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l  Increasing	
  interest	
  in	
  querying	
  and	
  reasoning	
  about	
  the	
  underlying	
  
graph	
  structure	
  in	
  a	
  variety	
  of	
  disciplines	
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Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.
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Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j )Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily



l  Underlying	
  data	
  hasn’t	
  necessarily	
  changed	
  that	
  much	
  
l  …	
  aside	
  from	
  larger	
  data	
  volumes	
  and	
  easier	
  availability	
  

l  …	
  but	
  increasing	
  realiza-on	
  of	
  the	
  importance	
  of	
  reasoning	
  about	
  
the	
  graph	
  structure	
  to	
  extract	
  ac-onable	
  insights	
  

l  Intense	
  amount	
  of	
  work	
  already	
  on:	
  
l  …	
  understanding	
  proper-es	
  of	
  informa-on	
  networks	
  	
  

l  …	
  community	
  detec-on,	
  models	
  of	
  evolu-on,	
  visualiza-ons	
  

l  …	
  execu-ng	
  different	
  types	
  of	
  graph	
  structure-­‐focused	
  queries	
  

l  …	
  cleaning	
  noisy	
  observa-onal	
  data	
  

l  …	
  and	
  so	
  on	
  

l  Lack	
  of	
  established	
  data	
  management	
  tools	
  
l  Most	
  of	
  the	
  work	
  done	
  outside	
  of	
  general-­‐purpose	
  data	
  
management	
  systems	
  

Mo-va-on	
  



Background:	
  Popular	
  Graph	
  Data	
  Models	
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l  Queries	
  permit	
  focused	
  explora-on	
  of	
  the	
  data	
  
l  Result	
  typically	
  a	
  small	
  por-on	
  of	
  the	
  graph	
  (oSen	
  just	
  a	
  node)	
  

l  Examples:	
  
l  Subgraph	
  pa3ern	
  matching:	
  Given	
  a	
  “query”	
  graph,	
  	
  

	
  	
  find	
  where	
  it	
  occurs	
  in	
  a	
  given	
  “data”	
  graph	
  	
  

	
  

l  Reachability;	
  Shortest	
  path;	
  	
  

l  Keyword	
  search:	
  Find	
  smallest	
  subgraph	
  that	
  contains	
  all	
  the	
  given	
  
keywords	
  

l  Historical	
  or	
  Temporal	
  queries	
  over	
  a	
  historical	
  trace	
  of	
  the	
  
network	
  over	
  a	
  period	
  of	
  -me	
  
l  “Find	
  most	
  important	
  nodes	
  in	
  a	
  communica@on	
  network	
  in	
  2002?”	
  

Graph	
  Queries	
  vs	
  Analysis	
  Tasks	
  

Query 
Graph 

Data Graph 



l  Con-nuous	
  queries	
  
l  Tell	
  me	
  when	
  a	
  topic	
  is	
  suddenly	
  “trending”	
  in	
  my	
  friend	
  circle	
  

l  Alert	
  me	
  if	
  the	
  communica@on	
  ac@vity	
  around	
  a	
  node	
  changes	
  
dras@cally	
  (anomaly	
  detec@on)	
  

l  Monitor	
  constraints	
  on	
  the	
  data	
  being	
  generated	
  by	
  the	
  nodes	
  
(constraint	
  monitoring)	
  

Graph	
  Queries	
  vs	
  Analysis	
  Tasks	
  

Continuous  
Query 

Processor 

Continuously arriving 
input data streams 
-- Updates to graph structure 
-- Updates to node values 

Real-time results generated 
and sent to the users 
continuously 

User queries posed once 



l  Analysis	
  tasks	
  typically	
  require	
  processing	
  the	
  en-re	
  graph	
  
l  Centrality	
  analysis:	
  Find	
  the	
  most	
  central	
  nodes	
  in	
  a	
  network	
  

l  Many	
  different	
  no-ons	
  of	
  centrality…	
  

l  Community	
  detecAon:	
  Par--on	
  the	
  ver-ces	
  into	
  (poten-ally	
  
overlapping)	
  groups	
  with	
  dense	
  interac-on	
  pa[erns	
  

l  Network	
  evoluAon:	
  Build	
  models	
  for	
  network	
  forma-on	
  and	
  
evolu-on	
  over	
  -me	
  

l  Network	
  measurements:	
  Measuring	
  sta-s-cal	
  proper-es	
  of	
  the	
  
graph	
  or	
  local	
  neighborhoods	
  in	
  the	
  graphs	
  

l  Inferring	
  historical	
  traces:	
  Complete	
  historical	
  data	
  unlikely	
  to	
  
be	
  available	
  –	
  how	
  to	
  fill	
  in	
  the	
  gaps?	
  

l  Graph	
  cleaning/inference:	
  Removing	
  noise	
  and	
  uncertainty	
  in	
  
the	
  observed	
  network	
  data	
  

Graph	
  Queries	
  vs	
  Analysis	
  Tasks	
  



l  Analysis	
  tasks:	
  
l  Graph	
  cleaning/inference:	
  Removing	
  noise	
  and	
  uncertainty	
  in	
  
the	
  observed	
  data	
  through	
  –	
  	
  	
  
l  A[ribute	
  Predic-on:	
  predict	
  values	
  of	
  missing	
  aKributes	
  
l  Link	
  Predic-on:	
  infer	
  missing	
  links	
  
l  En-ty	
  Resolu-on:	
  decide	
  if	
  two	
  nodes	
  refer	
  to	
  the	
  same	
  en@ty	
  

l  Inference	
  techniques	
  typically	
  u-lize	
  the	
  graph	
  structure	
  

Graph	
  Queries	
  vs	
  Analysis	
  Tasks	
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Data	
  Management:	
  State	
  of	
  the	
  Art	
  
l  Most	
  data	
  probably	
  in	
  flat	
  files	
  or	
  rela@onal	
  databases	
  

l  Some	
  types	
  of	
  queries	
  can	
  be	
  converted	
  into	
  SQL	
  queries	
  
l  E.g.,	
  SPARQL	
  queries	
  over	
  RDF	
  data	
  

l  Otherwise	
  most	
  of	
  the	
  querying	
  and	
  analysis	
  func-onality	
  
implemented	
  on	
  top	
  

l  Much	
  research	
  on	
  building	
  specialized	
  indexes	
  for	
  specific	
  types	
  of	
  
queries	
  (e.g.,	
  pa[ern	
  matching,	
  keyword	
  search,	
  reachability,	
  …)	
  

l  Emergence	
  of	
  specialized	
  graph	
  databases	
  in	
  recent	
  years	
  

l  Neo4j,	
  InfiniteGraph,	
  DEX,	
  AllegroGraph,	
  HyperGraphDB,	
  …	
  

l  Key	
  disadvantages:	
  
l  Fairly	
  rudimentary	
  declara-ve	
  interfaces	
  -­‐-­‐	
  most	
  applica-ons	
  need	
  to	
  be	
  
wri[en	
  using	
  programma-c	
  interfaces	
  

l  Or	
  using	
  provided	
  toolkits/libraries	
  



Data	
  Management:	
  State	
  of	
  the	
  Art	
  
l  Several	
  batch	
  analysis	
  frameworks	
  proposed	
  for	
  analyzing	
  graph	
  

data	
  in	
  recent	
  years	
  

l  Analogous	
  to	
  Map-­‐Reduce/Hadoop	
  
l  Map-­‐Reduce	
  not	
  suitable	
  for	
  most	
  graph	
  analysis	
  tasks	
  

l  Work	
  in	
  recent	
  years	
  on	
  designing	
  Map-­‐Reduce	
  programs	
  for	
  specific	
  
tasks	
  

l  Pregel,	
  Giraph,	
  GraphLab,	
  GRACE	
  
l  Vertex-­‐centric:	
  Programs	
  wri[en	
  from	
  the	
  point	
  of	
  view	
  of	
  a	
  vertex	
  

l  Most	
  based	
  on	
  message	
  passing	
  between	
  nodes	
  

l  Vertex-­‐centric	
  frameworks	
  somewhat	
  limited	
  and	
  inefficient	
  
l  Unclear	
  how	
  to	
  do	
  many	
  complex	
  graph	
  analysis	
  tasks	
  

l  Not	
  widely	
  used	
  yet	
  



l  Lack	
  of	
  declara-ve	
  query	
  languages	
  and	
  expressive	
  programming	
  
frameworks	
  for	
  processing	
  graph-­‐structured	
  data	
  

l  Inherent	
  noise	
  and	
  uncertainty	
  in	
  the	
  raw	
  observa-on	
  data 	
  	
  
à  Support	
  for	
  graph	
  cleaning	
  must	
  be	
  integrated	
  into	
  the	
  system	
  

à  Need	
  to	
  reason	
  about	
  uncertainty	
  during	
  query	
  execu-on	
  

l  Very	
  large	
  volumes	
  of	
  heterogeneous	
  data	
  over	
  -me	
  
à  Distributed/parallel	
  storage	
  and	
  query	
  processing	
  needed	
  

à  Graph	
  par--oning	
  notoriously	
  hard	
  to	
  do	
  effec-vely	
  

à  Historical	
  traces	
  need	
  to	
  be	
  stored	
  in	
  a	
  compressed	
  fashion	
  

l  Highly	
  dynamic	
  and	
  rapidly	
  changing	
  data	
  as	
  well	
  as	
  workloads	
  

à  Need	
  aggressive	
  pre-­‐computa-on	
  to	
  enable	
  low-­‐latency	
  query	
  
execu-on	
  

Key	
  Data	
  Management	
  Challenges	
  



l  Address	
  the	
  data	
  management	
  challenges	
  in	
  enabling	
  a	
  variety	
  of	
  
queries	
  and	
  analy-cs	
  

	
  

l  Aim	
  to	
  support	
  three	
  declara-ve	
  user-­‐level	
  abstrac-ons	
  for	
  
specifying	
  queries	
  or	
  tasks	
  
l  A	
  declara-ve	
  Datalog-­‐based	
  query	
  language	
  for	
  specifying	
  queries	
  
(including	
  historical	
  and	
  con-nuous)	
  

l  A	
  high-­‐level	
  Datalog-­‐based	
  framework	
  for	
  graph	
  cleaning	
  tasks	
  

l  An	
  expressive	
  programming	
  framework	
  for	
  domain-­‐specific	
  queries	
  
or	
  analysis	
  tasks	
  

l  Analogous	
  to	
  MapReduce	
  

l  Handle	
  very	
  large	
  volumes	
  of	
  data	
  (including	
  historical	
  traces)	
  
through	
  developing	
  distributed	
  and	
  cloud	
  compu-ng	
  techniques	
  

What	
  we	
  are	
  doing 	
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l  Work	
  so	
  far:	
  
l  NScale:	
  An	
  end-­‐to-­‐end	
  distributed	
  programming	
  framework	
  for	
  
wri-ng	
  graph	
  analy-cs	
  tasks	
  

l  Declara-ve	
  graph	
  cleaning	
  [GDM’11,	
  SIGMOD	
  Demo’13]	
  
l  Real-­‐-me	
  con-nuous	
  query	
  processing	
  

l  Aggressive	
  replica-on	
  to	
  manage	
  very	
  large	
  dynamic	
  graphs	
  efficiently	
  in	
  
the	
  cloud,	
  and	
  to	
  execute	
  con-nuous	
  queries	
  over	
  them	
  [SIGMOD’12]	
  	
  

l  New	
  techniques	
  for	
  sharing	
  [under	
  submission]	
  

l  Historical	
  graph	
  management	
  
l  Efficient	
  single-­‐point	
  or	
  mul--­‐point	
  snapshot	
  retrieval	
  over	
  very	
  large	
  
historical	
  graph	
  traces	
  [ICDE’13,	
  ,	
  SIGMOD	
  Demo’13]	
  

l  Ego-­‐centric	
  pa[ern	
  census	
  [ICDE’12]	
  	
  
l  Subgraph	
  pa[ern	
  matching	
  over	
  uncertain	
  graphs	
  [under	
  submission]	
  

What	
  we	
  are	
  doing 	
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•  MapReduce-­‐based	
  (e.g.,	
  Gbase,	
  Pegasus,	
  Hadapt)	
  
•  Use	
  MR	
  as	
  the	
  underlying	
  distributed	
  processing	
  framework	
  	
  
•  Disadvantages:	
  

•  Not	
  intui-ve	
  to	
  program	
  graph	
  analysis	
  tasks	
  using	
  MR	
  
•  Each	
  "traversal"	
  effec-vely	
  requires	
  a	
  new	
  MapReduce	
  phase:	
  
Inefficient	
  

•  Vertex-­‐centric	
  itera-ve	
  programming	
  frameworks	
  
•  Synchronous	
  (Pregel,	
  Giraph),	
  Asynchronous	
  (GraphLab,	
  GRACE)..	
  	
  
•  No	
  inherent	
  support	
  for	
  applica-ons	
  that	
  require	
  analy-cs	
  on	
  the	
  
neighborhoods	
  of	
  a	
  subset	
  of	
  nodes	
  

•  Not	
  sufficient	
  or	
  natural	
  for	
  many	
  query	
  analysis	
  tasks	
  (Ego	
  
network	
  analysis)	
  

•  May	
  be	
  inefficient	
  for	
  analy-cs	
  that	
  require	
  traversing	
  beyond	
  1-­‐
hop	
  neighbors	
  

Graph  Programming  Frameworks




• An	
  end-­‐to-­‐end	
  distributed	
  graph	
  
programming	
  framework	
  

• Users/applica-on	
  programs	
  
specify:	
  	
  

•  Neighborhoods	
  or	
  subgraphs	
  of	
  
interest	
  

•  A	
  kernel	
  computa-on	
  to	
  operate	
  
upon	
  those	
  subgraphs	
  

•  Framework:	
  
•  Extracts	
  the	
  relevant	
  subgraphs	
  
from	
  underlying	
  data	
  and	
  loads	
  in	
  
memory	
  

•  Execu-on	
  engine:	
  Executes	
  user	
  
computa-on	
  on	
  materialized	
  
subgraphs	
  

•  Communica-on:	
  Shared	
  state/
message	
  passing	
  

	
  
	
  

NScale  Programming  Framework




NScale	
  User	
  API	
  

Underlying	
  graph	
  	
  
data	
  

Flat	
  files	
  

Special	
  purpose	
  indexes	
  

<>	
  

<K1,V1>	
  
<K2,V2>	
  

.	
  

.	
  

.	
  
Key-­‐Value	
  stores	
  

Graph	
  ExtracAon	
  	
  
and	
  Loading	
  

MapReduce	
  	
  
(Apache	
  
Yarn)	
  

Graph	
  	
  
extrac-on	
  	
  

Graph	
  
analyAcs	
  

In-­‐Memory	
  
Distributed	
  	
  
Execu-on	
  	
  
Engine	
  

Output	
  
Materializa-on	
  
Checkpoin-ng	
  

	
  
	
  

Output	
  

Users	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Analysts	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Applica-ons/Visualiza-on	
  Tools	
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Subgraphs	
  in	
  
Distributed	
  
Memory	
  

Graph	
  Extrac-on	
  	
  
and	
  Loading	
  

MapReduce	
  	
  
(Apache	
  
Yarn)	
  

Graph	
  	
  
extrac-on	
  	
  

Nscale	
  User	
  API	
  (Datalog,	
  BluePrints):	
  Query:	
  Compute	
  LCC	
  for	
  nodes	
  
where	
  node.color=red	
  	
  

Distributed	
  	
  
Execu-on	
  	
  
Engine	
  

Distributed	
  	
  
Execu-on	
  	
  
Engine	
  

Graph	
  
analy-cs	
  

Output	
  
Materializa-on	
  
Checkpoin-ng	
  

	
  
	
  

Output	
  

Example:  Local  Clustering  Coefficient




NScale:  Summary

•  User	
  writes	
  programs	
  at	
  the	
  abstrac-on	
  of	
  a	
  graph	
  

•  More	
  intui-ve	
  for	
  graph	
  analy-cs	
  

•  Captures	
  mechanics	
  of	
  common	
  graph	
  analysis/cleaning	
  tasks	
  
•  Complex	
  analy-cs:	
  

•  Union	
  or	
  intersec-on	
  of	
  neighborhoods	
  (Link	
  predic-on,	
  En-ty	
  resolu-on)	
  
•  Induced	
  subgraph	
  of	
  a	
  hashtag	
  (Influence	
  analysis	
  on	
  hashtag	
  ego	
  networks)	
  

•  Scalability:	
  Only	
  relevant	
  por-ons	
  of	
  the	
  graph	
  data	
  loaded	
  into	
  
memory	
  

•  User	
  can	
  specify	
  subgraphs	
  of	
  interest,	
  and	
  select	
  nodes	
  or	
  edges	
  based	
  on	
  
proper-es	
  

•  E.g.	
  Edges	
  with	
  recent	
  communica-on	
  

•  Generaliza-on:	
  Flexibility	
  in	
  subgraph	
  defini-on	
  
•  Handle	
  vertex-­‐centric	
  programs	
  

•  Subgraph:	
  vertex	
  and	
  associated	
  edges	
  
•  Global	
  programs	
  

•  Subgraph	
  is	
  the	
  en-re	
  graph	
  

NScale:  Summary
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l Conclusions	
  

Outline 	
  	
  



Mo-va-on	
  
l  The	
  observed,	
  automa@cally-­‐extracted	
  informa@on	
  networks	
  are	
  

oSen	
  noisy	
  and	
  incomplete	
  

l  Need	
  to	
  extract	
  the	
  underlying	
  true	
  informa@on	
  network	
  through:	
  
l  A[ribute	
  Predic-on:	
  to	
  predict	
  values	
  of	
  missing	
  aKributes	
  
l  Link	
  Predic-on:	
  to	
  infer	
  missing	
  links	
  
l  En-ty	
  Resolu-on:	
  to	
  decide	
  if	
  two	
  references	
  refer	
  to	
  the	
  same	
  en@ty	
  

l  Typically	
  itera-ve	
  and	
  interleaved	
  applica-on	
  of	
  the	
  techniques	
  
l  Use	
  results	
  of	
  one	
  to	
  improve	
  the	
  accuracy	
  of	
  other	
  opera-ons	
  
	
  

l  Numerous	
  techniques	
  developed	
  for	
  the	
  tasks	
  in	
  isola-on	
  
l  No	
  support	
  from	
  data	
  management	
  systems	
  
l  Hard	
  to	
  easily	
  construct	
  and	
  compare	
  new	
  techniques,	
  especially	
  for	
  
joint	
  inteference	
  



1.	
  Declara-ve	
  Graph	
  Cleaning	
  
l  Enable	
  declara-ve	
  specifica-on	
  of	
  graph	
  cleaning	
  tasks	
  

l  i.e.,	
  a[ribute	
  predic-on,	
  link	
  predic-on,	
  en-ty	
  resolu-on	
  
l  Interac-ve	
  system	
  for	
  execu-ng	
  them	
  over	
  large	
  datasets	
  



1.	
  Declara-ve	
  Graph	
  Cleaning	
  
l  Enable	
  declara-ve	
  specifica-on	
  of	
  graph	
  cleaning	
  tasks	
  

l  i.e.,	
  a[ribute	
  predic-on,	
  link	
  predic-on,	
  en-ty	
  resolu-on	
  
l  Interac-ve	
  system	
  for	
  execu-ng	
  them	
  over	
  large	
  datasets	
  



Overview	
  of	
  the	
  Approach	
  
l  Declara-ve	
  specifica-on	
  of	
  the	
  cleaning	
  task	
  

l  Datalog-­‐based	
  language	
  for	
  specifying	
  -­‐-­‐	
  
l  Predic-on	
  features	
  (including	
  local	
  and	
  rela-onal	
  features)	
  
l  The	
  details	
  of	
  how	
  to	
  accomplish	
  the	
  cleaning	
  task	
  
l  Arbitrary	
  interleaving	
  or	
  pipelining	
  of	
  different	
  tasks 	
  	
  

l  A	
  mix	
  of	
  declara-ve	
  constructs	
  and	
  user-­‐defined	
  
func-ons	
  to	
  specify	
  complex	
  predic-on	
  func-ons	
  

l  Op-mize	
  the	
  execu-on	
  through	
  caching,	
  incremental	
  
evalua-on,	
  pre-­‐computed	
  data	
  structures	
  …	
  



Proposed	
  Framework	
  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 



Proposed	
  Framework	
  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

For attribute prediction, 
the domain is a subset of 
the graph nodes. 
 
For link prediction and 
entity resolution, the 
domain is a subset of 
pairs of nodes. 
 

Local: word frequency, 
income, etc. 
Relational: degree, 
clustering coeff., no. of 
neighbors with each 
attribute value, common 
neighbors between pairs 
of nodes, etc.  



Proposed	
  Framework	
  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

Attribute prediction: the 
missing attribute 
 
Link prediction: add link 
or not? 
 
Entity resolution: merge 
two nodes or not? 

After predictions are made, 
the graph changes: 
Attribute prediction 
changes local attributes. 
Link prediction changes the 
graph links. 
Entity resolution changes 
both local attributes and 
graph links. 



Some	
  Details	
  
l  Declara-ve	
  framework	
  based	
  on	
  Datalog	
  

l  A	
  declara-ve	
  logic	
  programming	
  language	
  (subset	
  of	
  Prolog)	
  
l  Cleaner	
  and	
  more	
  compact	
  syntax	
  than	
  SQL	
  
l  Not	
  considered	
  prac-cal	
  in	
  past,	
  but	
  resurgence	
  in	
  recent	
  years	
  

l  Declara-ve	
  networking,	
  data	
  integra-on,	
  cloud	
  compu-ng,	
  …	
  
l  Several	
  recent	
  workshops	
  on	
  Datalog	
  

l  We	
  use	
  Datalog	
  to	
  express:	
  
l  Domains	
  
l  Local	
  and	
  rela-onal	
  features	
  

l  Extend	
  Datalog	
  with	
  opera-onal	
  seman-cs	
  to	
  express:	
  
l  Predic-ons	
  (in	
  the	
  form	
  of	
  updates)	
  
l  Itera-on	
  



Specifying	
  Features	
  

Degree: 
Degree(X, COUNT<Y>) :-Edge(X, Y) 
 
Number of Neighbors with attribute ‘A’ 
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’) 
 
Clustering Coefficient 
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z) 
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1)) 

Jaccard Coefficient 
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z) 
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,   
                                      IntersectionCount(X, Y, D3)  
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D 
 



Update	
  Opera-on	
  
•  Ac-on	
  to	
  be	
  taken	
  itself	
  specified	
  declara-vely	
  
•  Enables	
  specifying,	
  e.g.,	
  different	
  ways	
  to	
  merge	
  in	
  case	
  of	
  en-ty	
  

resolu-on	
  (i.e.,	
  how	
  to	
  canonicalize)	
  
	
  

DEFINE	
  Merge(X,	
  Y)	
  
{	
  

	
  INSERT	
  Edge(X,	
  Z)	
  :-­‐	
  Edge(Y,	
  Z)	
  
	
  DELETE	
  Edge(Y,	
  Z)	
  
	
  UPDATE	
  Node(X,	
  A=ANew)	
  :-­‐	
  Node(X,A=AX),	
  Node(Y,A=AY),	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ANew=(AX+AY)/2	
  
	
  UPDATE	
  Node(X,	
  B=BNew)	
  :-­‐	
  Node(X,B=BX),	
  Node(X,B=BX),	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  BNew=max(BX,BY)	
  
	
  DELETE	
  Node(Y)	
  

}	
  
Merge(X,	
  Y)	
  :-­‐	
  Features	
  (X,	
  Y,	
  F1,…,Fn),	
  predict-­‐ER(F1,…,Fn)	
  =	
  true,	
  	
  

	
   	
   	
   	
   	
   	
   	
  confidence-­‐ER(F1,…,Fn)	
  >	
  0.95	
  



Example	
  
l  Real-­‐world	
  PubMed	
  graph	
  

l  Set	
  of	
  publica-ons	
  from	
  the	
  medical	
  domain,	
  their	
  abstracts,	
  and	
  cita-ons	
  
l  50,634	
  publica-ons,	
  115,323	
  cita-on	
  edges	
  
l  Task:	
  A[ribute	
  predic-on	
  

l  Predict	
  if	
  the	
  paper	
  is	
  categorized	
  as	
  Cogni-on,	
  Learning,	
  Percep-on	
  or	
  Thinking	
  
l  Choose	
  top	
  10%	
  predic-ons	
  aSer	
  each	
  itera-on,	
  for	
  10	
  itera-ons	
  
	
   DOMAIN	
  Uncommi[ed(X):-­‐Node(X,Commi[ed=‘no’)	
  
{	
  
	
  	
  	
  ThinkingNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Thinking’)	
  
	
  	
  	
  Percep-onNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Percep-on’)	
  
	
  	
  	
  Cogni-onNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Cogni-on’)	
  
	
  	
  	
  LearningNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Learning’)	
  
	
  	
  	
  Features-­‐AP(X,A,B,C,D,Abstract):-­‐	
  ThinkingNeighbors(X,A),	
  Percep-onNeighbors(X,B),	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cogni-onNeighbors(X,C),	
  LearningNeighbors(X,D),Node(X,Abstract,	
  _,_)	
  
}	
  
ITERATE(10)	
  	
  
{	
  
	
  	
  	
  UPDATE	
  Node(X,_,P,‘yes’):-­‐	
  Features-­‐AP(X,A,B,C,D,Text),	
  P	
  =	
  predict-­‐AP(X,A,B,C,D,Text),	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  confidence-­‐AP(X,A,B,C,D,Text)	
  IN	
  TOP	
  10%	
  
}	
  



l  Using	
  a	
  simple	
  RDBMS	
  built	
  on	
  top	
  of	
  Java	
  Berkeley	
  DB	
  
l  Predicates	
  in	
  the	
  program	
  correspond	
  to	
  materialized	
  tables	
  
l  Datalog	
  rules	
  converted	
  into	
  SQL	
  

l  Incremental	
  maintenance:	
  
l  Every	
  set	
  of	
  changes	
  done	
  by	
  AP,	
  LP,	
  or	
  ER	
  logged	
  into	
  two	
  change	
  tables	
  

ΔNodes	
  and	
  ΔEdges	
  
l  Aggregate	
  maintenance	
  is	
  performed	
  by	
  aggrega-ng	
  the	
  change	
  table	
  then	
  

refreshing	
  the	
  old	
  table	
  

l  Proved	
  hard	
  to	
  scale	
  
l  Incremental	
  evalua-on	
  much	
  faster	
  than	
  recompute,	
  but	
  SQL-­‐based	
  

evalua-on	
  was	
  inherently	
  a	
  bo[leneck	
  
l  Hard	
  to	
  do	
  complex	
  features	
  like	
  centrality	
  measures	
  
l  In	
  the	
  process	
  of	
  changing	
  the	
  backend	
  to	
  use	
  a	
  new	
  distributed	
  graph	
  

processing	
  framework	
  	
  

Prototype	
  Implementa-on	
  



l Overview	
  

l NScale	
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  Programming	
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l Declara-ve	
  Graph	
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  Graph	
  Data	
  Management	
  

l Con-nuous	
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  Graphs	
  

l Conclusions	
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l  Increasing	
  interest	
  in	
  temporal	
  analysis	
  of	
  informa-on	
  networks	
  to:	
  
l  Understand	
  evolu-onary	
  trends	
  (e.g.,	
  how	
  communi-es	
  evolve)	
  	
  

l  Perform	
  compara-ve	
  analysis	
  and	
  iden-fy	
  major	
  changes	
  

l  Develop	
  models	
  of	
  evolu-on	
  or	
  informa-on	
  diffusion	
  

l  Visualiza-ons	
  over	
  -me	
  
l  For	
  be[er	
  predic-ons	
  in	
  the	
  future	
  

l  Focused	
  explora-on	
  and	
  querying	
  
l  “Who	
  had	
  the	
  highest	
  PageRank	
  in	
  a	
  cita@on	
  network	
  in	
  1960?”	
  

l  “Iden@fy	
  nodes	
  most	
  similar	
  to	
  X	
  as	
  of	
  one	
  year	
  ago”	
  

l  “Iden@fy	
  the	
  days	
  when	
  the	
  network	
  diameter	
  (over	
  some	
  transient	
  edges	
  
like	
  messages)	
  is	
  smallest”	
  

l  “Find	
  a	
  temporal	
  subgraph	
  paKern	
  in	
  a	
  graph”	
  

Historical	
  Graph	
  Data	
  Management	
  

ti tj tk



Hinge:	
  A	
  System	
  for	
  Temporal	
  Explora-on	
  

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

Key-Value Store
DeltaGraph

GraphManager
Manage GraphPool - 
Overlaying historical 
graphs and cleanup

HistoryManager
Manage DeltaGraph - 
Query Planning, Disk 

Read/Write

HiNGE

Analyst JUNG

QueryManager
Translate user query into 

Graph Retrieval and execute 
Algorithms on graphs 

Figure 2: System Architecture: HiNGE, DeltaGraph and
GraphPool.

the network, and perhaps, certain anomalies as well. Exploration
is considered to be the stepping stone for more specific inquiries
into the nature of the network. Exploration of a temporal graph
is enabled using – (a) a time-slider, (b) an interactive, zoomable
snapshot viewer, and (c) a metric calculator. The time-slider is
an interactive timeline that the user can adjust to go to a specific
time of interest. The snapshot viewer presents a view of the graph
at the desired time as indicated by the time-slider. The user may
pan, zoom or rotate the pane with mouse operations to focus on the
area of interest in the graph. The layout, color and other factors of
appearance of the graph can also be changed by customizing the
choices in the Settings menu. The metric calculator provides the
choice of several metrics such as PageRank, betweenness central-
ity, clustering coefficient, etc., to be computed for the vertices of
the network at the time indicated by the time slider. The metric val-
ues may be chosen as a part of vertex labels in the snapshot view,
or can be used to make the graph display more appropriate. Simul-
taneously, the k top or bottom-valued vertices are displayed on the
side. These can be seen in Figure 3.
Query: The Query mode is meant to provide a comparative and
detailed temporal evolutionary analysis of the vertices of interest
that the user may have identified during the exploration phase. It
shows the structural evolution as well as the change in the metrics
of interest, such as the clustering coefficient. To specify a query,
the user must specify the vertex, the start and end times, the metric
of interest, and the number of time points to be compared. Figure
4 shows the results of an example query for node 12.
Search: An interesting and slightly different kind of query is a sub-
graph pattern matching query. Subgraph pattern matching queries
can be used to find subgraphs that satisfy certain properties, and
are one of the most widely studied queries over graph data. HiNGE
supports subgraph pattern matching queries over the history of a
network. The user may specify the query by drawing the structure
of a subgraph, assigning labels to the nodes, and specifying the time
interval during which to perform the search. The result lists all the
matches found for the query, i.e., the subgraph layouts and times

Figure 3: Temporal exploration using time-slider

at which the particular subgraph exists. This functionality is imple-
mented by using the ability to build and maintain auxiliary indexes
in DeltaGraph (specifically, we build auxiliary path indexes) [4].

Another very useful feature is node search that helps the user
to find nodes given attribute values. This is implemented using
an auxiliary inverted index in DeltaGraph. Hence, the user may
constrain the search by specifying a time interval. Figure 5 shows
the node search and subgraph pattern search features. By keeping
the time range open, we can specify a search across all times; on
the other hand, if the end point and the start point are the same, we
only search in that particular snapshot.

Figure 5: (a) Node Search; (b) Subgraph Pattern Search

3.2 Working with HiNGE
The expected input graph specification is as described in [4].

The evolving network is described as a set of chronological events.
Each node is required to have a unique identification, the nodeid.
Nodes and edges may carry any number of attributes, e.g., name,
label, etc. While specifying the node in a query, the user must spec-
ify the nodeid. Node search can be used to locate the nodeid for the
node when only the attributes of the node are known. Here is a list
of the major options/parameters, all of which can be accessed from
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Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki
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Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki
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l  Increasing	
  need	
  for	
  execu-ng	
  queries	
  and	
  analysis	
  tasks	
  in	
  real-­‐-me	
  
on	
  “data	
  streams”	
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  from	
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  “monitor	
  updates	
  in	
  the	
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  to	
  
complex	
  “trend	
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Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair ⟨Cij , Pj⟩, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair ⟨Cij , Pk⟩
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different
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Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij ).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence
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  not	
  here	
  

l  Can	
  be	
  reduced	
  to	
  maximum	
  density	
  sub-­‐hypergraph	
  problem	
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Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway 

Pairwise decisions Optimal 



l  Con-nuously	
  evaluate	
  an	
  aggregate	
  in	
  the	
  local	
  neighborhoods	
  of	
  
all	
  nodes	
  of	
  a	
  graph	
  
l  For	
  example,	
  to	
  do	
  “ego-­‐centric	
  trend	
  analysis	
  in	
  social	
  networks”,	
  or	
  
“detec@ng	
  nodes	
  with	
  anomalous	
  communica@on	
  ac@vity”	
  

l  Challenging	
  even	
  if	
  data	
  all	
  on	
  a	
  single	
  machine	
  

l  Prior	
  approaches	
  
l  On-­‐demand	
  à	
  High	
  latencies	
  because	
  of	
  computa-onal	
  cost	
  

l  Con-nuously	
  maintain	
  all	
  the	
  query	
  results	
  (pre-­‐computa-on):	
  

l  Poten-ally	
  wasted	
  computa-on	
  	
  

l  Too	
  many	
  queries	
  to	
  be	
  executed	
  

l  Our	
  approach	
  [ongoing	
  work]	
  
l  Access-­‐pa[ern	
  based	
  on-­‐demand	
  vs	
  pre-­‐computa-on	
  decisions	
  

l  Aggressive	
  sharing	
  across	
  different	
  queries	
  

Example:	
  Ego-­‐centric	
  Aggregates	
  



Our	
  Approach	
  
l  Key	
  idea	
  4	
  	
  

l  Exploit	
  commonali-es	
  across	
  queries	
  to	
  share	
  par-al	
  computa-on	
  
l  Use	
  graph	
  compression-­‐like	
  techniques	
  to	
  minimize	
  the	
  computa-on	
  

Original dataflow graph for aggregate 
computation – each edge 
denotes a potential computation 

Computation cost can be reduced by 
identifying “bi-cliques” 



Conclusions	
  and	
  Ongoing	
  Work	
  
l  Graph	
  data	
  management	
  becoming	
  increasingly	
  important	
  
l  Many	
  challenges	
  in	
  dealing	
  with	
  the	
  scale,	
  the	
  noise,	
  and	
  the	
  

variety	
  of	
  analy-cal	
  tasks	
  
l  Presented:	
  	
  

l  A	
  declara-ve	
  framework	
  for	
  cleaning	
  noisy	
  graphs	
  
l  A	
  system	
  for	
  managing	
  historical	
  data	
  and	
  snapshot	
  retrieval	
  
l  Techniques	
  for	
  managing	
  and	
  querying	
  highly	
  dynamic	
  graphs	
  

l  Ongoing	
  work	
  on	
  improving	
  and	
  extending	
  this	
  preliminary	
  work	
  
l  Developing	
  a	
  unified	
  query	
  language	
  based	
  on	
  Datalog	
  
l  Replica-on	
  and	
  pre-­‐computa-on	
  for	
  con-nuous	
  queries	
  
l  Efficiently	
  suppor-ng	
  distributed	
  graph	
  analy-cs	
  
l  Developing	
  effec-ve	
  graph	
  compression	
  techniques	
  
l  New	
  graph	
  par--oning	
  techniques	
  


