Enabling Declarative Graph Analytics over Large, Noisy Information Networks

Amol Deshpande

Department of Computer Science and UMIACS
University of Maryland at College Park

Joint work with: Prof. Lise Getoor, Walaa Moustafa, Udayan Khurana, Jayanta Mondal, Abdul Quamar, Hui Miao
Outline

- Motivation and Background
- Declarative Graph Cleaning
- Historical Graph Data Management
- Continuous Queries over Distributed Graphs
- Conclusions
Motivation

- Increasing interest in querying and reasoning about the underlying graph structure in a variety of disciplines

- A protein-protein interaction network
- Citation networks
- Communication networks
- Disease transmission networks
- Financial transaction networks
- Social networks
- Federal funds networks
- Knowledge Graph
- World Wide Web
- Stock Trading Networks
Motivation

- Underlying data hasn’t necessarily changed that much
 - ... aside from larger data volumes and easier availability
 - ... but increasing realization of the importance of reasoning about the graph structure to extract actionable insights

- Intense amount of work already on:
 - ... understanding properties of information networks
 - ... community detection, models of evolution, visualizations
 - ... executing different types of graph structure-focused queries
 - ... cleaning noisy observational data
 - ... and so on

- Lack of established data management tools
 - Most of the work done outside of general-purpose data management systems
Background: Popular Graph Data Models

RDF (Resource Description Framework)
Commonly used for knowledge-bases
Each edge captures:

\(<subject, predicate, object>\)

- **Tom Cruise**
- **Nicole Kidman**
- **7/3/1962**

Property graph model:
commonly used by open-source software

- **Name = Tom Cruise**
- **Born = 7/3/1962**
- **married**
- **Year = 1990**

- **Name = Top Gun**
- **Release Date = …**
- **acted-in**

XML: Semi-structured data model
In essence: a directed, labeled “tree”

1. movies (movie (title (Top Gun) actors (actor (name Tom Cruise) actor)))
Graph Queries vs Analysis Tasks

- Queries permit focused exploration of the data
 - Result typically a small portion of the graph (often just a node)
 - Examples:
 - **Subgraph pattern matching**: Given a “query” graph, find where it occurs in a given “data” graph
 - **Reachability; Shortest path**;
 - **Keyword search**: Find smallest subgraph that contains all the given keywords
 - **Historical or Temporal queries** over a historical trace of the network over a period of time
 - “Find most important nodes in a communication network in 2002?”
Graph Queries vs Analysis Tasks

- Continuous queries
 - Tell me when a topic is suddenly “trending” in my friend circle
 - Alert me if the communication activity around a node changes drastically (*anomaly detection*)
 - Monitor constraints on the data being generated by the nodes (*constraint monitoring*)

User queries posed once

Continuously arriving input data streams
- Updates to graph structure
- Updates to node values

Real-time results generated and sent to the users continuously

Continuous Query Processor
Analysis tasks typically require processing the entire graph

- **Centrality analysis**: Find the most central nodes in a network
 - Many different notions of centrality...
- **Community detection**: Partition the vertices into (potentially overlapping) groups with dense interaction patterns
- **Network evolution**: Build models for network formation and evolution over time
- **Network measurements**: Measuring statistical properties of the graph or local neighborhoods in the graphs
- **Inferring historical traces**: Complete historical data unlikely to be available – how to fill in the gaps?
- **Graph cleaning/inference**: Removing noise and uncertainty in the observed network data
Graph Queries vs Analysis Tasks

- **Analysis tasks:**
 - **Graph cleaning/inference:** Removing noise and uncertainty in the observed data through –
 - Attribute Prediction: *predict values of missing attributes*
 - Link Prediction: *infer missing links*
 - Entity Resolution: *decide if two nodes refer to the same entity*
 - Inference techniques typically utilize the graph structure

Link prediction

- Flip Korn
- Graham Cormode
- Divesh Srivastava
- Lukasz Golab
- Avishek Saha
- Nick Koudas
- Theodore Johnson
- Vladislav Shkapenyuk

Entity resolution

- Petre Stoica
- Prabhu Babu
- Amol Deshpande
- Barna Saha
- Samir Khuller
- Jian Li
- William Roberts
- Jian Li
Most data probably in flat files or *relational databases*

- Some types of queries can be converted into SQL queries
 - E.g., SPARQL queries over RDF data
- Otherwise most of the querying and analysis functionality implemented on top
 - Much research on building *specialized indexes* for specific types of queries (e.g., pattern matching, keyword search, reachability, …)

Emergence of specialized graph databases in recent years

- Neo4j, InfiniteGraph, DEX, AllegroGraph, HyperGraphDB, …

Key disadvantages:

- Fairly rudimentary declarative interfaces -- most applications need to be written using programmatic interfaces
- Or using provided toolkits/libraries
Several batch analysis frameworks proposed for analyzing graph data in recent years

- Analogous to Map-Reduce/Hadoop
 - Map-Reduce not suitable for most graph analysis tasks
 - Work in recent years on designing Map-Reduce programs for specific tasks
- Pregel, Giraph, GraphLab, GRACE
 - *Vertex-centric*: Programs written from the point of view of a vertex
 - Most based on message passing between nodes
- Vertex-centric frameworks somewhat limited and inefficient
 - Unclear how to do many complex graph analysis tasks
 - Not widely used yet
Key Data Management Challenges

- Lack of declarative query languages and expressive programming frameworks for processing graph-structured data
- Inherent noise and uncertainty in the raw observation data
 - Support for graph cleaning must be integrated into the system
 - Need to reason about uncertainty during query execution
- Very large volumes of heterogeneous data over time
 - Distributed/parallel storage and query processing needed
 - Graph partitioning notoriously hard to do effectively
 - Historical traces need to be stored in a compressed fashion
- Highly dynamic and rapidly changing data as well as workloads
 - Need aggressive pre-computation to enable low-latency query execution
What we are doing

- Address the data management challenges in enabling a variety of queries and analytics

- Aim to support three declarative user-level abstractions for specifying queries or tasks
 - A declarative Datalog-based query language for specifying queries (including historical and continuous)
 - A high-level Datalog-based framework for graph cleaning tasks
 - An expressive programming framework for domain-specific queries or analysis tasks
 - Analogous to MapReduce

- Handle very large volumes of data (including historical traces) through developing distributed and cloud computing techniques
System Architecture

Analysts, Applications, Visualization Tools

- Continuous Query Processor
- Blueprints API
- Historical Query Processor
- GraphPool
 - Current graph;
 - Views;
 - Historical snapshots
- Replication Manager
- Communications Module

DeltaGraph
- Persistent, Historical Compressed Graph Storage

Replication Maintenance

Forwarded Queries

Graph Updates
System Architecture

Analysts, Applications, Visualization

- Continuous Query Processor
- Blueprints API
- Historical Query Processor
- One-time Query Processor
- GraphPool
 - Current graph; Views; Historical snapshots
- Replication Manager
- Communications Module

DeltaGraph
- Persistent, Historical Compressed Graph Storage

Many graphs maintained in an overlaid, memory-efficient manner

Standard API used to write graph algorithms/libraries

- Replication Maintenance
- Forwarded Queries
- Graph Updates

A disk-based or cloud-based key-value store
What we are doing

● Work so far:
 ● NScale: An end-to-end distributed programming framework for writing graph analytics tasks
 ● Declarative graph cleaning [GDM’11, SIGMOD Demo’13]
 ● Real-time continuous query processing
 ● Aggressive replication to manage very large dynamic graphs efficiently in the cloud, and to execute continuous queries over them [SIGMOD’12]
 ● New techniques for sharing [under submission]
 ● Historical graph management
 ● Efficient single-point or multi-point snapshot retrieval over very large historical graph traces [ICDE’13, SIGMOD Demo’13]
 ● Ego-centric pattern census [ICDE’12]
 ● Subgraph pattern matching over uncertain graphs [under submission]
Outline

- Overview
- NScale Distributed Programming Framework
- Declarative Graph Cleaning
- Historical Graph Data Management
- Continuous Queries over Distributed Graphs
- Conclusions
Graph Programming Frameworks

• **MapReduce-based (e.g., Gbase, Pegasus, Hadapt)**
 - Use MR as the underlying distributed processing framework
 - Disadvantages:
 - Not intuitive to program graph analysis tasks using MR
 - Each "traversal" effectively requires a new MapReduce phase: Inefficient

• **Vertex-centric iterative programming frameworks**
 - Synchronous (Pregel, Giraph), Asynchronous (GraphLab, GRACE)
 - No inherent support for applications that require analytics on the neighborhoods of a subset of nodes
 - Not sufficient or natural for many query analysis tasks (Ego network analysis)
 - May be inefficient for analytics that require traversing beyond 1-hop neighbors
NScale Programming Framework

• An end-to-end distributed graph programming framework

• Users/application programs specify:
 • Neighborhoods or subgraphs of interest
 • A kernel computation to operate upon those subgraphs

• Framework:
 • Extracts the relevant subgraphs from underlying data and loads in memory
 • Execution engine: Executes user computation on materialized subgraphs
 • Communication: Shared state/message passing
NScale Programming Framework

Users

Analysts

Applications/Visualization Tools

NScale User API

Underlying graph data

Flat files

<K1,V1> <K2,V2> . . .

Key-Value stores

Graph Extraction and Loading

MapReduce (Apache Yarn)

Graph extraction

In-Memory Distributed Execution Engine

Output

Materialization

Checkpointing

Special purpose indexes
Example: Local Clustering Coefficient

Nsacle User API (Datalog, BluePrints): Query: Compute LCC for nodes where node.color=red

Underlying graph data on HDFS

Graph Extraction and Loading

Subgraphs in Distributed Memory

Graph analytics

Output

MapReduce (Apache Yarn)

Graph extraction

Output Materialization Checkpointing

Example: Local Clustering Coefficient
• User writes programs at the abstraction of a graph
 • More intuitive for graph analytics
 • Captures mechanics of common graph analysis/cleaning tasks
 • Complex analytics:
 • Union or intersection of neighborhoods (Link prediction, Entity resolution)
 • Induced subgraph of a hashtag (Influence analysis on hashtag ego networks)

• Scalability: Only relevant portions of the graph data loaded into memory
 • User can specify subgraphs of interest, and select nodes or edges based on properties
 • E.g. Edges with recent communication

• Generalization: Flexibility in subgraph definition
 • Handle vertex-centric programs
 • Subgraph: vertex and associated edges
 • Global programs
 • Subgraph is the entire graph
Outline

- Overview
- NScale Distributed Programming Framework
- Declarative Graph Cleaning
- Historical Graph Data Management
- Continuous Queries over Distributed Graphs
- Conclusions
Motivation

- The observed, automatically-extracted information networks are often noisy and incomplete.

- Need to extract the underlying true information network through:
 - Attribute Prediction: to predict values of missing attributes
 - Link Prediction: to infer missing links
 - Entity Resolution: to decide if two references refer to the same entity

- Typically iterative and interleaved application of the techniques
 - Use results of one to improve the accuracy of other operations

- Numerous techniques developed for the tasks in isolation
 - No support from data management systems
 - Hard to easily construct and compare new techniques, especially for joint interference
Enable declarative specification of graph cleaning tasks. i.e., attribute prediction, link prediction, entity resolution.

Interactive system for executing them over large datasets.
1. Declare graph cleaning

 i.e., attribute prediction, link prediction, entity resolution

 Interactive system for executing them over large datasets
Overview of the Approach

- Declarative specification of the cleaning task
 - Datalog-based language for specifying --
 - Prediction features (including local and relational features)
 - The details of how to accomplish the cleaning task
 - Arbitrary interleaving or pipelining of different tasks

- A mix of declarative constructs and user-defined functions to specify complex prediction functions

- Optimize the execution through caching, incremental evaluation, pre-computed data structures ...
Proposed Framework

Specify the domain

Compute features

Make Predictions, and Compute Confidence in the Predictions

Choose Which Predictions to Apply
Proposed Framework

For **attribute prediction**, the domain is a subset of the graph nodes.

For **link prediction** and **entity resolution**, the domain is a subset of pairs of nodes.

- **Local**: word frequency, income, etc.
- **Relational**: degree, clustering coeff., no. of neighbors with each attribute value, common neighbors between pairs of nodes, etc.
Proposed Framework

Specify the domain

Compute features

Make Predictions, and Compute Confidence in the Predictions

Choose Which Predictions to Apply

Attribute prediction: the missing attribute

Link prediction: add link or not?

Entity resolution: merge two nodes or not?

After predictions are made, the graph changes:
Attribute prediction changes local attributes.
Link prediction changes the graph links.
Entity resolution changes both local attributes and graph links.
Some Details

- **Declarative framework based on Datalog**
 - A declarative logic programming language (subset of Prolog)
 - Cleaner and more compact syntax than SQL
 - Not considered practical in past, but resurgence in recent years
 - Declarative networking, data integration, cloud computing, ...
 - Several recent workshops on Datalog

- **We use Datalog to express:**
 - Domains
 - Local and relational features

- **Extend Datalog with operational semantics to express:**
 - Predictions (in the form of updates)
 - Iteration
Specifying Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree:</td>
<td>Degree(X, COUNT<Y>) :- Edge(X, Y)</td>
</tr>
<tr>
<td>Number of Neighbors with attribute ‘A’</td>
<td>NumNeighbors(X, COUNT<Y>) :- Edge(X, Y), Node(Y, Att='A’)</td>
</tr>
<tr>
<td>Clustering Coefficient</td>
<td>NeighborCluster(X, COUNT<Y,Z>) :- Edge(X,Y), Edge(X,Z), Edge(Y,Z)</td>
</tr>
<tr>
<td></td>
<td>ClusteringCoeff(X, C) :- NeighborCluster(X,N), Degree(X,D), C=2N/(D(D-1))</td>
</tr>
<tr>
<td>Jaccard Coefficient</td>
<td>IntersectionCount(X, Y, COUNT<Z>) :- Edge(X, Z), Edge(Y, Z)</td>
</tr>
<tr>
<td></td>
<td>UnionCount(X, Y, D) :- Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,</td>
</tr>
<tr>
<td></td>
<td>IntersectionCount(X, Y, D3)</td>
</tr>
<tr>
<td></td>
<td>Jaccard(X, Y, J) :- IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D</td>
</tr>
</tbody>
</table>
Update Operation

- Action to be taken itself specified declaratively
- Enables specifying, e.g., different ways to *merge* in case of entity resolution (i.e., how to *canonicalize*)

```prolog
DEFINE Merge(X, Y)
{
    INSERT Edge(X, Z) :- Edge(Y, Z)
    DELETE Edge(Y, Z)
    UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY),
                                 ANew=(AX+AY)/2
    UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX),
                                 BNew=max(BX,BY)
    DELETE Node(Y)
}
Merge(X, Y) :- Features (X, Y, F1,...,Fn), predict-ER(F1,...,Fn) = true,
              confidence-ER(F1,...,Fn) > 0.95
```
Example

- Real-world PubMed graph
 - Set of publications from the medical domain, their abstracts, and citations
- 50,634 publications, 115,323 citation edges
- Task: Attribute prediction
 - Predict if the paper is categorized as Cognition, Learning, Perception or Thinking
- Choose top 10% predictions after each iteration, for 10 iterations

```
DOMAIN Uncommitted(X):-Node(X,Committed='no')
{
  ThinkingNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label='Thinking')
  PerceptionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label='Perception')
  CognitionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label='Cognition')
  LearningNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label='Learning')
  Features-AP(X,A,B,C,D,Abstract):- ThinkingNeighbors(X,A), PerceptionNeighbors(X,B),
                                   CognitionNeighbors(X,C), LearningNeighbors(X,D),Node(X,Abstract,_,_)
}
ITERATE(10)
{
  UPDATE Node(X,_,P,'yes'):- Features-AP(X,A,B,C,D,Text), P = predict-AP(X,A,B,C,D,Text),
                              confidence-AP(X,A,B,C,D,Text) IN TOP 10%
}
Using a simple RDBMS built on top of Java Berkeley DB
- Predicates in the program correspond to materialized tables
- Datalog rules converted into SQL

Incremental maintenance:
- Every set of changes done by AP, LP, or ER logged into two change tables ΔNodes and ΔEdges
- Aggregate maintenance is performed by aggregating the change table then refreshing the old table

Proved hard to scale
- Incremental evaluation much faster than recompute, but SQL-based evaluation was inherently a bottleneck
- Hard to do complex features like centrality measures
- In the process of changing the backend to use a new distributed graph processing framework
Outline

- Overview
- NScale Distributed Programming Framework
- Declarative Graph Cleaning
- Historical Graph Data Management
- Continuous Queries over Distributed Graphs
- Conclusions
Increasing interest in temporal analysis of information networks to:

- Understand evolutionary trends (e.g., how communities evolve)
- Perform comparative analysis and identify major changes
- Develop models of evolution or information diffusion
- Visualizations over time
- For better predictions in the future

Focused exploration and querying

- “Who had the highest PageRank in a citation network in 1960?”
- “Identify nodes most similar to X as of one year ago”
- “Identify the days when the network diameter (over some transient edges like messages) is smallest”
- “Find a temporal subgraph pattern in a graph”
Hinge: A System for Temporal Exploration

Figure 2: System Architecture: Hinge, DeltaGraph and GraphPool.

The network, and perhaps, certain anomalies as well. Exploration is considered to be the stepping stone for more specific inquiries into the nature of the network. Exploration of a temporal graph is enabled using – (a) a time-slider, (b) an interactive, zoomable snapshot viewer, and (c) a metric calculator. The time-slider is an interactive timeline that the user can adjust to go to a specific time of interest. The snapshot viewer presents a view of the graph at the desired time as indicated by the time-slider. The user may pan, zoom or rotate the pane with mouse operations to focus on the area of interest in the graph. The layout, color and other factors of appearance of the graph can also be changed by customizing the choices in the Settings menu. The metric calculator provides the choice of several metrics such as PageRank, betweenness centrality, clustering coefficient, etc., to be computed for the vertices of the network at the time indicated by the time slider. The metric values may be chosen as a part of vertex labels in the snapshot view, or can be used to make the graph display more appropriate. Simultaneously, the top or bottom-valued vertices are displayed on the side. These can be seen in Figure 3.

Query:
The Query mode is meant to provide a comparative and detailed temporal evolutionary analysis of the vertices of interest that the user may have identified during the exploration phase. It shows the structural evolution as well as the change in the metrics of interest, such as the clustering coefficient. To specify a query, the user must specify the vertex, the start and end times, the metric of interest, and the number of time points to be compared. Figure 4 shows the results of an example query for node 12.

Search:
An interesting and slightly different kind of query is a subgraph pattern matching query. Subgraph pattern matching queries can be used to find subgraphs that satisfy certain properties, and are one of the most widely studied queries over graph data. Hinge supports subgraph pattern matching queries over the history of a network. The user may specify the query by drawing the structure of a subgraph, assigning labels to the nodes, and specifying the time interval during which to perform the search. The result lists all the matches found for the query, i.e., the subgraph layouts and times at which the particular subgraph exists. This functionality is implemented by using the ability to build and maintain auxiliary indexes [4]. Another very useful feature is node search that helps the user to find nodes given attribute values. This is implemented using an auxiliary inverted index in DeltaGraph. Hence, the user may constrain the search by specifying a time interval. Figure 5 shows the node search and subgraph pattern search features. By keeping the time range open, we can specify a search across all times; on the other hand, if the end point and the start point are the same, we only search in that particular snapshot.

3.2 Working with Hinge
The expected input graph specification is as described in [4]. The evolving network is described as a set of chronological events. Each node is required to have a unique identification, the nodeid. Nodes and edges may carry any number of attributes, e.g., name, label, etc. While specifying the node in a query, the user must specify the nodeid. Node search can be used to locate the nodeid for the node when only the attributes of the node are known. Here is a list of the major options/parameters, all of which can be accessed from...
Hinge: A System for Temporal Exploration


Kellner  Search

Found 24 results...
Result  NodeID
1       834274
2       889347
3       819930

Subgraph Pattern Search

Search

Node Connections: a → b → c → a

Node Connections: a → a
Hinge: A System for Temporal Exploration
Focus of the work so far: snapshot retrieval queries

- Given one timepoint or a set of timepoints in the past, retrieve the corresponding snapshots of the network in memory
- Queries may specify only a subset of the columns to be fetched
- Some more complex types of queries can be specified

Given the ad hoc nature of much of the analysis, one of the most important query types

Key challenges:

- Needs to be very fast to support interactive analysis
- Should support analyzing 100’s or more snapshots simultaneously
- Support for distributed retrieval and distributed analysis (e.g., using Pregel)
Temporal relational databases
- Vast body of work on models, query languages, and systems
- Distinction between *transaction-time* and *valid-time* temporal databases
- Snapshot retrieval queries also called *valid timeslice* queries

Options for executing snapshot queries
- External Interval Trees [Arge and Vitter, 1996], External Segment Trees [Blakenagal and Guting, 1994], Snapshot index [Slazberg et al., 1999], ...

Key limitations
- Not flexible or tunable; not easily parallelizable; no support for multi-point queries; intended mainly for disks
Currently supports a programmatic API to access the historical graphs

**GraphPool**: Store many graphs in memory in an ordered list

**DeltaGraph**: Hierarchical index structure with (logical) snapshots at the leaves

-----

### System Overview

- **GraphPool**: Store many graphs in memory in an ordered list.
- **DeltaGraph**: Hierarchical index structure with (logical) snapshots at the leaves.

#### Diagram

```
Super-Root
 ^
 | Δ(S₇, S₈)
 v
Root
 ^
 | Δ(S₅, S₇)
 v
S₇ = f(S₅, S₆)
 ^
 | Δ(S₆, S₇)
 v
 | Δ(S₅, S₇)
 v
S₅ = f(S₁, S₂)
 ^
 | Δ(S₁, S₅)
 v
S₂
 ^
 | Δ(S₂, S₅)
 v
S₁

S₃
 ^
 | Δ(S₃, S₆)
 v
S₄
 ^
 | Δ(S₄, S₆)
 v
```

### Table 1: Options for node attribute retrieval

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wnode0all</td>
<td>All node attributes</td>
</tr>
</tbody>
</table>
Overview

Analysts, Applications, Visualization Tools

Continuous Query Processor
One-time Query Processor
Blueprints API
Historical Query Processor
Replication Manager
GraphPool
Current graph; Views; Historical snapshots
Replica@on Maintenance
Forwarded Queries
Graph Updates

DeltaGraph
Persistent, Historical Graph Storage
Currently supports a programmatic API to access the historical graphs

/* Loading the index */
GraphManager gm = new GraphManager(…);
  gm.loadDeltaGraphIndex(…);
  …
/* Retrieve the historical graph structure along with node names as of Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
  …
/* Traversing the graph */
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
  …
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan 2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
  …
**Overview**

**Analysts, Applications, Visualization Tools**

**DeltaGraph:** Hierarchical index structure with (logical) snapshots at the leaves

- Super-Root
- Root
- \( S_7 = f(S_5, S_6) \)
- \( S_5 = f(S_1, S_2) \)
- \( S_6 = f(S_3, S_4) \)
- \( S_8 = \emptyset \)
- \( \Delta(S_7, S_8) \)
- \( \Delta(S_5, S_7) \)
- \( \Delta(S_6, S_7) \)
- \( \Delta(S_1, S_5) \)
- \( \Delta(S_2, S_5) \)
- \( \Delta(S_3, S_6) \)
- \( \Delta(S_4, S_6) \)

- \( S_1 \) to \( S_4 \):
  - \( E_1 \)
  - \( E_2 \)
  - \( E_3 \)

**Blueprints**

**API**

**Historical Query Processor**

**Replica Management**

**Communications Module**

- Replication Maintenance
- Forwarded Queries
- Graph Updates
**Overview**

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**Analysts, Applications, Visualization Tools**

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```

---

**GraphPool:** Store many graphs in memory in an overlaid fashion

```
GraphPool: Store many graphs in memory in an overlaid fashion
```
Summary

- **Edge deltas** stored in a key-value store
  - Currently uses Kyoto Cabinet disk-based key-value store
  - Parallelized by running a separate instance on each machine

- Snapshot retrieval arbitrarily parallelizable
  - Can load the snapshot(s) in parallel on any number of machines
    - Supports a simplified Pregel-like abstraction on top

- Highly tunable
  - Can control the access times, latencies, storage requirements by appropriate choice of parameter values
  - Supports pre-fetching to reduce online query latencies

- Extensible
  - APIs to extend the basic structure to support *subgraph pattern matching*, *reachability* etc.
Empirical Results

- DeltaGraph vs In-Memory Interval Tree

(a) Performance: Dataset 2a

(b) Memory: Dataset 2a

Dataset 2a: 500,000 nodes+edges, 500,000 events
Outline

- Overview
- NScale Distributed Programming Framework
- Declarative Graph Cleaning
- Historical Graph Data Management
- Continuous Queries over Distributed Graphs
- Conclusions
System Architecture

**Analysts, Applications, Visualization Tools**

- Continuous Query Processor
- Blueprints API
- Historical Query Processor
- GraphPool
  - Current graph; Views; Historical snapshots
- Replication Manager
- Communications Module
  - Replication Maintenance
  - Forwarded Queries
  - Graph Updates

**DeltaGraph**
- Persistent, Historical
- Graph Storage
Real-time Graph Queries and Analytics

- Increasing need for executing queries and analysis tasks in real-time on “data streams”
  - Ranging from simple “monitor updates in the neighborhood” to complex “trend discovery” or “anomaly detection” queries
- Very low latencies desired
  - Trade-offs between push/pre-computation vs pull/on-demand
  - Sharing and adaptive execution necessary
- Parallel/distributed solutions needed to handle the scale
  - Random graph partitioning typically results in large edge cuts
  - Distributed traversals to answer queries leading to high latencies and high network communication
  - Sophisticated partitioning techniques often do not work either
Example: Fetch Neighbors’ Updates

- Dominant type of queries in many scenarios (e.g., social networks)
  - How to execute if the graph is partitioned across many machines?
  - A node’s neighbors may be on a different machine

- Prior approaches
  - On-demand → High latencies because of network communication
  - Local semantics [Pujol et al., SIGCOMM’11]
    - For every node, all neighbors replicated locally
    - High, often unnecessary network communication overhead

- Our approach [SIGMOD’12]
  - How to choose what to replicate? – A new “fairness” criterion
  - Push vs Pull? – Fine-grained access pattern monitoring
  - Decentralized decision making
Our Approach

Key idea 1
- Use a “fairness” criterion to decide what to replicate
  - For every node, at least $t$ fraction of nodes should be present locally
- Can make some progress for all queries
- Guaranteeing fairness NP-Hard

Local Semantics

Fair with $t = 2/3$
Our Approach

Key idea 2

- Exploit patterns in the update/query access frequencies

- Use **pull** replication in the first 12 hours, **push** in the next 12
- Significant benefits from adaptively changing the replication decision
- Such patterns observed in human-centric networks like social networks
Our Approach

Key idea 3

- Make replication decisions for all nodes in a pair of partitions together
  - Prior work had suggested doing this for each (writer, reader) pair separately
  - Works in the publish-subscribe domain, but not here
- Can be reduced to *maximum density sub-hypergraph* problem

---

No point in pushing w4 – r4 will have to pull from the partition anyway
Example: Ego-centric Aggregates

- Continuously evaluate an aggregate in the local neighborhoods of all nodes of a graph
  - For example, to do “ego-centric trend analysis in social networks”, or “detecting nodes with anomalous communication activity”
  - Challenging even if data all on a single machine

- Prior approaches
  - On-demand $\rightarrow$ High latencies because of computational cost
  - Continuously maintain all the query results (pre-computation):
    - Potentially wasted computation
    - Too many queries to be executed

- Our approach [ongoing work]
  - Access-pattern based on-demand vs pre-computation decisions
  - Aggressive sharing across different queries
Our Approach

- **Key idea 4**
  - Exploit commonalities across queries to share partial computation
  - Use *graph compression*-like techniques to minimize the computation

---

Original dataflow graph for aggregate computation – each edge denotes a potential computation

Computation cost can be reduced by identifying “bi-cliques”
Conclusions and Ongoing Work

- Graph data management becoming increasingly important
- Many challenges in dealing with the scale, the noise, and the variety of analytical tasks
- **Presented:**
  - A declarative framework for cleaning noisy graphs
  - A system for managing historical data and snapshot retrieval
  - Techniques for managing and querying highly dynamic graphs
- **Ongoing work** on improving and extending this preliminary work
  - Developing a unified query language based on Datalog
  - Replication and pre-computation for continuous queries
  - Efficiently supporting distributed graph analytics
  - Developing effective graph compression techniques
  - New graph partitioning techniques