
 had	
 the	
 highest	
 PageRank	
 in	
 a	
 cita@on	
 network	
 in	
 1960?”	

l  “Iden@fy	
 nodes	
 most	
 similar	
 to	
 X	
 as	
 of	
 one	
 year	
 ago”	

l  “Iden@fy	
 the	
 days	
 when	
 the	
 network	
 diameter	
 (over	
 some	
 transient	
 edges	

like	
 messages)	
 is	
 smallest”	

l  “Find	
 a	
 temporal	
 subgraph	
 paKern	
 in	
 a	
 graph”	

Historical	
 Graph	
 Data	
 Management	

ti tj tk

Hinge:	
 A	
 System	
 for	
 Temporal	
 Explora-on	

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

Key-Value Store
DeltaGraph

GraphManager
Manage GraphPool -
Overlaying historical
graphs and cleanup

HistoryManager
Manage DeltaGraph -
Query Planning, Disk

Read/Write

HiNGE

Analyst JUNG

QueryManager
Translate user query into

Graph Retrieval and execute
Algorithms on graphs

Figure 2: System Architecture: HiNGE, DeltaGraph and
GraphPool.

the network, and perhaps, certain anomalies as well. Exploration
is considered to be the stepping stone for more specific inquiries
into the nature of the network. Exploration of a temporal graph
is enabled using – (a) a time-slider, (b) an interactive, zoomable
snapshot viewer, and (c) a metric calculator. The time-slider is
an interactive timeline that the user can adjust to go to a specific
time of interest. The snapshot viewer presents a view of the graph
at the desired time as indicated by the time-slider. The user may
pan, zoom or rotate the pane with mouse operations to focus on the
area of interest in the graph. The layout, color and other factors of
appearance of the graph can also be changed by customizing the
choices in the Settings menu. The metric calculator provides the
choice of several metrics such as PageRank, betweenness central-
ity, clustering coefficient, etc., to be computed for the vertices of
the network at the time indicated by the time slider. The metric val-
ues may be chosen as a part of vertex labels in the snapshot view,
or can be used to make the graph display more appropriate. Simul-
taneously, the k top or bottom-valued vertices are displayed on the
side. These can be seen in Figure 3.
Query: The Query mode is meant to provide a comparative and
detailed temporal evolutionary analysis of the vertices of interest
that the user may have identified during the exploration phase. It
shows the structural evolution as well as the change in the metrics
of interest, such as the clustering coefficient. To specify a query,
the user must specify the vertex, the start and end times, the metric
of interest, and the number of time points to be compared. Figure
4 shows the results of an example query for node 12.
Search: An interesting and slightly different kind of query is a sub-
graph pattern matching query. Subgraph pattern matching queries
can be used to find subgraphs that satisfy certain properties, and
are one of the most widely studied queries over graph data. HiNGE
supports subgraph pattern matching queries over the history of a
network. The user may specify the query by drawing the structure
of a subgraph, assigning labels to the nodes, and specifying the time
interval during which to perform the search. The result lists all the
matches found for the query, i.e., the subgraph layouts and times

Figure 3: Temporal exploration using time-slider

at which the particular subgraph exists. This functionality is imple-
mented by using the ability to build and maintain auxiliary indexes
in DeltaGraph (specifically, we build auxiliary path indexes) [4].

Another very useful feature is node search that helps the user
to find nodes given attribute values. This is implemented using
an auxiliary inverted index in DeltaGraph. Hence, the user may
constrain the search by specifying a time interval. Figure 5 shows
the node search and subgraph pattern search features. By keeping
the time range open, we can specify a search across all times; on
the other hand, if the end point and the start point are the same, we
only search in that particular snapshot.

Figure 5: (a) Node Search; (b) Subgraph Pattern Search

3.2 Working with HiNGE
The expected input graph specification is as described in [4].

The evolving network is described as a set of chronological events.
Each node is required to have a unique identification, the nodeid.
Nodes and edges may carry any number of attributes, e.g., name,
label, etc. While specifying the node in a query, the user must spec-
ify the nodeid. Node search can be used to locate the nodeid for the
node when only the attributes of the node are known. Here is a list
of the major options/parameters, all of which can be accessed from

Hinge:	
 A	
 System	
 for	
 Temporal	
 Explora-on	

Hinge:	
 A	
 System	
 for	
 Temporal	
 Explora-on	

l  Focus	
 of	
 the	
 work	
 so	
 far:	
 snapshot	
 retrieval	
 queries	

l  Given	
 one	
 @mepoint	
 or	
 a	
 set	
 of	
 @mepoints	
 in	
 the	
 past,	
 retrieve	
 the	

corresponding	
 snapshots	
 of	
 the	
 network	
 in	
 memory	

l  Queries	
 may	
 specify	
 only	
 a	
 subset	
 of	
 the	
 columns	
 to	
 be	
 fetched	

l  Some	
 more	
 complex	
 types	
 of	
 queries	
 can	
 be	
 specified	

l  Given	
 the	
 ad	
 hoc	
 nature	
 of	
 much	
 of	
 the	
 analysis,	
 one	
 of	
 the	
 most	

important	
 query	
 types	

l  Key	
 challenges:	

l  Needs	
 to	
 be	
 very	
 fast	
 to	
 support	
 interac-ve	
 analysis	

l  Should	
 support	
 analyzing	
 100’s	
 or	
 more	
 snapshots	
 simultaneously	

l  Support	
 for	
 distributed	
 retrieval	
 and	
 distributed	
 analysis	
 (e.g.,	
 using	
 Pregel)	

Snapshot	
 Retrieval	
 Queries	

l  Temporal	
 rela-onal	
 databases	

l  Vast	
 body	
 of	
 work	
 on	
 models,	
 query	
 languages,	
 and	
 systems	

l  Dis-nc-on	
 between	
 transac@on-­‐@me	
 and	
 valid-­‐@me	
 temporal	
 databases	

l  Snapshot	
 retrieval	
 queries	
 also	
 called	
 valid	
 @meslice	
 queries	

l  Op-ons	
 for	
 execu-ng	
 snapshot	
 queries	

l  External	
 Interval	
 Trees	
 [Arge	
 and	
 Vi[er,	
 1996],	
 External	
 Segment	
 Trees	

[Blakenagal	
 and	
 Gu-ng,	
 1994],	
 Snapshot	
 index	
 [Slazberg	
 et	
 al.,	
 1999],	
 …	

l  Key	
 limita-ons	

l  Not	
 flexible	
 or	
 tunable;	
 not	
 easily	
 parallelizable;	
 no	
 support	
 for	
 mul--­‐point	

queries;	
 intended	
 mainly	
 for	
 disks	

Prior	
 Work	

Key-Value Store
DeltaGraph

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

GraphManager
Manage GraphPool -
Overlaying historical
graphs and cleanup

HistoryManager
Manage DeltaGraph -
Query Planning, Disk

Read/Write

QueryManager
Translate user query into

Graph Retrieval and
execute Algorithms on

graphs

Social
Network
Analysis
SoftwareAnalyst

System

System	
 Overview	

Currently supports a programmatic API to access the
historical graphs

Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

GraphPool: Store many graphs in memory in an
overlaid fashion

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

DeltaGraph: Hierarchical index structure with
(logical) snapshots at the leaves

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Overview	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

Overview	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

Currently supports a programmatic API to access the
historical graphs

Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

Overview	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

DeltaGraph: Hierarchical index structure with
(logical) snapshots at the leaves

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Overview	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

GraphPool: Store many graphs in memory in an
overlaid fashion

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

l  Edge	
 deltas	
 stored	
 in	
 a	
 key-­‐value	
 store	

l  Currently	
 uses	
 Kyoto	
 Cabinet	
 disk-­‐based	
 key-­‐value	
 store	

l  Parallelized	
 by	
 running	
 a	
 separate	
 instance	
 on	
 each	
 machine	

l  Snapshot	
 retrieval	
 arbitrarily	
 parallelizable	

l  Can	
 load	
 the	
 snapshot(s)	
 in	
 parallel	
 on	
 any	
 number	
 of	
 machines	

l  Supports	
 a	
 simplified	
 Pregel-­‐like	
 abstrac-on	
 on	
 top	

l  Highly	
 tunable	

l  Can	
 control	
 the	
 access	
 -mes,	
 latencies,	
 storage	
 requirements	
 by	
 appropriate	

choice	
 of	
 parameter	
 values	

l  Supports	
 pre-­‐fetching	
 to	
 reduce	
 online	
 query	
 latencies	

l  Extensible	

l  APIs	
 to	
 extend	
 the	
 basic	
 structure	
 to	
 support	
 subgraph	
 paKern	
 matching,	

reachability	
 etc.	

Summary	

Empirical	
 Results	

l  DeltaGraph	
 vs	
 In-­‐Memory	
 Interval	
 Tree	

	

1998 1999 2000
Query Timepoint

0

500

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Performance: Dataset 2a

Interval Tree
DG
DG (Total Mat)

0

100

200

300

Sp
ac

e
(M

B
)

(b) Memory: Dataset 2a

Interval Tree
DG
DG (Total Mat)

Dataset 2a: 500,000 nodes+edges, 500,000 events

l Overview	

l NScale	
 Distributed	
 Programming	
 Framework	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Con-nuous	
 Queries	
 over	
 Distributed	
 Graphs	

l Conclusions	

Outline 	
 	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica@on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

l  Increasing	
 need	
 for	
 execu-ng	
 queries	
 and	
 analysis	
 tasks	
 in	
 real-­‐-me	

on	
 “data	
 streams”	

l  Ranging	
 from	
 simple	
 “monitor	
 updates	
 in	
 the	
 neighborhood”	
 to	

complex	
 “trend	
 discovery”	
 or	
 “anomaly	
 detec-on”	
 queries	

l  Very	
 low	
 latencies	
 desired	

l  Trade-­‐offs	
 between	
 push/pre-­‐computa-on	
 vs	
 pull/on-­‐demand	

l  Sharing	
 and	
 adap-ve	
 execu-on	
 necessary	

l  Parallel/distributed	
 solu-ons	
 needed	
 to	
 handle	
 the	
 scale	

l  Random	
 graph	
 par--oning	
 typically	
 results	
 in	
 large	
 edge	
 cuts	
 	

l  Distributed	
 traversals	
 to	
 answer	
 queries	
 leading	
 to	
 high	
 latencies	
 and	

high	
 network	
 communica-on	

l  Sophis-cated	
 par--oning	
 techniques	
 oSen	
 do	
 not	
 work	
 either	

Real-­‐-me	
 Graph	
 Queries	
 and	
 Analy-cs	

l  Dominant	
 type	
 of	
 queries	
 in	
 many	
 scenarios	
 (e.g.,	
 social	
 networks)	

l  How	
 to	
 execute	
 if	
 the	
 graph	
 is	
 par@@oned	
 across	
 many	
 machines?	

l  A	
 node’s	
 neighbors	
 may	
 be	
 on	
 a	
 different	
 machine	

l  Prior	
 approaches	

l  On-­‐demand	
 à	
 High	
 latencies	
 because	
 of	
 network	
 communica-on	

l  Local	
 seman-cs	
 [Pujol	
 et	
 al.,	
 SIGCOMM’11]	

l  For	
 every	
 node,	
 all	
 neighbors	
 replicated	
 locally	

l  High,	
 oSen	
 unnecessary	
 network	
 communica-on	
 overhead	

l  Our	
 approach	
 [SIGMOD’12]	

l  How	
 to	
 choose	
 what	
 to	
 replicate?	
 –	
 A	
 new	
 “fairness”	
 criterion	

l  Push	
 vs	
 Pull?	
 –	
 Fine-­‐grained	
 access	
 pa[ern	
 monitoring	

l  Decentralized	
 decision	
 making	

Example:	
 Fetch	
 Neighbors’	
 Updates	

Our	
 Approach	

l  Key	
 idea	
 1	
 	

l  Use	
 a	
 “fairness”	
 criterion	
 to	
 decide	
 what	
 to	
 replicate	

l  For	
 every	
 node,	
 at	
 least	
 t	
 frac-on	
 of	
 nodes	
 should	
 be	
 present	
 locally	

l  Can	
 make	
 some	
 progress	
 for	
 all	
 queries	

l  Guaranteeing	
 fairness	
 NP-­‐Hard	

	

Local Semantics

Fair with t = 2/3

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

Our	
 Approach	

l  Key	
 idea	
 2	
 	

l  Exploit	
 pa[erns	
 in	
 the	
 update/query	
 access	
 frequencies	

l  Use	
 pull	
 replica-on	
 in	
 the	
 first	
 12	
 hours,	
 push	
 in	
 the	
 next	
 12	

l  Significant	
 benefits	
 from	
 adap-vely	
 changing	
 the	
 replica-on	

decision	

l  Such	
 pa[erns	
 observed	
 in	
 human-­‐centric	
 networks	
 like	
 social	

networks	

	

We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair ⟨Cij , Pj⟩, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair ⟨Cij , Pk⟩
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different

! "

#$%&'()*+%,-./0(1*-2(3(/0 #$%&'(*,&4-./0(1*-2(3(/5
!*+%,-(&%(671*(8*&9:'&*+%;3(

<=>?=>?/?/@
A,&4-(&%(671*(8*&9:'&*+%;3

(</?/?B?=>@

C= C/

Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence

Our	
 Approach	

l  Key	
 idea	
 3	
 	

l  Make	
 replica-on	
 decisions	
 for	
 all	
 nodes	
 in	
 a	
 pair	
 of	
 par--ons	
 together	

l  Prior	
 work	
 had	
 suggested	
 doing	
 this	
 for	
 each	
 (writer,	
 reader)	
 pair	
 separately	

l  Works	
 in	
 the	
 publish-­‐subscribe	
 domain,	
 but	
 not	
 here	

l  Can	
 be	
 reduced	
 to	
 maximum	
 density	
 sub-­‐hypergraph	
 problem	

!"

!#

!$

!%

&"

&#

&$

&%

'(!")*+*# ,(&")*+*$

'(!#)*+*-

'(!$)*+*.

'(!%)*+*#

,(&#)*+*#

,(&$)*+*#

,(&%)*+*$

!"#

!"

!#

!$

!%

&"

&#

&$

&%

!""#$%&'($)$*+$,$-.

!"

!#

!$

!%

&"

&#

&$

&%

!"""#$%&'($)$/+$,$-.

01'2

0133

0133

01'2

01'2

0133

0133

0133

!"

!% !$

!#

&"

&% &$

&#

!"4#

Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway

Pairwise decisions Optimal

l  Con-nuously	
 evaluate	
 an	
 aggregate	
 in	
 the	
 local	
 neighborhoods	
 of	

all	
 nodes	
 of	
 a	
 graph	

l  For	
 example,	
 to	
 do	
 “ego-­‐centric	
 trend	
 analysis	
 in	
 social	
 networks”,	
 or	

“detec@ng	
 nodes	
 with	
 anomalous	
 communica@on	
 ac@vity”	

l  Challenging	
 even	
 if	
 data	
 all	
 on	
 a	
 single	
 machine	

l  Prior	
 approaches	

l  On-­‐demand	
 à	
 High	
 latencies	
 because	
 of	
 computa-onal	
 cost	

l  Con-nuously	
 maintain	
 all	
 the	
 query	
 results	
 (pre-­‐computa-on):	

l  Poten-ally	
 wasted	
 computa-on	
 	

l  Too	
 many	
 queries	
 to	
 be	
 executed	

l  Our	
 approach	
 [ongoing	
 work]	

l  Access-­‐pa[ern	
 based	
 on-­‐demand	
 vs	
 pre-­‐computa-on	
 decisions	

l  Aggressive	
 sharing	
 across	
 different	
 queries	

Example:	
 Ego-­‐centric	
 Aggregates	

Our	
 Approach	

l  Key	
 idea	
 4	
 	

l  Exploit	
 commonali-es	
 across	
 queries	
 to	
 share	
 par-al	
 computa-on	

l  Use	
 graph	
 compression-­‐like	
 techniques	
 to	
 minimize	
 the	
 computa-on	

Original dataflow graph for aggregate
computation – each edge
denotes a potential computation

Computation cost can be reduced by
identifying “bi-cliques”

Conclusions	
 and	
 Ongoing	
 Work	

l  Graph	
 data	
 management	
 becoming	
 increasingly	
 important	

l  Many	
 challenges	
 in	
 dealing	
 with	
 the	
 scale,	
 the	
 noise,	
 and	
 the	

variety	
 of	
 analy-cal	
 tasks	

l  Presented:	
 	

l  A	
 declara-ve	
 framework	
 for	
 cleaning	
 noisy	
 graphs	

l  A	
 system	
 for	
 managing	
 historical	
 data	
 and	
 snapshot	
 retrieval	

l  Techniques	
 for	
 managing	
 and	
 querying	
 highly	
 dynamic	
 graphs	

l  Ongoing	
 work	
 on	
 improving	
 and	
 extending	
 this	
 preliminary	
 work	

l  Developing	
 a	
 unified	
 query	
 language	
 based	
 on	
 Datalog	

l  Replica-on	
 and	
 pre-­‐computa-on	
 for	
 con-nuous	
 queries	

l  Efficiently	
 suppor-ng	
 distributed	
 graph	
 analy-cs	

l  Developing	
 effec-ve	
 graph	
 compression	
 techniques	

l  New	
 graph	
 par--oning	
 techniques	

