
Enabling	 Declara-ve	 Graph	 Analy-cs	 over	 Large,	
Noisy	 Informa-on	 Networks	

Amol	 Deshpande	
	
Department	 of	 Computer	 Science	 and	 UMIACS	
University	 of	 Maryland	 at	 College	 Park	

Joint work with: Prof. Lise Getoor, Walaa Moustafa,
Udayan Khurana, Jayanta Mondal, Abdul Quamar,
Hui Miao

l Mo-va-on	 and	 Background	 	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Con-nuous	 Queries	 over	 Distributed	 Graphs	

l Conclusions	

Outline 	 	

l  Increasing	 interest	 in	 querying	 and	 reasoning	 about	 the	 underlying	
graph	 structure	 in	 a	 variety	 of	 disciplines	

Mo-va-on	

A protein-protein interaction
network

Social networks

Financial transaction
networks

Stock Trading Networks

Federal funds networks

GSCC

GWCC

Tendril

DC

GOUT
GIN

!"#$%& '(!&)&%*+ ,$-). -&/01%2 ,1% 3&4/&56&% 7'8 799:; <=>> ? #"*-/ 0&*2+@ A1--&A/&) A1541-&-/8
B> ?)".A1--&A/&) A1541-&-/8 <3>> ? #"*-/ ./%1-#+@ A1--&A/&) A1541-&-/8 <CD ? #"*-/ "-EA1541-&-/8
<FGH ? #"*-/ 1$/E A1541-&-/; F- /I".)*@ /I&%& 0&%& JK -1)&. "- /I& <3>>8 L9L -1)&. "- /I& <CD8 :K
-1)&. "- <FGH8 J9 -1)&. "- /I& /&-)%"+. *-) 7 -1)&. "- *)".A1--&A/&) A1541-&-/;

!"#$%&%'$(HI& -1)&. 1, * -&/01%2 A*- 6& 4*%/"/"1-&) "-/1 * A1++&A/"1- 1,)".M1"-/ .&/. A*++&))".A1--&A/&)
A1541-&-/.8 !!!" # "!!!!!"; HI& -1)&. 0"/I"- &*AI)".A1--&A/&) A1541-&-/)1 -1/ I*N& +"-2. /1 1% ,%15
-1)&. "- *-@ 1/I&% A1541-&-/8 ";&;8 #!"# $"# !$# "" $ " $!!!!" % $ $!!!!!"& # ' ", % (# %!; HI& A1541-&-/
0"/I /I& +*%#&./ -$56&% 1, -1)&. ". %&,&%%&) /1 *. /I&)%*$& +"*,-. /'$$"/&"0 /'12'$"$& O<=>>P; C- 1/I&%
01%).8 /I& <=>> ". /I& +*%#&./ A1541-&-/ 1, /I& -&/01%2 "- 0I"AI *++ -1)&. A1--&A/ /1 &*AI 1/I&% N"*
$-)"%&A/&) 4*/I.; HI& %&5*"-"-#)".A1--&A/&) A1541-&-/. OB>.P *%& .5*++&% A1541-&-/. ,1% 0I"AI /I&
.*5& ". /%$&; C- &54"%"A*+ ./$)"&. /I& <=>> ". 1,/&- ,1$-) /1 6& .&N&%*+ 1%)&%. 1, 5*#-"/$)& +*%#&% /I*-
*-@ 1, /I& B>. O.&& Q%1)&% "& *-3 O7999PP;

HI& <=>> A1-."./. 1, *)%*$& 4&5'$)-. /'$$"/&"0 /'12'$"$& O<3>>P8 *)%*$& '6&7/'12'$"$& O<FGHP8
*)%*$& %$7/'12'$"$& O<CDP *-) &"$05%-4 O.&& !"#$%& 'P; HI& <3>> A154%".&. *++ -1)&. /I*/ A*- %&*AI &N&%@
1/I&% -1)& "- /I& <3>> /I%1$#I *)"%&A/&) 4*/I; R -1)& ". "- /I& <FGH ", "/ I*. * 4*/I ,%15 /I& <3>>
6$/ -1/ /1 /I& <3>>; C- A1-/%*./8 * -1)& ". "- /I& <CD ", "/ I*. * 4*/I /1 /I& <3>> 6$/ -1/ ,%15 "/; R
-1)& ". "- * /&-)%"+ ", "/)1&. -1/ %&.")& 1- *)"%&A/&) 4*/I /1 1% ,%15 /I& <3>>;S9

!%4/644%'$(C- /I& -&/01%2 1, 4*@5&-/. .&-/ 1N&% !&)0"%& *-*+@T&) 6@ 31%*5U2" "& *-3 O799:P8 /I& <3>>
". /I& +*%#&./ A1541-&-/; F- *N&%*#&8 *+51./ %&' 1, /I& -1)&. "- /I*/ -&/01%2 6&+1-# /1 /I& <3>>; C-
A1-/%*./8 /I& <3>> ". 5$AI .5*++&% ,1% /I& ,&)&%*+ ,$-). -&/01%2; C- 799:8 1-+@ (&') (' 1, /I& -1)&.
6&+1-# /1 /I". A1541-&-/; Q@ ,*% /I& +*%#&./ A1541-&-/ ". /I& <CD; C- 799:8)%'))' 1, /I& -1)&. 0&%&
"- /I". A1541-&-/; HI& <FGH A1-/*"-&) (*') +' 1, *++ -1)&. 4&%)*@8 0I"+& /I&%& 0&%& (+') ,' 1,
/I& -1)&. +1A*/&) "- /I& /&-)%"+.;SS V&.. /I*- -') (' 1, /I& -1)&. 0&%& "- /I& %&5*"-"-#)".A1--&A/&)
A1541-&-/. O.&& H*6+& JP;

S9HI& /&-)%"+. 5*@ *+.1 6&)"W&%&-/"*/&) "-/1 /I%&& .$6A1541-&-/.(* .&/ 1, -1)&. /I*/ *%& 1- * 4*/I &5*-*/"-# ,%15 <CD8 *
.&/ 1, -1)&. /I*/ *%& 1- * 4*/I +&*)"-# /1 <FGH8 *-) * .&/ 1, -1)&. /I*/ *%& 1- * 4*/I /I*/ 6&#"-. "- <CD *-) &-). "- <FGH;
SS!!"# 1, -1)&. 0&%& "- X,%15E<CDY /&-)%"+.8 $!%# 1, -1)&. 0&%& "- /I& X/1E<FGHY /&-)%"+. *-) "!&# 1, -1)&. 0&%& "-

X/$6&.Y ,%15 <CD /1 <FGH;

17
ECB

Working Paper Series No 986
December 2008

Communication networks

Disease transmission
networks

World Wide Web

Knowledge Graph

Citation networks

526 The European Physical Journal B

Pajek

(a)

Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volume network of the full data set (a) and the inter-bank network (b) at
a yearly scale, Av

y . The 12 account types in the total set are grouped into units. Nodes in the same blob (same color) belong to
the same account type. The central unit in (a) is the inter-bank network. For the inter-bank network in (b), nodes are grouped
into banking sectors.

10
0

10
1

10
2

10
−2

10
−1

10
0

k

P
(>

k)

cumulative degree distributions

(a)

daily
monthly
yearly

10
0

10
1

10
2

10
−2

10
−1

10
0

k

c(
k)

clustering coefficients as functions of degree

(b)

daily
monthly
yearly

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

k

k nn
(k

)

average nearest neighbour degree

(c)

daily
monthly
yearly

Fig. 3. (Color online) (a) Cumulative degree distributions of the undirected, unweighted yearly, monthly, and daily full networks.
Lines are power fits. (b) Clustering coefficient as function of degree, and (c) average nearest neighbor degree for the same network.

the sum for l. In comparison, the average shortest path
length for a BA network with the same number of nodes
is lBA = 3, while for an ER random graph with the
same number of nodes and links (yearly network) we get
(lER = 0.94). A measure that takes the effect of uncon-
nected nodes into consideration is the so-called global net-
work efficiency, defined as E = 1

N(N−1)

∑
i̸=j d−1

ij , [22].
The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {max dij , dij < ∞}, is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N

∑
i

ei
ki(ki−1) , where ei is the number of links be-

tween nearest neighbors of node i, and ki =
∑

j Aij is the
node degree. We compare the empirical values to those of

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, here computed as
CER = 2L

N(N−1) , is clearly lower than C for the transaction
networks. Note that here we always take the total number
of nodes N = 423. To measure degree correlations we use
the Pearson coefficient [24],

r =
1
L

∑
j>i kikjAij −

[
1
2L

∑
j>i(ki + kj)Aij

]2

1
2L

∑
j>i(k

2
i + k2

j)Aij −
[

1
2L

∑
j>i(ki + kj)Aij

]2 ,

(1)
which, being positive for all time scales, indicates that the
networks are assortative, i.e. nodes of high degree tend to
link with other high degree nodes.

In Figure 3a we show the cumulative degree distribu-
tion of undirected, unweighted yearly, monthly, and daily

l  Underlying	 data	 hasn’t	 necessarily	 changed	 that	 much	
l  …	 aside	 from	 larger	 data	 volumes	 and	 easier	 availability	

l  …	 but	 increasing	 realiza-on	 of	 the	 importance	 of	 reasoning	 about	
the	 graph	 structure	 to	 extract	 ac-onable	 insights	

l  Intense	 amount	 of	 work	 already	 on:	
l  …	 understanding	 proper-es	 of	 informa-on	 networks	 	

l  …	 community	 detec-on,	 models	 of	 evolu-on,	 visualiza-ons	

l  …	 execu-ng	 different	 types	 of	 graph	 structure-‐focused	 queries	

l  …	 cleaning	 noisy	 observa-onal	 data	

l  …	 and	 so	 on	

l  Lack	 of	 established	 data	 management	 tools	
l  Most	 of	 the	 work	 done	 outside	 of	 general-‐purpose	 data	
management	 systems	

Mo-va-on	

Background:	 Popular	 Graph	 Data	 Models	

1

2

4

3

5

Name = Tom Cruise
Born = 7/3/1962

acted-in

Name = Top Gun
Release Date = …

married

Year = 1990

Property graph model:
commonly used by open-
source software

XML: Semi-structured data model
In essence: a directed, labeled “tree”

Tom Cruise

was married to

Nicole
Kidman

born on

7/3/1962

acted in Top
Gun

RDF (Resource Description Framework)
 Commonly used for knowledge-bases
 Each edge captures:
 <subject, predicate, object>

l  Queries	 permit	 focused	 explora-on	 of	 the	 data	
l  Result	 typically	 a	 small	 por-on	 of	 the	 graph	 (oSen	 just	 a	 node)	

l  Examples:	
l  Subgraph	 pa3ern	 matching:	 Given	 a	 “query”	 graph,	 	

	 	 find	 where	 it	 occurs	 in	 a	 given	 “data”	 graph	 	

	

l  Reachability;	 Shortest	 path;	 	

l  Keyword	 search:	 Find	 smallest	 subgraph	 that	 contains	 all	 the	 given	
keywords	

l  Historical	 or	 Temporal	 queries	 over	 a	 historical	 trace	 of	 the	
network	 over	 a	 period	 of	 -me	
l  “Find	 most	 important	 nodes	 in	 a	 communica@on	 network	 in	 2002?”	

Graph	 Queries	 vs	 Analysis	 Tasks	

Query
Graph

Data Graph

l  Con-nuous	 queries	
l  Tell	 me	 when	 a	 topic	 is	 suddenly	 “trending”	 in	 my	 friend	 circle	

l  Alert	 me	 if	 the	 communica@on	 ac@vity	 around	 a	 node	 changes	
dras@cally	 (anomaly	 detec@on)	

l  Monitor	 constraints	 on	 the	 data	 being	 generated	 by	 the	 nodes	
(constraint	 monitoring)	

Graph	 Queries	 vs	 Analysis	 Tasks	

Continuous
Query

Processor

Continuously arriving
input data streams
-- Updates to graph structure
-- Updates to node values

Real-time results generated
and sent to the users
continuously

User queries posed once

l  Analysis	 tasks	 typically	 require	 processing	 the	 en-re	 graph	
l  Centrality	 analysis:	 Find	 the	 most	 central	 nodes	 in	 a	 network	

l  Many	 different	 no-ons	 of	 centrality…	

l  Community	 detecAon:	 Par--on	 the	 ver-ces	 into	 (poten-ally	
overlapping)	 groups	 with	 dense	 interac-on	 pa[erns	

l  Network	 evoluAon:	 Build	 models	 for	 network	 forma-on	 and	
evolu-on	 over	 -me	

l  Network	 measurements:	 Measuring	 sta-s-cal	 proper-es	 of	 the	
graph	 or	 local	 neighborhoods	 in	 the	 graphs	

l  Inferring	 historical	 traces:	 Complete	 historical	 data	 unlikely	 to	
be	 available	 –	 how	 to	 fill	 in	 the	 gaps?	

l  Graph	 cleaning/inference:	 Removing	 noise	 and	 uncertainty	 in	
the	 observed	 network	 data	

Graph	 Queries	 vs	 Analysis	 Tasks	

l  Analysis	 tasks:	
l  Graph	 cleaning/inference:	 Removing	 noise	 and	 uncertainty	 in	
the	 observed	 data	 through	 –	 	 	
l  A[ribute	 Predic-on:	 predict	 values	 of	 missing	 aKributes	
l  Link	 Predic-on:	 infer	 missing	 links	
l  En-ty	 Resolu-on:	 decide	 if	 two	 nodes	 refer	 to	 the	 same	 en@ty	

l  Inference	 techniques	 typically	 u-lize	 the	 graph	 structure	

Graph	 Queries	 vs	 Analysis	 Tasks	

Divesh
Srivastava

Vladislav
Shkapenyuk Nick

Koudas

Avishek
Saha

Graham
Cormode Flip Korn

Lukasz
Golab

Theodore
Johnson

William
Roberts

Petre
Stoica

Jian
Li

Prabhu
Babu

Amol
Deshpande

Samir
Khuller

Barna
Saha

Jian
Li

Link prediction Entity resolution

Data	 Management:	 State	 of	 the	 Art	
l  Most	 data	 probably	 in	 flat	 files	 or	 rela@onal	 databases	

l  Some	 types	 of	 queries	 can	 be	 converted	 into	 SQL	 queries	
l  E.g.,	 SPARQL	 queries	 over	 RDF	 data	

l  Otherwise	 most	 of	 the	 querying	 and	 analysis	 func-onality	
implemented	 on	 top	

l  Much	 research	 on	 building	 specialized	 indexes	 for	 specific	 types	 of	
queries	 (e.g.,	 pa[ern	 matching,	 keyword	 search,	 reachability,	 …)	

l  Emergence	 of	 specialized	 graph	 databases	 in	 recent	 years	

l  Neo4j,	 InfiniteGraph,	 DEX,	 AllegroGraph,	 HyperGraphDB,	 …	

l  Key	 disadvantages:	
l  Fairly	 rudimentary	 declara-ve	 interfaces	 -‐-‐	 most	 applica-ons	 need	 to	 be	
wri[en	 using	 programma-c	 interfaces	

l  Or	 using	 provided	 toolkits/libraries	

Data	 Management:	 State	 of	 the	 Art	
l  Several	 batch	 analysis	 frameworks	 proposed	 for	 analyzing	 graph	

data	 in	 recent	 years	

l  Analogous	 to	 Map-‐Reduce/Hadoop	
l  Map-‐Reduce	 not	 suitable	 for	 most	 graph	 analysis	 tasks	

l  Work	 in	 recent	 years	 on	 designing	 Map-‐Reduce	 programs	 for	 specific	
tasks	

l  Pregel,	 Giraph,	 GraphLab,	 GRACE	
l  Vertex-‐centric:	 Programs	 wri[en	 from	 the	 point	 of	 view	 of	 a	 vertex	

l  Most	 based	 on	 message	 passing	 between	 nodes	

l  Vertex-‐centric	 frameworks	 somewhat	 limited	 and	 inefficient	
l  Unclear	 how	 to	 do	 many	 complex	 graph	 analysis	 tasks	

l  Not	 widely	 used	 yet	

l  Lack	 of	 declara-ve	 query	 languages	 and	 expressive	 programming	
frameworks	 for	 processing	 graph-‐structured	 data	

l  Inherent	 noise	 and	 uncertainty	 in	 the	 raw	 observa-on	 data 	 	
à  Support	 for	 graph	 cleaning	 must	 be	 integrated	 into	 the	 system	

à  Need	 to	 reason	 about	 uncertainty	 during	 query	 execu-on	

l  Very	 large	 volumes	 of	 heterogeneous	 data	 over	 -me	
à  Distributed/parallel	 storage	 and	 query	 processing	 needed	

à  Graph	 par--oning	 notoriously	 hard	 to	 do	 effec-vely	

à  Historical	 traces	 need	 to	 be	 stored	 in	 a	 compressed	 fashion	

l  Highly	 dynamic	 and	 rapidly	 changing	 data	 as	 well	 as	 workloads	

à  Need	 aggressive	 pre-‐computa-on	 to	 enable	 low-‐latency	 query	
execu-on	

Key	 Data	 Management	 Challenges	

l  Address	 the	 data	 management	 challenges	 in	 enabling	 a	 variety	 of	
queries	 and	 analy-cs	

	

l  Aim	 to	 support	 three	 declara-ve	 user-‐level	 abstrac-ons	 for	
specifying	 queries	 or	 tasks	
l  A	 declara-ve	 Datalog-‐based	 query	 language	 for	 specifying	 queries	
(including	 historical	 and	 con-nuous)	

l  A	 high-‐level	 Datalog-‐based	 framework	 for	 graph	 cleaning	 tasks	

l  An	 expressive	 programming	 framework	 for	 domain-‐specific	 queries	
or	 analysis	 tasks	

l  Analogous	 to	 MapReduce	

l  Handle	 very	 large	 volumes	 of	 data	 (including	 historical	 traces)	
through	 developing	 distributed	 and	 cloud	 compu-ng	 techniques	

What	 we	 are	 doing 	 	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Compressed	 Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Compressed	 Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

A disk-based or
cloud-based
key-value store

Standard API
used to write graph
algorithms/libraries

Many graphs maintained
in an overlaid, memory-efficient
manner

l  Work	 so	 far:	
l  NScale:	 An	 end-‐to-‐end	 distributed	 programming	 framework	 for	
wri-ng	 graph	 analy-cs	 tasks	

l  Declara-ve	 graph	 cleaning	 [GDM’11,	 SIGMOD	 Demo’13]	
l  Real-‐-me	 con-nuous	 query	 processing	

l  Aggressive	 replica-on	 to	 manage	 very	 large	 dynamic	 graphs	 efficiently	 in	
the	 cloud,	 and	 to	 execute	 con-nuous	 queries	 over	 them	 [SIGMOD’12]	 	

l  New	 techniques	 for	 sharing	 [under	 submission]	

l  Historical	 graph	 management	
l  Efficient	 single-‐point	 or	 mul--‐point	 snapshot	 retrieval	 over	 very	 large	
historical	 graph	 traces	 [ICDE’13,	 ,	 SIGMOD	 Demo’13]	

l  Ego-‐centric	 pa[ern	 census	 [ICDE’12]	 	
l  Subgraph	 pa[ern	 matching	 over	 uncertain	 graphs	 [under	 submission]	

What	 we	 are	 doing 	 	

l Overview	

l NScale	 Distributed	 Programming	 Framework	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Con-nuous	 Queries	 over	 Distributed	 Graphs	

l Conclusions	

Outline 	 	

•  MapReduce-‐based	 (e.g.,	 Gbase,	 Pegasus,	 Hadapt)	
•  Use	 MR	 as	 the	 underlying	 distributed	 processing	 framework	 	
•  Disadvantages:	

•  Not	 intui-ve	 to	 program	 graph	 analysis	 tasks	 using	 MR	
•  Each	 "traversal"	 effec-vely	 requires	 a	 new	 MapReduce	 phase:	
Inefficient	

•  Vertex-‐centric	 itera-ve	 programming	 frameworks	
•  Synchronous	 (Pregel,	 Giraph),	 Asynchronous	 (GraphLab,	 GRACE)..	 	
•  No	 inherent	 support	 for	 applica-ons	 that	 require	 analy-cs	 on	 the	
neighborhoods	 of	 a	 subset	 of	 nodes	

•  Not	 sufficient	 or	 natural	 for	 many	 query	 analysis	 tasks	 (Ego	
network	 analysis)	

•  May	 be	 inefficient	 for	 analy-cs	 that	 require	 traversing	 beyond	 1-‐
hop	 neighbors	

Graph Programming Frameworks

• An	 end-‐to-‐end	 distributed	 graph	
programming	 framework	

• Users/applica-on	 programs	
specify:	 	

•  Neighborhoods	 or	 subgraphs	 of	
interest	

•  A	 kernel	 computa-on	 to	 operate	
upon	 those	 subgraphs	

•  Framework:	
•  Extracts	 the	 relevant	 subgraphs	
from	 underlying	 data	 and	 loads	 in	
memory	

•  Execu-on	 engine:	 Executes	 user	
computa-on	 on	 materialized	
subgraphs	

•  Communica-on:	 Shared	 state/
message	 passing	

	
	

NScale Programming Framework

NScale	 User	 API	

Underlying	 graph	 	
data	

Flat	 files	

Special	 purpose	 indexes	

<>	

<K1,V1>	
<K2,V2>	

.	

.	

.	
Key-‐Value	 stores	

Graph	 ExtracAon	 	
and	 Loading	

MapReduce	 	
(Apache	
Yarn)	

Graph	 	
extrac-on	 	

Graph	
analyAcs	

In-‐Memory	
Distributed	 	
Execu-on	 	
Engine	

Output	
Materializa-on	
Checkpoin-ng	

	
	

Output	

Users	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Analysts	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Applica-ons/Visualiza-on	 Tools	

NScale Programming Framework

1

6

4

2

5

3

10	

7

9
8

1
1	

Underlying	 graph	 	
data	 on	 HDFS	

1

6

2

5

3

7

10	

7

9
8

11	

Subgraphs	 in	
Distributed	
Memory	

Graph	 Extrac-on	 	
and	 Loading	

MapReduce	 	
(Apache	
Yarn)	

Graph	 	
extrac-on	 	

Nscale	 User	 API	 (Datalog,	 BluePrints):	 Query:	 Compute	 LCC	 for	 nodes	
where	 node.color=red	 	

Distributed	 	
Execu-on	 	
Engine	

Distributed	 	
Execu-on	 	
Engine	

Graph	
analy-cs	

Output	
Materializa-on	
Checkpoin-ng	

	
	

Output	

Example: Local Clustering Coefficient

NScale: Summary
•  User	 writes	 programs	 at	 the	 abstrac-on	 of	 a	 graph	

•  More	 intui-ve	 for	 graph	 analy-cs	

•  Captures	 mechanics	 of	 common	 graph	 analysis/cleaning	 tasks	
•  Complex	 analy-cs:	

•  Union	 or	 intersec-on	 of	 neighborhoods	 (Link	 predic-on,	 En-ty	 resolu-on)	
•  Induced	 subgraph	 of	 a	 hashtag	 (Influence	 analysis	 on	 hashtag	 ego	 networks)	

•  Scalability:	 Only	 relevant	 por-ons	 of	 the	 graph	 data	 loaded	 into	
memory	

•  User	 can	 specify	 subgraphs	 of	 interest,	 and	 select	 nodes	 or	 edges	 based	 on	
proper-es	

•  E.g.	 Edges	 with	 recent	 communica-on	

•  Generaliza-on:	 Flexibility	 in	 subgraph	 defini-on	
•  Handle	 vertex-‐centric	 programs	

•  Subgraph:	 vertex	 and	 associated	 edges	
•  Global	 programs	

•  Subgraph	 is	 the	 en-re	 graph	

NScale: Summary

l Overview	

l NScale	 Distributed	 Programming	 Framework	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Con-nuous	 Queries	 over	 Distributed	 Graphs	

l Conclusions	

Outline 	 	

Mo-va-on	
l  The	 observed,	 automa@cally-‐extracted	 informa@on	 networks	 are	

oSen	 noisy	 and	 incomplete	

l  Need	 to	 extract	 the	 underlying	 true	 informa@on	 network	 through:	
l  A[ribute	 Predic-on:	 to	 predict	 values	 of	 missing	 aKributes	
l  Link	 Predic-on:	 to	 infer	 missing	 links	
l  En-ty	 Resolu-on:	 to	 decide	 if	 two	 references	 refer	 to	 the	 same	 en@ty	

l  Typically	 itera-ve	 and	 interleaved	 applica-on	 of	 the	 techniques	
l  Use	 results	 of	 one	 to	 improve	 the	 accuracy	 of	 other	 opera-ons	
	

l  Numerous	 techniques	 developed	 for	 the	 tasks	 in	 isola-on	
l  No	 support	 from	 data	 management	 systems	
l  Hard	 to	 easily	 construct	 and	 compare	 new	 techniques,	 especially	 for	
joint	 inteference	

1.	 Declara-ve	 Graph	 Cleaning	
l  Enable	 declara-ve	 specifica-on	 of	 graph	 cleaning	 tasks	

l  i.e.,	 a[ribute	 predic-on,	 link	 predic-on,	 en-ty	 resolu-on	
l  Interac-ve	 system	 for	 execu-ng	 them	 over	 large	 datasets	

1.	 Declara-ve	 Graph	 Cleaning	
l  Enable	 declara-ve	 specifica-on	 of	 graph	 cleaning	 tasks	

l  i.e.,	 a[ribute	 predic-on,	 link	 predic-on,	 en-ty	 resolu-on	
l  Interac-ve	 system	 for	 execu-ng	 them	 over	 large	 datasets	

Overview	 of	 the	 Approach	
l  Declara-ve	 specifica-on	 of	 the	 cleaning	 task	

l  Datalog-‐based	 language	 for	 specifying	 -‐-‐	
l  Predic-on	 features	 (including	 local	 and	 rela-onal	 features)	
l  The	 details	 of	 how	 to	 accomplish	 the	 cleaning	 task	
l  Arbitrary	 interleaving	 or	 pipelining	 of	 different	 tasks 	 	

l  A	 mix	 of	 declara-ve	 constructs	 and	 user-‐defined	
func-ons	 to	 specify	 complex	 predic-on	 func-ons	

l  Op-mize	 the	 execu-on	 through	 caching,	 incremental	
evalua-on,	 pre-‐computed	 data	 structures	 …	

Proposed	 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Proposed	 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

For attribute prediction,
the domain is a subset of
the graph nodes.

For link prediction and
entity resolution, the
domain is a subset of
pairs of nodes.

Local: word frequency,
income, etc.
Relational: degree,
clustering coeff., no. of
neighbors with each
attribute value, common
neighbors between pairs
of nodes, etc.

Proposed	 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Attribute prediction: the
missing attribute

Link prediction: add link
or not?

Entity resolution: merge
two nodes or not?

After predictions are made,
the graph changes:
Attribute prediction
changes local attributes.
Link prediction changes the
graph links.
Entity resolution changes
both local attributes and
graph links.

Some	 Details	
l  Declara-ve	 framework	 based	 on	 Datalog	

l  A	 declara-ve	 logic	 programming	 language	 (subset	 of	 Prolog)	
l  Cleaner	 and	 more	 compact	 syntax	 than	 SQL	
l  Not	 considered	 prac-cal	 in	 past,	 but	 resurgence	 in	 recent	 years	

l  Declara-ve	 networking,	 data	 integra-on,	 cloud	 compu-ng,	 …	
l  Several	 recent	 workshops	 on	 Datalog	

l  We	 use	 Datalog	 to	 express:	
l  Domains	
l  Local	 and	 rela-onal	 features	

l  Extend	 Datalog	 with	 opera-onal	 seman-cs	 to	 express:	
l  Predic-ons	 (in	 the	 form	 of	 updates)	
l  Itera-on	

Specifying	 Features	

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
 IntersectionCount(X, Y, D3)
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Update	 Opera-on	
•  Ac-on	 to	 be	 taken	 itself	 specified	 declara-vely	
•  Enables	 specifying,	 e.g.,	 different	 ways	 to	 merge	 in	 case	 of	 en-ty	

resolu-on	 (i.e.,	 how	 to	 canonicalize)	
	

DEFINE	 Merge(X,	 Y)	
{	

	 INSERT	 Edge(X,	 Z)	 :-‐	 Edge(Y,	 Z)	
	 DELETE	 Edge(Y,	 Z)	
	 UPDATE	 Node(X,	 A=ANew)	 :-‐	 Node(X,A=AX),	 Node(Y,A=AY),	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ANew=(AX+AY)/2	
	 UPDATE	 Node(X,	 B=BNew)	 :-‐	 Node(X,B=BX),	 Node(X,B=BX),	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 BNew=max(BX,BY)	
	 DELETE	 Node(Y)	

}	
Merge(X,	 Y)	 :-‐	 Features	 (X,	 Y,	 F1,…,Fn),	 predict-‐ER(F1,…,Fn)	 =	 true,	 	

	 	 	 	 	 	 	 confidence-‐ER(F1,…,Fn)	 >	 0.95	

Example	
l  Real-‐world	 PubMed	 graph	

l  Set	 of	 publica-ons	 from	 the	 medical	 domain,	 their	 abstracts,	 and	 cita-ons	
l  50,634	 publica-ons,	 115,323	 cita-on	 edges	
l  Task:	 A[ribute	 predic-on	

l  Predict	 if	 the	 paper	 is	 categorized	 as	 Cogni-on,	 Learning,	 Percep-on	 or	 Thinking	
l  Choose	 top	 10%	 predic-ons	 aSer	 each	 itera-on,	 for	 10	 itera-ons	
	 DOMAIN	 Uncommi[ed(X):-‐Node(X,Commi[ed=‘no’)	
{	
	 	 	 ThinkingNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Thinking’)	
	 	 	 Percep-onNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Percep-on’)	
	 	 	 Cogni-onNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Cogni-on’)	
	 	 	 LearningNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Learning’)	
	 	 	 Features-‐AP(X,A,B,C,D,Abstract):-‐	 ThinkingNeighbors(X,A),	 Percep-onNeighbors(X,B),	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Cogni-onNeighbors(X,C),	 LearningNeighbors(X,D),Node(X,Abstract,	 _,_)	
}	
ITERATE(10)	 	
{	
	 	 	 UPDATE	 Node(X,_,P,‘yes’):-‐	 Features-‐AP(X,A,B,C,D,Text),	 P	 =	 predict-‐AP(X,A,B,C,D,Text),	

	 	 	 	 	 	 	 	 	 	 confidence-‐AP(X,A,B,C,D,Text)	 IN	 TOP	 10%	
}	

l  Using	 a	 simple	 RDBMS	 built	 on	 top	 of	 Java	 Berkeley	 DB	
l  Predicates	 in	 the	 program	 correspond	 to	 materialized	 tables	
l  Datalog	 rules	 converted	 into	 SQL	

l  Incremental	 maintenance:	
l  Every	 set	 of	 changes	 done	 by	 AP,	 LP,	 or	 ER	 logged	 into	 two	 change	 tables	

ΔNodes	 and	 ΔEdges	
l  Aggregate	 maintenance	 is	 performed	 by	 aggrega-ng	 the	 change	 table	 then	

refreshing	 the	 old	 table	

l  Proved	 hard	 to	 scale	
l  Incremental	 evalua-on	 much	 faster	 than	 recompute,	 but	 SQL-‐based	

evalua-on	 was	 inherently	 a	 bo[leneck	
l  Hard	 to	 do	 complex	 features	 like	 centrality	 measures	
l  In	 the	 process	 of	 changing	 the	 backend	 to	 use	 a	 new	 distributed	 graph	

processing	 framework	 	

Prototype	 Implementa-on	

l Overview	

l NScale	 Distributed	 Programming	 Framework	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Con-nuous	 Queries	 over	 Distributed	 Graphs	

l Conclusions	

Outline 	 	

l  Increasing	 interest	 in	 temporal	 analysis	 of	 informa-on	 networks	 to:	
l  Understand	 evolu-onary	 trends	 (e.g.,	 how	 communi-es	 evolve)	 	

l  Perform	 compara-ve	 analysis	 and	 iden-fy	 major	 changes	

l  Develop	 models	 of	 evolu-on	 or	 informa-on	 diffusion	

l  Visualiza-ons	 over	 -me	
l  For	 be[er	 predic-ons	 in	 the	 future	

l  Focused	 explora-on	 and	 querying	
l  “Who	 had	 the	 highest	 PageRank	 in	 a	 cita@on	 network	 in	 1960?”	

l  “Iden@fy	 nodes	 most	 similar	 to	 X	 as	 of	 one	 year	 ago”	

l  “Iden@fy	 the	 days	 when	 the	 network	 diameter	 (over	 some	 transient	 edges	
like	 messages)	 is	 smallest”	

l  “Find	 a	 temporal	 subgraph	 paKern	 in	 a	 graph”	

Historical	 Graph	 Data	 Management	

ti tj tk

Hinge:	 A	 System	 for	 Temporal	 Explora-on	

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

Key-Value Store
DeltaGraph

GraphManager
Manage GraphPool -
Overlaying historical
graphs and cleanup

HistoryManager
Manage DeltaGraph -
Query Planning, Disk

Read/Write

HiNGE

Analyst JUNG

QueryManager
Translate user query into

Graph Retrieval and execute
Algorithms on graphs

Figure 2: System Architecture: HiNGE, DeltaGraph and
GraphPool.

the network, and perhaps, certain anomalies as well. Exploration
is considered to be the stepping stone for more specific inquiries
into the nature of the network. Exploration of a temporal graph
is enabled using – (a) a time-slider, (b) an interactive, zoomable
snapshot viewer, and (c) a metric calculator. The time-slider is
an interactive timeline that the user can adjust to go to a specific
time of interest. The snapshot viewer presents a view of the graph
at the desired time as indicated by the time-slider. The user may
pan, zoom or rotate the pane with mouse operations to focus on the
area of interest in the graph. The layout, color and other factors of
appearance of the graph can also be changed by customizing the
choices in the Settings menu. The metric calculator provides the
choice of several metrics such as PageRank, betweenness central-
ity, clustering coefficient, etc., to be computed for the vertices of
the network at the time indicated by the time slider. The metric val-
ues may be chosen as a part of vertex labels in the snapshot view,
or can be used to make the graph display more appropriate. Simul-
taneously, the k top or bottom-valued vertices are displayed on the
side. These can be seen in Figure 3.
Query: The Query mode is meant to provide a comparative and
detailed temporal evolutionary analysis of the vertices of interest
that the user may have identified during the exploration phase. It
shows the structural evolution as well as the change in the metrics
of interest, such as the clustering coefficient. To specify a query,
the user must specify the vertex, the start and end times, the metric
of interest, and the number of time points to be compared. Figure
4 shows the results of an example query for node 12.
Search: An interesting and slightly different kind of query is a sub-
graph pattern matching query. Subgraph pattern matching queries
can be used to find subgraphs that satisfy certain properties, and
are one of the most widely studied queries over graph data. HiNGE
supports subgraph pattern matching queries over the history of a
network. The user may specify the query by drawing the structure
of a subgraph, assigning labels to the nodes, and specifying the time
interval during which to perform the search. The result lists all the
matches found for the query, i.e., the subgraph layouts and times

Figure 3: Temporal exploration using time-slider

at which the particular subgraph exists. This functionality is imple-
mented by using the ability to build and maintain auxiliary indexes
in DeltaGraph (specifically, we build auxiliary path indexes) [4].

Another very useful feature is node search that helps the user
to find nodes given attribute values. This is implemented using
an auxiliary inverted index in DeltaGraph. Hence, the user may
constrain the search by specifying a time interval. Figure 5 shows
the node search and subgraph pattern search features. By keeping
the time range open, we can specify a search across all times; on
the other hand, if the end point and the start point are the same, we
only search in that particular snapshot.

Figure 5: (a) Node Search; (b) Subgraph Pattern Search

3.2 Working with HiNGE
The expected input graph specification is as described in [4].

The evolving network is described as a set of chronological events.
Each node is required to have a unique identification, the nodeid.
Nodes and edges may carry any number of attributes, e.g., name,
label, etc. While specifying the node in a query, the user must spec-
ify the nodeid. Node search can be used to locate the nodeid for the
node when only the attributes of the node are known. Here is a list
of the major options/parameters, all of which can be accessed from

Hinge:	 A	 System	 for	 Temporal	 Explora-on	

Hinge:	 A	 System	 for	 Temporal	 Explora-on	

l  Focus	 of	 the	 work	 so	 far:	 snapshot	 retrieval	 queries	
l  Given	 one	 @mepoint	 or	 a	 set	 of	 @mepoints	 in	 the	 past,	 retrieve	 the	

corresponding	 snapshots	 of	 the	 network	 in	 memory	

l  Queries	 may	 specify	 only	 a	 subset	 of	 the	 columns	 to	 be	 fetched	

l  Some	 more	 complex	 types	 of	 queries	 can	 be	 specified	

l  Given	 the	 ad	 hoc	 nature	 of	 much	 of	 the	 analysis,	 one	 of	 the	 most	
important	 query	 types	

l  Key	 challenges:	
l  Needs	 to	 be	 very	 fast	 to	 support	 interac-ve	 analysis	

l  Should	 support	 analyzing	 100’s	 or	 more	 snapshots	 simultaneously	

l  Support	 for	 distributed	 retrieval	 and	 distributed	 analysis	 (e.g.,	 using	 Pregel)	

Snapshot	 Retrieval	 Queries	

l  Temporal	 rela-onal	 databases	
l  Vast	 body	 of	 work	 on	 models,	 query	 languages,	 and	 systems	

l  Dis-nc-on	 between	 transac@on-‐@me	 and	 valid-‐@me	 temporal	 databases	

l  Snapshot	 retrieval	 queries	 also	 called	 valid	 @meslice	 queries	

l  Op-ons	 for	 execu-ng	 snapshot	 queries	
l  External	 Interval	 Trees	 [Arge	 and	 Vi[er,	 1996],	 External	 Segment	 Trees	

[Blakenagal	 and	 Gu-ng,	 1994],	 Snapshot	 index	 [Slazberg	 et	 al.,	 1999],	 …	

l  Key	 limita-ons	
l  Not	 flexible	 or	 tunable;	 not	 easily	 parallelizable;	 no	 support	 for	 mul--‐point	

queries;	 intended	 mainly	 for	 disks	

Prior	 Work	

Key-Value Store
DeltaGraph

GraphPool

Active Graph Pool Table
{Query, Time, Bit, Graph}

GraphManager
Manage GraphPool -
Overlaying historical
graphs and cleanup

HistoryManager
Manage DeltaGraph -
Query Planning, Disk

Read/Write

QueryManager
Translate user query into

Graph Retrieval and
execute Algorithms on

graphs

Social
Network
Analysis
SoftwareAnalyst

System

System	 Overview	
Currently supports a programmatic API to access the
historical graphs

Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

GraphPool: Store many graphs in memory in an
overlaid fashion

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

DeltaGraph: Hierarchical index structure with
(logical) snapshots at the leaves

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Overview	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

Overview	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

Currently supports a programmatic API to access the
historical graphs

Table 1: Options for node attribute retrieval. Similar options
exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview
Figure 2 shows a high level overview of our system and its key

components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth
in the number of neighbors since joining the network).

Next, we briefly discuss snapshot queries and the key compo-
nents of the system.

3.2.1 Snapshot Queries
We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-
sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ⇤
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components
There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| �
|Gc ⇥G1 ⇥G2 · · · ⇥Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

Overview	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

DeltaGraph: Hierarchical index structure with
(logical) snapshots at the leaves

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Overview	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

GraphPool: Store many graphs in memory in an
overlaid fashion

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

l  Edge	 deltas	 stored	 in	 a	 key-‐value	 store	
l  Currently	 uses	 Kyoto	 Cabinet	 disk-‐based	 key-‐value	 store	

l  Parallelized	 by	 running	 a	 separate	 instance	 on	 each	 machine	

l  Snapshot	 retrieval	 arbitrarily	 parallelizable	
l  Can	 load	 the	 snapshot(s)	 in	 parallel	 on	 any	 number	 of	 machines	

l  Supports	 a	 simplified	 Pregel-‐like	 abstrac-on	 on	 top	

l  Highly	 tunable	
l  Can	 control	 the	 access	 -mes,	 latencies,	 storage	 requirements	 by	 appropriate	

choice	 of	 parameter	 values	

l  Supports	 pre-‐fetching	 to	 reduce	 online	 query	 latencies	

l  Extensible	
l  APIs	 to	 extend	 the	 basic	 structure	 to	 support	 subgraph	 paKern	 matching,	

reachability	 etc.	

Summary	

Empirical	 Results	
l  DeltaGraph	 vs	 In-‐Memory	 Interval	 Tree	
	

1998 1999 2000
Query Timepoint

0

500

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Performance: Dataset 2a

Interval Tree
DG
DG (Total Mat)

0

100

200

300

Sp
ac

e
(M

B
)

(b) Memory: Dataset 2a

Interval Tree
DG
DG (Total Mat)

Dataset 2a: 500,000 nodes+edges, 500,000 events

l Overview	

l NScale	 Distributed	 Programming	 Framework	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Con-nuous	 Queries	 over	 Distributed	 Graphs	

l Conclusions	

Outline 	 	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica@on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

l  Increasing	 need	 for	 execu-ng	 queries	 and	 analysis	 tasks	 in	 real-‐-me	
on	 “data	 streams”	
l  Ranging	 from	 simple	 “monitor	 updates	 in	 the	 neighborhood”	 to	
complex	 “trend	 discovery”	 or	 “anomaly	 detec-on”	 queries	

l  Very	 low	 latencies	 desired	
l  Trade-‐offs	 between	 push/pre-‐computa-on	 vs	 pull/on-‐demand	

l  Sharing	 and	 adap-ve	 execu-on	 necessary	

l  Parallel/distributed	 solu-ons	 needed	 to	 handle	 the	 scale	
l  Random	 graph	 par--oning	 typically	 results	 in	 large	 edge	 cuts	 	

l  Distributed	 traversals	 to	 answer	 queries	 leading	 to	 high	 latencies	 and	
high	 network	 communica-on	

l  Sophis-cated	 par--oning	 techniques	 oSen	 do	 not	 work	 either	

Real-‐-me	 Graph	 Queries	 and	 Analy-cs	

l  Dominant	 type	 of	 queries	 in	 many	 scenarios	 (e.g.,	 social	 networks)	
l  How	 to	 execute	 if	 the	 graph	 is	 par@@oned	 across	 many	 machines?	
l  A	 node’s	 neighbors	 may	 be	 on	 a	 different	 machine	

l  Prior	 approaches	
l  On-‐demand	 à	 High	 latencies	 because	 of	 network	 communica-on	
l  Local	 seman-cs	 [Pujol	 et	 al.,	 SIGCOMM’11]	

l  For	 every	 node,	 all	 neighbors	 replicated	 locally	
l  High,	 oSen	 unnecessary	 network	 communica-on	 overhead	

l  Our	 approach	 [SIGMOD’12]	
l  How	 to	 choose	 what	 to	 replicate?	 –	 A	 new	 “fairness”	 criterion	
l  Push	 vs	 Pull?	 –	 Fine-‐grained	 access	 pa[ern	 monitoring	
l  Decentralized	 decision	 making	

Example:	 Fetch	 Neighbors’	 Updates	

Our	 Approach	
l  Key	 idea	 1	 	

l  Use	 a	 “fairness”	 criterion	 to	 decide	 what	 to	 replicate	
l  For	 every	 node,	 at	 least	 t	 frac-on	 of	 nodes	 should	 be	 present	 locally	

l  Can	 make	 some	 progress	 for	 all	 queries	
l  Guaranteeing	 fairness	 NP-‐Hard	

	

Local Semantics

Fair with t = 2/3

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

⟨Cij , Pk⟩ a cluster-partition pair, i ̸= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair ⟨Cij , Pk⟩ is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

Our	 Approach	
l  Key	 idea	 2	 	

l  Exploit	 pa[erns	 in	 the	 update/query	 access	 frequencies	

l  Use	 pull	 replica-on	 in	 the	 first	 12	 hours,	 push	 in	 the	 next	 12	
l  Significant	 benefits	 from	 adap-vely	 changing	 the	 replica-on	
decision	

l  Such	 pa[erns	 observed	 in	 human-‐centric	 networks	 like	 social	
networks	

	

We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair ⟨Cij , Pj⟩, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair ⟨Cij , Pk⟩
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different

! "

#$%&'()*+%,-./0(1*-2(3(/0 #$%&'(*,&4-./0(1*-2(3(/5
!*+%,-(&%(671*(8*&9:'&*+%;3(

<=>?=>?/?/@
A,&4-(&%(671*(8*&9:'&*+%;3

(</?/?B?=>@

C= C/

Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence

Our	 Approach	
l  Key	 idea	 3	 	

l  Make	 replica-on	 decisions	 for	 all	 nodes	 in	 a	 pair	 of	 par--ons	 together	
l  Prior	 work	 had	 suggested	 doing	 this	 for	 each	 (writer,	 reader)	 pair	 separately	
l  Works	 in	 the	 publish-‐subscribe	 domain,	 but	 not	 here	

l  Can	 be	 reduced	 to	 maximum	 density	 sub-‐hypergraph	 problem	

!"

!#

!$

!%

&"

&#

&$

&%

'(!")*+*# ,(&")*+*$

'(!#)*+*-

'(!$)*+*.

'(!%)*+*#

,(&#)*+*#

,(&$)*+*#

,(&%)*+*$

!"#

!"

!#

!$

!%

&"

&#

&$

&%

!""#$%&'($)$*+$,$-.

!"

!#

!$

!%

&"

&#

&$

&%

!"""#$%&'($)$/+$,$-.

01'2

0133

0133

01'2

01'2

0133

0133

0133

!"

!% !$

!#

&"

&% &$

&#

!"4#

Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway

Pairwise decisions Optimal

l  Con-nuously	 evaluate	 an	 aggregate	 in	 the	 local	 neighborhoods	 of	
all	 nodes	 of	 a	 graph	
l  For	 example,	 to	 do	 “ego-‐centric	 trend	 analysis	 in	 social	 networks”,	 or	
“detec@ng	 nodes	 with	 anomalous	 communica@on	 ac@vity”	

l  Challenging	 even	 if	 data	 all	 on	 a	 single	 machine	

l  Prior	 approaches	
l  On-‐demand	 à	 High	 latencies	 because	 of	 computa-onal	 cost	

l  Con-nuously	 maintain	 all	 the	 query	 results	 (pre-‐computa-on):	

l  Poten-ally	 wasted	 computa-on	 	

l  Too	 many	 queries	 to	 be	 executed	

l  Our	 approach	 [ongoing	 work]	
l  Access-‐pa[ern	 based	 on-‐demand	 vs	 pre-‐computa-on	 decisions	

l  Aggressive	 sharing	 across	 different	 queries	

Example:	 Ego-‐centric	 Aggregates	

Our	 Approach	
l  Key	 idea	 4	 	

l  Exploit	 commonali-es	 across	 queries	 to	 share	 par-al	 computa-on	
l  Use	 graph	 compression-‐like	 techniques	 to	 minimize	 the	 computa-on	

Original dataflow graph for aggregate
computation – each edge
denotes a potential computation

Computation cost can be reduced by
identifying “bi-cliques”

Conclusions	 and	 Ongoing	 Work	
l  Graph	 data	 management	 becoming	 increasingly	 important	
l  Many	 challenges	 in	 dealing	 with	 the	 scale,	 the	 noise,	 and	 the	

variety	 of	 analy-cal	 tasks	
l  Presented:	 	

l  A	 declara-ve	 framework	 for	 cleaning	 noisy	 graphs	
l  A	 system	 for	 managing	 historical	 data	 and	 snapshot	 retrieval	
l  Techniques	 for	 managing	 and	 querying	 highly	 dynamic	 graphs	

l  Ongoing	 work	 on	 improving	 and	 extending	 this	 preliminary	 work	
l  Developing	 a	 unified	 query	 language	 based	 on	 Datalog	
l  Replica-on	 and	 pre-‐computa-on	 for	 con-nuous	 queries	
l  Efficiently	 suppor-ng	 distributed	 graph	 analy-cs	
l  Developing	 effec-ve	 graph	 compression	 techniques	
l  New	 graph	 par--oning	 techniques	

