Enabling Declarative Graph Analytics over Large,

Noisy Information Networks

Amol Deshpande

Department of Computer Science and UMIACS
University of Maryland at College Park

Joint work with: Prof. Lise Getoor, Walaa Moustafa,
Udayan Khurana, Jayanta Mondal, Abdul Quamar,
Hui Miao

® Motivation and Background

® Declarative Graph Cleaning

® Historical Graph Data Management
® Continuous Queries over Distributed Graphs

® Conclusions

Motivation

® Increasing interest in querying and reasoning about the underlying
graph structure in a variety of disciplines

Linked [}

Social networks

Federal funds networks

Knowledge Graph

A protein-protein interaction

network World Wide Web

Citation networks

Communication networks
Financial transaction

Disease transmission networks Za
networks Stock Trading Networks

/AN

® Underlying data hasn’t necessarily changed that much

... aside from larger data volumes and easier availability

... but increasing realization of the importance of reasoning about

the graph structure to extract actionable insights
® Intense amount of work already on:

... understanding properties of information networks

.. community detection, models of evolution, visualizations

.. executing different types of graph structure-focused queries

.. cleaning noisy observational data

..and so on

® Lack of established data management tools

Most of the work done outside of general-purpose data
management systems

Background: Popular Graph Data Models
RDF (Resource Description Framework)
Commonly used for knowledge-bases g\@ acted in
Each edge captures:

<subject, predicate, object> born on was married to
Nicole
Kidman

XML : Semi-structured data model
In essence: a directed, labeled “tree”

Property graph model:
commonly used by open-
source software

Name = Tom Cruise Name = Top Gun
Born = 7/3/1962 Release Date = ...

acted-in

Year = 1990

Tom Cruise

Graph Queries vs Analysis Tasks

® Queries permit focused exploration of the data
Result typically a small portion of the graph (often just a node)

Examples:
e Subgraph pattern matching: Given a “query” graph,
find where it occurs in a given “data” graph 8

Query
e Reachability; Shortest path; Graph
Data Graph
o Keyword search: Find smallest subgraph that contains all the given

keywords

Historical or Temporal queries over a historical trace of the
network over a period of time

e “Find most important nodes in a communication network in 2002 ?”

Graph Queries vs Analysis Tasks

® Continuous queries
Tell me when a topic is suddenly “trending” in my friend circle

Alert me if the communication activity around a node changes
drastically (anomaly detection)

Monitor constraints on the data being generated by the nodes
(constraint monitoring)

User queries posed once

Continuously arriving
input data streams _
-- Updates to graph structure Rej"t’mtet r etzU”S generated
-- Updates to node values ana sent to the users
continuously
Continuous
Query

Processor

Graph Queries vs Analysis Tasks

® Analysis tasks typically require processing the entire graph

Centrality analysis: Find the most central nodes in a network

e Many different notions of centrality...

Community detection: Partition the vertices into (potentially
overlapping) groups with dense interaction patterns

Network evolution: Build models for network formation and
evolution over time

Network measurements: Measuring statistical properties of the
graph or local neighborhoods in the graphs

Inferring historical traces: Complete historical data unlikely to
be available — how to fill in the gaps?

Graph cleaning/inference: Removing noise and uncertainty in
the observed network data

Graph Queries vs Analysis Tasks

® Analysis tasks:

Graph cleaning/inference: Removing noise and uncertainty in
the observed data through —

e Attribute Prediction: predict values of missing attributes

e Link Prediction: infer missing links

e Entity Resolution: decide if two nodes refer to the same entity

Inference techniques typically utilize the graph structure

Link prediction — Entity resolution
; Cormode
Fllp Kom Petre Prabhu Amol e
Stoica Babu Deshpande [
Divesh Lukasz
Srivastava Golab
William Samir
Avishek Roberts " Khuller
Saha
Viadislav | Jian Jian
Nick Theodore Shkapenyuk L Li

Koudas Johnson

Data Management: State of the Art

® Most data probably in flat files or relational databases

Some types of queries can be converted into SQL queries
e E.g., SPARQL queries over RDF data

Otherwise most of the querying and analysis functionality

implemented on top

e Much research on building specialized indexes for specific types of
queries (e.g., pattern matching, keyword search, reachability, ...)

® Emergence of specialized graph databases in recent years
Neodj, InfiniteGraph, DEX, AllegroGraph, HyperGraphDB, ...

Key disadvantages:

e Fairly rudimentary declarative interfaces -- most applications need to be
written using programmatic interfaces

e Or using provided toolkits/libraries

Data Management: State of the Art

® Several batch analysis frameworks proposed for analyzing graph
data in recent years

Analogous to Map-Reduce/Hadoop

e Map-Reduce not suitable for most graph analysis tasks

e Work in recent years on designing Map-Reduce programs for specific
tasks

Pregel, Giraph, GraphlLab, GRACE
e Vertex-centric: Programs written from the point of view of a vertex
e Most based on message passing between nodes

Vertex-centric frameworks somewhat limited and inefficient

e Unclear how to do many complex graph analysis tasks

e Not widely used yet

Key Data Management Challenges

® Lack of declarative query languages and expressive programming
frameworks for processing graph-structured data

® Inherent noise and uncertainty in the raw observation data
Support for graph cleaning must be integrated into the system

Need to reason about uncertainty during query execution

® Very large volumes of heterogeneous data over time
Distributed/parallel storage and query processing needed
Graph partitioning notoriously hard to do effectively
Historical traces need to be stored in a compressed fashion

® Highly dynamic and rapidly changing data as well as workloads

Need aggressive pre-computation to enable low-latency query

execution

What we are doing

® Address the data management challenges in enabling a variety of
qgueries and analytics

® Aim to support three declarative user-level abstractions for
specifying queries or tasks

A declarative Datalog-based query language for specifying queries
(including historical and continuous)

A high-level Datalog-based framework for graph cleaning tasks

An expressive programming framework for domain-specific queries
or analysis tasks

e Analogous to MapReduce

e Handle very large volumes of data (including historical traces)
through developing distributed and cloud computing techniques

System Architecture

Analysts, Applications, Visualization Tools

Continuous Blueprints API Historical @ | Replication
S '~ Maintenance
Query Query T
Processor Processor %
GraphPooI _§ < Forwarded
Current graph; g Queries
One-time S o 5
. Views; Replication £
istori = Graph
Yy Historical Manager £ Ur(g; - 5
Processor snapshots © P
DeltaGraph

Persistent, Historical
Compressed Graph Storage

System Architecture

Analysts, Applications, Visualizg

Standard API

used to write graph
algorithms/libraries

Continuous

Blueprints API

Query
Processor

One-time
Query
Processor

GraphPool

Current graph;
Views;
Historical
snapshots

Many graphs maintained

in an overlaid, memory-efficient

manner

DeltaGraph

Persistent, Historical

Historical @ | Replication _
S |~ Maintenance =
Query 9
Processor =
[
_8 < Forwgrded S
© Queries
O
S
Replication £
£ Graph \
Manager 3 Updates >
A disk-based or
&= c/oud-based

Compressed Graph Storage

key-value store

What we are doing

® Work so far:

NScale: An end-to-end distributed programming framework for
writing graph analytics tasks

Declarative graph cleaning [Gbwv'11, SIGMOD Demo’13]

Real-time continuous query processing

e Aggressive replication to manage very large dynamic graphs efficiently in
the cloud, and to execute continuous queries over them [SIGMOD’12]

e New techniques for sharing [under submission]

Historical graph management

o Efficient single-point or multi-point snapshot retrieval over very large
historical graph traces [ICDE’13, , SIGMOD Demo’13]

Ego-centric pattern census [ICDE12]

Subgraph pattern matching over uncertain graphs [under submission]

® Overview

® NScale Distributed Programming Framework
® Declarative Graph Cleaning

® Historical Graph Data Management

® Continuous Queries over Distributed Graphs

® Conclusions

Graph Programming Frameworks

* MapReduce-based (e.g., Gbase, Pegasus, Hadapt)
* Use MR as the underlying distributed processing framework
e Disadvantages:
* Not intuitive to program graph analysis tasks using MR
e Each "traversal" effectively requires a new MapReduce phase:
Inefficient
* Vertex-centric iterative programming frameworks
e Synchronous (Pregel, Giraph), Asynchronous (GraphLab, GRACE)..

* No inherent support for applications that require analytics on the
neighborhoods of a subset of nodes

* Not sufficient or natural for many query analysis tasks (Ego
network analysis)

* May be inefficient for analytics that require traversing beyond 1-
hop neighbors

NScale Programming Framework

* An end-to-end distributed graph
programming framework

* Users/application programs
specify:
* Neighborhoods or subgraphs of
interest

* A kernel computation to operate
upon those subgraphs

* Framework:

* Extracts the relevant subgraphs
from underlying data and loads in
memory

* Execution engine: Executes user
computation on materialized
subgraphs

e Communication: Shared state/
message passing

NScale Programming Framework

Users Analysts Applications/Visualization Tools
[NScale User API]
Underlying graph = Graph Extraction | Graph : Output
data - and Loading | analytics |
l w ! v N\ :/)
[[
I I I
I I I
Flat files ! |MapReduce| ! ;
| | '
| (Apache : I
<K1,V1> : Yarn) | I
<K2,V2> , arm (| In-Memory | |
I l 1| Distributed ' Output
| I . I e .
: Graoh | Execution I Materialization
' ' rap! ' Engine ' |Checkpointing
Key-Value stores : extraction : ,
| I I
I I I
I I I
I | '
I I I
| I !
! 1\ AN /

Special purpose indexes

Example: Local Clustering Coefficient

[Nscale User API (Datalog, BluePrints): Query: Compute LCC for nodes]
where node.color=red

Subgraphs in

Underlying graph Graph Extraction Distributed Graph I Qutput
data on HDFS and Loading : Memory analytics :
i | ;
© e (@ @) (N
| I
| | ;
O O I | MapReduce : O Distributed :
: (AYpacf)\e , Execution |
I arn l Engine '
I I 6 '
o || '
I [Q . Output
O : Srash : >O < > < : Materialization
O : extraction : O : Checkpointing
- ' © '
I I . . |
[g) ! ! O Distributed :
O I I Execution I
' ' @ '
0 , | gine |
| o '
@, ' ' |
| AN 2N J

NScale: Summary

* User writes programs at the abstraction of a graph
* More intuitive for graph analytics

* Captures mechanics of common graph analysis/cleaning tasks

 Complex analytics:
* Union or intersection of neighborhoods (Link prediction, Entity resolution)
* Induced subgraph of a hashtag (Influence analysis on hashtag ego networks)

e Scalability: Only relevant portions of the graph data loaded into
memory

» User can specify subgraphs of interest, and select nodes or edges based on
properties
* E.g. Edges with recent communication

* Generalization: Flexibility in subgraph definition
* Handle vertex-centric programs
* Subgraph: vertex and associated edges

* Global programs
e Subgraph is the entire graph

® Overview

® NScale Distributed Programming Framework
® Declarative Graph Cleaning

® Historical Graph Data Management

® Continuous Queries over Distributed Graphs

® Conclusions

® The observed, automatically-extracted information networks are
often noisy and incomplete

® Need to extract the underlying true information network through:
Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

e Typically iterative and interleaved application of the techniques
Use results of one to improve the accuracy of other operations

® Numerous techniques developed for the tasks in isolation
No support from data management systems
Hard to easily construct and compare new techniques, especially for

joint inteference

0.0 .6 || Declarative Noisy Network # x |\

€ > e [localhost/declarative_network_analysis/demo.html

Declarative Noisy Network Analysis

Dataset

[DBLPDataset ‘:]

Datalog Program

DOMAIN Bin(#X,#Y) :- Edge(X,Z,'Co-Aut
IntersectionCount (#X,#Y,Count<2>))
Similarity(#X,#Y,S):-Node(X, Accou
Features-LP(#X,#Y,F1,F2):-Intersec

}

ITERATE(10) {

INSERT Edge(X,Y, 'Co-Author’):-Featu
predict-LP(F1l,F2)=true,

confidence-LP(F1,F2) IN TOP 1%
O — A

e (D XD

Suggestions

Attr Predict Link Predict Sim Entities

Check From To Edge Conf More

46.0.6 || Declarative Noisy Network / x |

¢ > C '['_"1 localhost/declarative_network_analysis/demo.html|

Hanene Azzag - Hanane Azzag

DISPLAY
ATTRIBUTE

NAME Hanane Azzag
ATTRIBUTES
DB 0

Al 1

SE 0
CHANGELOG

1. suggested in 1st
iter

Overview of the Approach

® Declarative specification of the cleaning task
Datalog-based language for specifying --
e Prediction features (including local and relational features)
e The details of how to accomplish the cleaning task
e Arbitrary interleaving or pipelining of different tasks

® A mix of declarative constructs and user-defined
functions to specify complex prediction functions

® Optimize the execution through caching, incremental
evaluation, pre-computed data structures ...

Proposed Framework

—_— [Specify the domain](—

[Compute features]

v

[Make Predictions, and Compute]

Confidence in the Predictions

v

Choose Which Predictions to
Apply

Proposed Framework

For attribute prediction,
the domain is a subset of

the graph nodes.
=R -) —_— Specify the domain . o
’ [pocsy l E For link prediction and
I ‘1' entity resolution, the
domain is a subset of
[Compute features] pairs of nodes.
Make Predictions, and Compute Local: word frequency,
Confidence in the Predictions income, elc.
‘L Relational: degree,
clustering coeff., no. of
Choose Which Predictions to neighbors with each
Apply attribute value, common
neighbors between pairs
| of nodes, efc.

Proposed Framework

Attribute prediction: the
missing attribute

| 4 i S [Specify the domain l6 Link prediction: add link

or not?
‘1' Entity resolution: merge
[Compute features] two nodes or not?

v

[Make Predictions, and Compute]

Confidence in the Predictions After predictions are made,

¢ the graph changes:
Attribute prediction

(—[Choose Which Predictions to] changes local attributes.

Link prediction changes the
graph links.
| Entity resolution changes

Apply

both local attributes and
graph links.

Some Details

® Declarative framework based on Datalog
A declarative logic programming language (subset of Prolog)
Cleaner and more compact syntax than SQL

Not considered practical in past, but resurgence in recent years
e Declarative networking, data integration, cloud computing, ...
e Several recent workshops on Datalog

® We use Datalog to express:
Domains
Local and relational features

® Extend Datalog with operational semantics to express:

Predictions (in the form of updates)
lteration

Specifying Features

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :— Edge(X, Y), Node(Y, Att="A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :— Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :— NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient

IntersectionCount(X, Y, COUNT<Z>) .- Edge(X, Z), Edge(Y, Z)

UnionCount(X, Y, D) :— Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
IntersectionCount(X, Y, D3)

Jaccard(X, Y, J) :— IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Update Operation

- Action to be taken itself specified declaratively
Enables specifying, e.g., different ways to merge in case of entity

resolution (i.e., how to canonicalize)

DEFINE Merge(X, Y)
{
INSERT Edge(X, Z) :- Edge(Y, 2)
DELETE Edgel(Y, 2)
UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY),
ANew=(AX+AY)/2
UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX),
BNew=max(BX,BY)
DELETE Node(Y)
}

Merge(X, Y) :- Features (X, Y, F1,...,Fn), predict-ER(F1,...,Fn) = true,
confidence-ER(F1,...,Fn) > 0.95

Example

® Real-world PubMed graph
Set of publications from the medical domain, their abstracts, and citations

® 50,634 publications, 115,323 citation edges

e Task: Attribute prediction
Predict if the paper is categorized as Cognition, Learning, Perception or Thinking

® Choose top 10% predictions after each iteration, for 10 iterations

DOMAIN Uncommitted(X):-Node(X,Committed=‘no’)

{
ThinkingNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label="Thinking’)
PerceptionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Perception’)
CognitionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Cognition’)
LearningNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Learning’)
Features-AP(X,A,B,C,D,Abstract):- ThinkingNeighbors(X,A), PerceptionNeighbors(X,B),

CognitionNeighbors(X,C), LearningNeighbors(X,D),Node(X,Abstract, ,)

}

ITERATE(10)

{
UPDATE Node(X, ,P,‘yes’):- Features-AP(X,A,B,C,D,Text), P = predict-AP(X,A,B,C,D, Text),

confidence-AP(X,A,B,C,D,Text) IN TOP 10%

Prototype Implementation

® Using a simple RDBMS built on top of Java Berkeley DB
Predicates in the program correspond to materialized tables
Datalog rules converted into SQL

® Incremental maintenance:
Every set of changes done by AP, LP, or ER logged into two change tables
ANodes and AEdges
Aggregate maintenance is performed by aggregating the change table then
refreshing the old table

® Proved hard to scale
Incremental evaluation much faster than recompute, but SQL-based
evaluation was inherently a bottleneck
Hard to do complex features like centrality measures
In the process of changing the backend to use a new distributed graph
processing framework

® Overview

® NScale Distributed Programming Framework
® Declarative Graph Cleaning

® Historical Graph Data Management

® Continuous Queries over Distributed Graphs

® Conclusions

Historical Graph Data Management

® Increasing interest in temporal analysis of information networks to:

Understand evolutionary trends (e.g., how communities evolve)
Perform comparative analysis and identify major changes
Develop models of evolution or information diffusion

Visualizations over time

a/a/
/'%

® Focused exploration and querying |

For better predictions in the future

|
T >
t

“Who had the highest PageRank in a citation network in 1960?”
“Identify nodes most similar to X as of one year ago”

“Identify the days when the network diameter (over some transient edges
like messages) is smallest”

“Find a temporal subgraph pattern in a graph”

A

-
O
o
(¢
-
O
Q.
X
LL]
(©
-
O
Q.
&
()
_I
| -
O
(Sl
&
Q
=)
0p)
>
V)
<

=
. ~ | 3
N s 9
S x| >
& o ©
< (=) g
<
= o
o
M o = il
QU
=z
g
S
e o0
7] wm
= _
<
bl
3 SN \\
S) { N
= TN
v /// \
s | . N\ A
£ ‘o o haa\ | N
2 |3 FEER » LS
(%} - o </ *,
- ¢ _“z388s AN
o . s|lo |- @ o ococooo W=
ale |: R g
e m,“ - mum Mm Ml |
i A o /}
0o g S5y 985885853 @\
o| & ©0 2% v g>0W©—owin 3
- §c I8 L
O1H L) RIECE: IV
0
Ol o o =
H ol= (e ANt n
[N

Hinge: A System for Temporal Exploration

® O O Node Search ™ ™ O Subgraph Pattern Se...
jrrinnnFrnnnnnnnnprrnnnnerprn Qlllllll SIERIRRIRRIR NIRRT IY
Start 1935 1948 1958 1968 Start 1938 19|48 19|58 19|68
End IIIIIIIIlI|IIIIIlIlI|IIIIIlII:|IIII](lllllIIIIIIIllIlllIIIIIIIIllIQ:
1938 1948 1958 1968 End 1938 1948 1958 1968
()
Kellner (Search) C —)

Found 24 results...

Result NodelD

1 834274 '
2 889347 A

3 819930 (a) (a)

Hinge: A System for Temporal Exploration

000 Historical Network Visualizer

File Mode Layout Settings Tools Help

Query NodelD 1 #Points 5
StanQ"""-“l""‘”’"PageRank)
1938 1948
Run!
End ‘IQ{
1938 1948
Evolution of Page Rank [
3=2 At time=7-1947; Links=2 At time=10-1951; Links=4 At time=1-1956; Links=4 0.350
0.325
0.300
0.275
0.250
4
5 0.225
O
w
0.200
0.175
0.150
0.125 =
,—'/
0.100 L
1940 1942 1944 1946 1948 1950 1952 1954
Date
[T C)

Snapshot Retrieval Queries

® Focus of the work so far: snapshot retrieval queries

Given one timepoint or a set of timepoints in the past, retrieve the
corresponding snapshots of the network in memory

Queries may specify only a subset of the columns to be fetched

Some more complex types of queries can be specified

® Given the ad hoc nature of much of the analysis, one of the most
important query types

e Key challenges:
Needs to be very fast to support interactive analysis
Should support analyzing 100’s or more snapshots simultaneously

Support for distributed retrieval and distributed analysis (e.g., using Pregel)

Prior Work

® Temporal relational databases

Vast body of work on models, query languages, and systems
Distinction between transaction-time and valid-time temporal databases

Snapshot retrieval queries also called valid timeslice queries

® Options for executing snapshot queries

External Interval Trees [Arge and Vitter, 1996], External Segment Trees
[Blakenagal and Guting, 1994], Snapshot index [Slazberg et al., 1999], ...

e Key limitations

Not flexible or tunable; not easily parallelizable; no support for multi-point
gueries; intended mainly for disks

System Overview

Currently supports a programmatic APl to access the

historical graphs
o

GraphPool: Store many graphs in memory in an

Ylanager(. ..);
DeltaGraph: Hierarchical index structure with

(logical) snapshots at the leaves
rructure along with node names as of

Super-Root (Sg=2 1(“1/2/1985”, “+node:name™);

A(S4,Sg)

Nodes();
nodes.get(0).getNeighbors();
des.get(0), neighborList.get(0));

ructure alone on Jan 2, 1986 and Jan

stGraphs(listOfDates, “”);

L 1 T L 1T L {)
Eq Eo Es —|

Overview

Analysts, Applications, Visualization Toois

Continuous

Query
Processor

One-time
Query
Processor

Blueprints API Historical
Query
Processor
GraphPool
Current graph;
Views; Replication
Historical Manager
snapshots
DeltaGraph

Persistent, Historical
Graph Storage

Communications Module

Replication

A

Maintenance

Forwarded

Queries

Graph

A

Updates

v

Overview

Analysts,

Continuous

Query
Processor

One-time
Query
Processor

Currently supports a programmatic API to access the
historical graphs

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphlndex(...);

/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “4+node:name”);

/* Traversing the graph*/

List<HistNode> nodes = h1.getNodes();

List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1l.getEdgeObj(nodes.get(0), neighborList.get(0));

/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */

listOfDates.add(*1/2/19867);

listOfDates.add(*“1/2/1987);

List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);

FErSISTETTL, rTISToricui

Graph Storage

Overview

Analysts, Applications, Visualization Tools

DeltaGraph: Hierarchical index structure with
(logical) snapshots at the leaves

storical
\uery
DCessor

lication
anager

Communications Module

A

Replication

Maintenance

Forwarded

A

Queries

Graph

v

Updates

Overview

Analysts, Applications, Visualization Tools

GraphPool: Store many graphs in memory in an
overlaid fashion

rical @ _ Replication

S ~ A T
ry .8 Maintenance
SSOr =

.g Forwarded

5 < -

© Queries

2

5
ation =

€ _ Graph \
ager S T Updates -

Summary

® FEdge deltas stored in a key-value store
Currently uses Kyoto Cabinet disk-based key-value store

Parallelized by running a separate instance on each machine

® Snapshot retrieval arbitrarily parallelizable
Can load the snapshot(s) in parallel on any number of machines
e Supports a simplified Pregel-like abstraction on top
® Highly tunable

Can control the access times, latencies, storage requirements by appropriate
choice of parameter values

Supports pre-fetching to reduce online query latencies
® Extensible

APIs to extend the basic structure to support subgraph pattern matching,
reachability etc.

Empirical Results

® DeltaGraph vs In-Memory Interval Tree

:W

—_
)
g
A
o 1000 —
é Interval Tree
= --- DG
c; ------ DG (Total Mat)
Q -
= A \ \
,,:: 5009, Ao AN NN = 20N~y
@ _\ /
=4
=
=¥
]
5 T ' ‘\ ~ "Bl
O ! -l’ llllllll I lllllllll I lllllll
1998 1999 2000

Query Timepoint
(a) Performance: Dataset 2a

Interval Tree
C—1DG
300 =1 DG (Total Mat)

Space (MB)
=

100

(b) Memory: Dataset 2a

Dataset 2a: 500,000 nodes+edges, 500,000 events

® Overview

® NScale Distributed Programming Framework
® Declarative Graph Cleaning

® Historical Graph Data Management

® Continuous Queries over Distributed Graphs

® Conclusions

System Architecture

Analysts, Applications, Visualization Tools

Continuous Blueprints API Historical @© | Replication
S '~ Maintenance
Query Query 5
Processor Processor %
GraphPooI é < Forwarded
Current graph; g Queries
One-time ; . .. 5
. Views; Replication g
istori £ Graph
Y Historical Manager S Ufé;ﬁ; L S
Processor snapshots O P
DeltaGraph

Persistent, Historical
Graph Storage

Real-time Graph Queries and Analytics

® Increasing need for executing queries and analysis tasks in real-time
on “data streams”

Ranging from simple “monitor updates in the neighborhood” to
complex “trend discovery” or “anomaly detection” queries

e Very low latencies desired
Trade-offs between push/pre-computation vs pull/on-demand
Sharing and adaptive execution necessary

e Parallel/distributed solutions needed to handle the scale
Random graph partitioning typically results in large edge cuts

Distributed traversals to answer queries leading to high latencies and
high network communication

Sophisticated partitioning techniques often do not work either

Example: Fetch Neighbors” Updates

e Dominant type of queries in many scenarios (e.g., social networks)
How to execute if the graph is partitioned across many machines?

A node’s neighbors may be on a different machine

® Prior approaches
On-demand = High latencies because of network communication
Local semantics [Pujol et al., SIGCOMM’11]
e For every node, all neighbors replicated locally

e High, often unnecessary network communication overhead

® Our approach [SIGMOD’12]
How to choose what to replicate? — A new “fairness” criterion
Push vs Pull? — Fine-grained access pattern monitoring

Decentralized decision making

Our Approach

® Keyideal

Use a “fairness” criterion to decide what to replicate
e For every node, at least t fraction of nodes should be present locally

Can make some progress for all queries
Guaranteeing fairness NP-Hard

Local Semantics

=
S

2 I T Fair with t = 2/3

Our Approach

® Keyidea 2

Exploit patterns in the update/query access frequencies

Total writes(24 hrs) : 24 Total reads(24 hrs) : 23
Writes at 6-hr granularity: Reads at 6-hr granularity:
{10,10,2,2} {2,2,9,10}

: : PL 1 Py
|
I
|
|
I
Use pull replication in the first 12 hours, push in the next 12
Significant benefits from adaptively changing the replication

decision
Such patterns observed in human-centric networks like social

networks

Our Approach

® Keyidea 3

Make replication decisions for all nodes in a pair of partitions together

e Prior work had suggested doing this for each (writer, reader) pair separately
e Works in the publish-subscribe domain, but not here

Can be reduced to maximum density sub-hypergraph problem

Pairwise decisions Optimal

No point in pushing w4 — r4 will have to pull from the partition anyway

Example: Ego-centric Aggregates

® Continuously evaluate an aggregate in the local neighborhoods of
all nodes of a graph

For example, to do “ego-centric trend analysis in social networks”, or
“detecting nodes with anomalous communication activity”

Challenging even if data all on a single machine
® Prior approaches
On-demand —> High latencies because of computational cost
Continuously maintain all the query results (pre-computation):
e Potentially wasted computation
e Too many queries to be executed
® QOur approach [ongoing work]
Access-pattern based on-demand vs pre-computation decisions

Aggressive sharing across different queries

Our Approach

® Keyidea4
Exploit commonalities across queries to share partial computation
Use graph compression-like technigues to minimize the computation

Original dataflow graph for aggregate
computation — each edge
denotes a potential computation

Computation cost can be reduced by
identifying “bi-cliques”

Conclusions and Ongoing Work

® Graph data management becoming increasingly important
® Many challenges in dealing with the scale, the noise, and the
variety of analytical tasks
® Presented:
A declarative framework for cleaning noisy graphs
A system for managing historical data and snapshot retrieval
Techniques for managing and querying highly dynamic graphs
® Ongoing work on improving and extending this preliminary work
Developing a unified query language based on Datalog
Replication and pre-computation for continuous queries
Efficiently supporting distributed graph analytics
Developing effective graph compression techniques
New graph partitioning techniques

