Graph Data Management

Amol Deshpande
Associate Professor

Department of Computer Science and UMIACS
University of Maryland at College Park

® Background and Motivation
® Graph Queries and Analysis Tasks

e Graph Data Management: Storage

® Graph Data Management: Processing

® What we are doing

Background: Graphs

® A graph captures a set of entities/objects, and interconnections
between pairs of them

Graphs also often called networks
Entities/objects represented by vertices or nodes
Interconnections between pairs of vertices called edges

e Also called links, arcs, relationships

An undirected, unweighted graph A directed, edge-weighted graph

Motivation

® Increasing interest in querying and reasoning about the underlying
graph structure in a variety of disciplines

Linked [}

Social networks

Supreme court
citation network

s
/\x

network

Financial transaction R4

networks Stock Trading Networks

Motivation

® Increasing interest in querying and reasoning about interconnected
entities in a variety of disciplines

Russia

USA

Australia-

New Zeéland

Global virtual water trade network

Federal funds networks

Citation networks Parcel shipment networks
Collaboration networks Knowledge Graph
Telecommunications networks World Wide Web

Disease transmission networks

® Increasing interest in querying and reasoning about interconnected
entities in a variety of disciplines

® Underlying data hasn’t necessarily changed that much
Aside from the data volumes and easier availability

® However, several new realizations in recent years:

Reasoning about the graph structure can provide useful and
actionable insights (network science/complex network analysis)

Lose too much information and intuitions if graph structure ignored
Not easy to write many natural queries or tasks using traditional tools
e Especially relational databases like Oracle

Harder to efficiently process inherently graph-structured queries or
complex network analysis tasks using existing tools

e A major concern with increasingly large graphs seen in practice

Additional Background

® Hypergraphs
A more powerful abstraction than graphs
An “edge” may connect more than two vertices

Enables modeling relationships/events between more than 2 entities

Much harder to reason about in general, but may be necessary in some
domains

A hyperedge over
3 nodes: E, F, G.

Additional Background

® Property Graphs

A graph model used by many open-source graph data management tools

In essence: a directed graph where each node and each edge may be
associated with a set of properties

[Name = Tom Cruise] [Name = Top Gun
Born = 7/3/1962 Release Date = ...

acted-in

[Year = 1990] married

(Name = Nicole Kidman]

Additional Background

e XML
A commonly used data model for representing data without rigid structure
In essence: a directed, labeled “tree”

Very popular data exchange format

<movies>
<movie>
<title>Top Gun</title>
<actors>
<actor>
<name>Tom Cruise</name>
<born>7/3/1962</born>
</actor>
<actor>

</actor>
</actors>
</movie>

Tom Cruise

Additional Background

® Resource Description Framework (RDF)

A commonly used data model for representing knowledge bases

In essence: a directed, labeled graph

Each edge (called a triple): connects a “subject”, an “object”, and is
associated with a “predicate”

born on

z was married to
Nicole Kidman

® Background and Motivation
® Graph Queries and Analysis Tasks

e Graph Data Management: Storage

® Graph Data Management: Processing

® What we are doing

Queries: Subgraph Matching

® Given a “query” graph, find where it occurs in a given “data” graph

Query graph can specify restrictions on the graph structure, on values of
node attributes, and so on

An important variation: approximate matching

® Alternatively, given a collection of data graphs, find the ones that
contain the query graph

Query
Graph

Data Graph

Queries: Connection Subgraphs

® Given a data graph and two (or more) nodes in it, find a small
subgraph that best captures the relationship between the nodes

e Key question: How to define “best captures”?

E.g., “shortest path”: but that may not be most informative

The “red” path between D and J
maybe more informative than the
“‘green” path

Queries

® Reachability:

Given two nodes, is there an undirected or directed path between
them?

... With constraints on the types of edges that can be used?
® Shortest path:
Find the shortest path between two given nodes
e Keyword search:
Find the smallest subgraph that contains all the specified keywords

® Historical queries:
Given a node, find other nodes that evolved most similarly in the past

® And so on...

Graph Analysis: Centrality Measures

® Centrality measure: a measure of the relative importance
of a vertex within a graph
® Many different centrality measures

... that can give fairly different results

Degree centrality of a node u:
of edges incident on u

Betweenness centrality of a node u:
of shortest paths between pairs

of vertices that go through u

Pagerank of a node u:
probability that a random surfer

(who is following links randomly)
ends up at node u

Eigenvector centrality:
Used in a recent work on analyzing Federal Funds Network

Graph Analysis: Community Detection

® Goal: partitioning the vertices into (potentially overlapping) groups
based on the interconnections between them

Basic intuition: More connections within a community than across
communities

Provide insights into how networks function; identify functional modules;
improve performance of Web services...

® Numerous techniques proposed for community detection over the

years
Graph partitioning-based methods
Maximizing some “goodness” function
Recursively removing high centrality edges

... and so on

Graph Analysis: Models of Evolution

® Two somewhat related goals:

Measuring different properties of networks
e E.g., degree distributions, diameter, clustering coefficient, ...
Using those to build models of how a network forms and evolves

e To gain insights; for predictions about the future...

® Example:
Most real networks exhibit highly skewed degree distributions
Preferential attachment model explains that phenomenon

» Basic idea: a new node is more likely to connect to a high-degree node
than a low-degree node (“rich get richer”)

® Some other observed properties:
Shrinking diameters
Average degree in the network increases over time

High clustering coefficients

Graph Analysis: Cleaning/Inference

® The observed, automatically-extracted information networks are
often noisy and incomplete
Missing attributes, missing links
Ambiguous references to the same entity

® Need to extract the underlying true information network through:
Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

Attribute Prediction

Task: Predict topic of the paper p8| [wc| -
Legend
A Statistical Model for Language Model Based
Multilingual Entity - Arabic Word
Detection and Tracking Segmentation.

Automatic Rule
Refinement for Why Not?
Information Extraction

—

Join Optimization of An Annotation Tracing Lineage Beyond
Information Extraction Management System for Relational Operators

Output: Quality Matters! Relational Databases

Attribute Prediction

Task: Predict topic of the paper p8| [wc| -
Legend
A Statistical Model for Language Model Based
Multilingual Entity - Arabic Word
Detection and Tracking Segmentation.

Automatic Rule
Refinement for Why Not?
Information Extraction

-

Join Optimization of An Annotation Tracing Lineage Beyond
Information Extraction Management System for Relational Operators

Output: Quality Matters! Relational Databases

Attribute Prediction

Task: Predict topic of the paper p8| [wc| -
Legend
A Statistical Model for Language Model Based
Multilingual Entity - Arabic Word
Detection and Tracking Segmentation.

Automatic Rule
Refinement for Why Not?
Information Extraction

-—

o

Join Optimization of An Annotation Tracing Lineage Beyond
Information Extraction Management System for Relational Operators
Output: Quality Matters! Relational Databases

l
May generate a probability

distribution here instead

Collective (relational) Inference

Link prediction Entity resolution
Graham
Flip Korn Cornede
Petre Prabhu Amol
Stoica Babu Deshpande B;;ZZ
Divesh Lukasz
Srivastava - Golab
Avishek William Samir
Saha Roberts v Khuller
Vladislav \
Nick Theodore Shkapenyuk q J/Z_n J/Zp ’
Koudas Johnson

® Many collective techniques have been developed over the years

Real-time Graph Queries and Analytics

® Most of the queries/analysis so far focus on a static graph datasets

® Increasing need for doing those in real-time on “data streams”

Continuously arriving
input data streams

User queries or tasks

posed once
Real-time results generated
and sent to the users
Continuous continuously
Query Processor
or

Real-time Analytics
Engine

Real-time Graph Queries and Analytics

e Most of the queries/analysis so far focus on a static graph dataset

® Increasing need for doing those in real-time on “data streams”

® Examples:
Update me when a friend posts a message on a social network
Alert me when a topic is suddenly “trending” in my friend circle
Anomaly detection:
e Alert me if the communication activity in the network changes drastically

e Monitor constraints on the data being generated by the nodes

® Data streams very well studied for relational data, but not in the
context of graph querying or analytics

® An ongoing research focus for my group

Graph Queries and Analysis

® Eigenvalue analysis

® Clustering coefficients
® Ego-centric analysis

® Visualizations

® Summarization

® Motif Counting

® Background and Motivation
® Graph Queries and Analysis Tasks

® Graph Data Management: Storage

® Graph Data Management: Processing

® What we are doing

Options for Storing Graph Data

1. Use file systems

+ Very simple, and no (practical) limits on how large a dataset to manage

— No support for transactions; minimal functionality

2. Use a relational database (e.g., Oracle, IBM DB2, etc.)
+ Mature technology — much of the data is already in them anyway
+ All the goodies (SQL, transactions, toolchains) available

— Almost no support for traversing the graph structure

3. Use NoSQL key-value stores
+ Can handle very large datasets efficiently, in a distributed fashion

— Minimal functionality — must build the analysis/querying tools on top

4. Use a persistent graph database
+ Efficiently support graph traversals

— But even the most mature products not as a mature as RDBMSs

— Typically no declarative languages (a la SQL), so must write programs

Storage 1: File Systems

® Simplest to get started, and widely used in practice

Especially since the other options don’t really help that much anyway for
graph querying or analytics
® Many cloud computing programming frameworks read data from
file systems

E.g., Hadoop Distributed File System (HDFS) used by Apache Hadoop and
others

® Key disadvantages:
Almost no data management functionality
e Everything from parsing to analyzing must be done by the programmer
No support for updates, or transactions

Hard to do “queries” without building auxiliary structures

Storage 2: Relational Databases

® Store the entities in a set of tables, and encode the connections
between them in separate tables

E.g., RDF and XML data predominantly stored in relational databases
® Can use SQL to query the data, and other DBMS analytic tools

® However, no support for graph traversals
Must extract the relevant data, & write code to construct/process the graph

Can be much much slower than specialized solutions for traversal operations

e Banks Trades

B~ WODN -
B~ WODN -
= AN

Storage 3: Key-value Stores

® A recent, and wildly popular solution, to manage large datasets

Examples: Apache HBase, Cassandra, Amazon Dynamo, Redis

® Very basic functionality
Put(k, v): Store the value v, and associate it with key k

Get(k): Get the value associated with key k

One way to store it in a key-value store

e Bank1 Information about the bank
0 Bank2
Bank1.outTrades A list of all the trades where Bank1 is
e the seller

Bank1.inTrades A list of all the trades where Bank1 is

a the buyer

Storage 3: Key-value Stores

® A recent, and wildly popular solution, to manage large datasets

Examples: Apache HBase, Cassandra, Amazon Dynamo, Redis

® Key-value stores manage the data in a distributed fashion
Can handle very large datasets with very low latencies

Underlie many Web applications (many Google products, Facebook, etc.)

® Advantages:
Support efficient updates (must be careful about consistency)
Fast retrieval = easy to traverse the graph structure

We chose this option for the first prototype implementation of our
distributed graph data management system for dynamic graphs

® Disadvantages:

Everything outside of graph traversals must be built on top

Storage 4: Specialized Graph Databases

® Built to manage and query graph-structured data

® Many built over the years, and increasing interest in recent years
Neodj: Perhaps the most mature product out there
InfiniteGraph: Originally an object-oriented database
DEX: Quite similar to Neo4j in functionality
AllegroGraph: An RDF database
HyperGraphDB: Allowing modeling hypergraphs
Wikipedia page on graph databases lists many more

® Key disadvantages:

Fairly rudimentary declarative interfaces -- most applications
need to be written using programmatic interfaces

Or using provided toolkits/libraries

® Open-source graph database supported by Neo Technology
Uses the property graph model
The data stored on disks (unlike key-value stores)
Full ACID support (i.e., consistent and reliable updates)
Can scale to billions of nodes and edges

Supports many different APIs to access the data, and to retrieve
the data
Highly efficient retrieval of nodes of interest through “indexing”

® Feature-rich Programmatic APl to access a Neo4j database

firstNode = graphDb.createNode();
firstNode.setProperty("message"”, "Hello, ");
secondNode = graphDb.createNode();
secondNode.setProperty("message"”, "World!");

relationship = firstNode.createRelationshipTo(secondNode, RelTypes.KNOWS);
relationship.setProperty("message", "brave Neod4j ");

Gcssagc = "Hello,')

KNOWS
ssage = 'brave Neod) '

Cnc:ssagc = "World!)

Source: http://www.neo4j.org

® Feature-rich Programmatic APl to access a Neo4j database

System.out.print(firstNode.getProperty("message"));
System.out.print(relationship.getProperty("message"));
System.out.print(secondNode.getProperty("message"));

Gcssagc = "Hello,')

KNOWS
ssage = 'brave Neod) '

Cnc:ssagc = "World!)

Source: http://www.neo4j.org

® Feature-rich Programmatic APl to access a Neo4j database

Supports different types of indexes to quickly find “start” nodes
e E.g., find the node for a particular person in a social network

Support different types of “traversals” to traverse the local
neighborhoods

Source: http://www.neo4j.org

® Also supports a high-level language, called cypher, for
traversing and searching

Figure 15.1. Example Graph

(Node[4] \
bame: Kbhn‘J

friend

friend

(" Node[5]

A
\name = Kbe')

triend

Node[3]

bame = 'Steve'J

Node[1] \

bame = 'Sara'/

\lfriend

Node[2]

name = 'Maria'J

AR

Finds friends of John’s friends

START john=node:node_auto_index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof

RETURN john, fof

Source: http://www.neo4j.org

® Also supports a high-level language, called cypher, for
traversing and searching

® Can use cypher on its own (in a console), or in an
embedded fashion (e.g., from within Java)

Source: http://www.neo4j.org

AllegroGraph

® Aimed at Semantic Web Applications

® Triple-store: stores RDF assertions of the form
<subject, predicate, object>
E.g., <“sky”, “has-color”, “blue” >
e Full support for transactions, concurrency, recovery
e Several different ways to query:
Query patterns (specify the types of triples)
Has a Social Network Analysis Toolkit
e Search methods, Centrality computations, etc.
Supports querying using Prolog
Supports SPARQL query language

Source: http.//www.franz.com/agraph/allegrograph/

SPARQL

e Standardized RDF query language

® Basic functionality quite similar to subgraph pattern matching
But recent extensions attempt to go quite a bit beyond that

Find names and emails of every person in the dataset

PREFIX foaf: <http://xmIns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email.

}

SPARQL

e Standardized RDF query language
® Basic functionality quite similar to subgraph pattern matching

But recent extensions attempt to go quite a bit beyond that

Find me all landlocked countries with a population greater than 15
million (revisited), with the highest population country first.

PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>

SELECT ?country _name ?population

WHERE {
?country a type:LandlockedCountries ;

rdfs:label ?country _name ;

prop:populationEstimate ?population .
FILTER (?population > 15000000 &&

langMatches(lang(?country _name), "EN")) .

} ORDER BY DESC(?population)

® Background and Motivation
® Graph Queries and Analysis Tasks

e Graph Data Management: Storage

® Graph Data Management: Processing

® What we are doing

Options for Processing Graph Data

1. Write your own programs

Extract the relevant data, and construct an in-memory graph
Different storage options help to different degrees with this
2. Write queries in a declarative language
Works for a very small class of graphs queries/tasks today
Ongoing research work (including in my group) on generalizing that
3. Use a general-purpose distributed programming framework
E.g.: Hadoop or MapReduce
Hard to program most graph analysis tasks this way
4. Use a graph-specific programming framework

Goal is to simplify writing graph analysis tasks, and scale them to
very large volumes at the same time

Still ongoing work — wide applicability still to be proven

Option 2: Declarative Interfaces

® No consensus on declarative, high-level languages (like SQL) for
either querying or for analysis
Too much variety in the types of queries/analysis tasks
Makes it hard to find and exploit commonalities
® Some limited solutions:
XQuery for XML
o Limited to tree-structured data
SPARQL for RDF
e Standardized query language, but limited functionality
Cypher by Neo4j
Datalog-based frameworks for specifying analysis tasks

e Mostly research prototypes, typically specific to some analysis task

Option 3: Map Reduce

® A very popular option for (batch) processing very large datasets

More specifically: Hadoop, the open source implementation

® Two key advantages:

Scalability without worrying about scheduling, distributed execution, fault
tolerance, and so on...

Simple programming framework
® Disadvantages:
Hard to use this for graph analysis tasks
Each “traversal” effectively requires a new “map-reduce” phase

e Map-reduce framework not ideal for large numbers of phases

e However, much work on showing how different graph analysis
tasks can be done using MapReduce

Background: PageRank

® PageRank: A measure of centrality of a node

® PR(node) = Probability that a random surfer ends up at that node

PR(2)

Probability

of jJumping to
PR(2) = a random node

o4 +

(1— Q) (PR(1)/3 +
R(3)

ThisdgeRalakdefinedea probability
distID BRI IT ROGES

distributed over its out-edges

Background: PageRank

PageRank: A measure of centrality of a node
PR(node) = Probability that a random surfer ends up at that node

Damping factor a needed to handle nodes with O out-degree and
other special cases

Surfer may jump to a random page with probability a and restart

How to compute?
Algebraically: using Gaussian Elimination
e Not scalable to large graphs
Iteratively:
e For the first iteration: PR(n) = 1/N for all nodes

e Repeatedly apply the formula using the PR() values from the previous
iteration

e Typically 25-50 iterations enough to converge

Background: PageRank

® PageRank: A measure of centrality of a node

® PR(node) = Probability that a random surfer ends up at that node

® [terative approach:

PRC (2) = 0.25
PR0(1) iy/

PR (3) = 0.25
PRO(4) = 0.25

Compute PR'(1), ..., using
PRO(1), ...

E.g.,
PR'(2) =
/4 +
(1-—0) (PRO(1)/3 +
PRO (3)
)

Option 3: Map Reduce

® Programmers write a pipeline of functions, called map or reduce
map programs

e inputs: a list of “records” (record defined arbitrarily — could be images,
genomes etc...)
e output: for each record, produce a set of “(key, value)” pairs

reduce programs
e input: a list of “(key, {values})” grouped together from the mapper
e output: no specific restrictions — depends on what next

Both can do arbitrary computations on the input data as long as the basic
structure is followed

Option 3: Map Reduce — PageRank

intermediate
input files mappers files

= ————"\o04-\|""""
l

O —El—T
e

output
reducers files

el

N

}/\ .

e ——

- All mappers run in parallel, typically on separate machines
Then all reducers run in parallel, typically on separate machines

- All the files are stored in a distributed file system

Option 3: Map Reduce — PageRank

input files

-

1
2.0.
m r.
APPETS 13" 5.25/3
40

Node 1:

PR = 0.25
Node 2:

outEdges = 1

PR = 0.25

outEdges = 2, 3, 4

- Node 1’s PR
distributed
over its outEdges

M

i

Node 3:
outEdges = 2
PR = 0.25

K

Need to pass

\.

Node 4:
outEdges = 3
PR = 0.25

3, [2] Along the graph
2, Bizs structure

4, [3]

3, 0.25

-~

Adjacency List Representation

Option 3: Map Reduce — PageRank

intermediate
2,0.25/3 1,12, 3, 4]
mappers | 3,0.25/3 2.0.25/3
4,0.25/3 2’ []]
1, 0.2
2, 11] 2 023
1, 0.25 7 » 7
2
3, 2] e
2, 023 3.0.25
4. [3] 4, 0.25/3
3, 0.25 4, [3]

“Shuffle” so that all the records with the same “key”
end up in the same file

Option 3: Map Reduce — PageRank

:’gtermediate output

/e]\? FIENT] reducers files
' 0.25 PR = 0.25
2,0.25 2, [1]

' 4 PR = 0.33
4

3,0.25/3
3, [2] 3, [2]
3, 0.25 PR = 0.33
4,0.25/3 -

Reduce:
Compute the new PageRank (assume a = 0)
Write out: graph structure + PageRank

Option 3: Map Reduce — PageRank

intermediate

filos output
1,12, 3, 4] reducers files
2,0.2
1,0.25 PR = 0.25
2,0.25 2, [1]
| 4 PR = 0.33
| 4
3, 0.25/3
3, [2] 3, [2]
3, 0.25 PR =0.33
4,0.25/3 4 3]
4: [3;] PR = 0.0833

REPEAT UNTIL CONVERGENCE

Option 3: Map Reduce

® A very popular option for (batch) processing very large datasets

More specifically: Hadoop, the open source implementation

® Two key advantages:

Scalability without worrying about scheduling, distributed execution, fault
tolerance, and so on...

Simple programming framework

® Disadvantages:
Hard to use this for graph analysis tasks
Each “traversal” effectively requires a new “map-reduce” phase
e Map-reduce framework not ideal for large numbers of phases
Not efficient — too much redundant work

e In PageRank example: repeated reading and parsing of the inputs

Option 4: Graph Programming Frameworks

® Analogous frameworks proposed for analyzing large volumes of
graph data

An attempt at addressing limitations of MapReduce
Most are vertex-centric
e Programs written from the point of view of a vertex

Most based on message passing between nodes

® Pregel: original framework proposed by Google

Based on “Bulk Synchronous Protocol” (BSP)

® Giraph: an open-source implementation of Pregel

® GraphLab: asynchronous execution

Option 4: Pregel

® Programmers write one program: compute()

® Typical structure of compute():
Inputs: current values associated with the node
Inputs: messages sent by the neighboring nodes
Do something...
Modify current values associated with the node (if desired)

Outputs: send messages to neighbors

® Execution framework:
Execute compute() for all the nodes in parallel
Synchronize (for all messages to be delivered)

Repeat

Option 4: Pregel — PageRank

Compute() at Node n:
PR(n) = sum up all the incoming weights
Let the outDegree be D
Send PR(n)/D over each outgoing edge

PR10(2)

PR (2)

PageRank values
computed in iteration 10

PR10(1)
PR (1)/3

Messages sent after
iteration 10

PR (3)

PR10 (4) PR10 (4)

Option 4: Graph Programming Frameworks

® Analogous frameworks proposed for analyzing large volumes of
graph data

An attempt at addressing limitations of MapReduce
Most are vertex-centric
e Programs written from the point of view of a vertex

Most based on message passing between nodes

® Vertex-centric frameworks somewhat limited and inefficient

Unclear how to do many complex graph analysis tasks

Not widely used yet

® An ongoing active area of research
Including in my group at UMD

® Background and Motivation
® Graph Queries and Analysis Tasks

e Graph Data Management: Storage

® Graph Data Management: Processing

® What we are doing

1. Declarative Graph Cleaning

® Enable declarative specification of graph cleaning tasks

Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

® A mix of declarative constructs and user-defined functions to
specify complex prediction functions
® Interactive system for executing them over large datasets
® Optimize the execution through caching, incremental evaluation,
pre-computed data structures ...
Prototype implementation using BerkeleyDB + SQL
Currently changing the backend to scale to larger volumes

|| Declarative Noisy Network /%

€ - C [} localhost/declarative_network_analysis/demo.html =

Declarative Noisy Network Analysis

Dataset

'DBLPDataset

Datalog Program

DOMAIN Bin(#X,#Y) :- BEdge(X,Z,’'Co-Aut
IntersectionCount (#X,#Y,Count<2>))
Similarity(#X,#Y,S):-Node(X, Accou
Features-LP(#X,#Y,F1,F2):-Intersec

}

ITERATE(10) {

INSERT Edge(X,Y, 'Co-Author’):-Featu
predict-LP(F1l,F2)=true,

confidence-LP(F1,F2) IN TOP 1%
O — A

e (D XD

Suggestions

Attr Predict Link Predict Sim Entities

Check From To Edge Conf More

3 O O [Declarative Noisy Network / x |

€ - C [} localhost/declarative_network_analysis/demo.html

Hanene Azzag - Hanane Azzag

DISPLAY
ATTRIBUTE

NAME Hanane Azzag
ATTRIBUTES
DB 0

Al 1

SE 0
CHANGELOG

1. suggested in 1st
iter

2. Historical Graph Data Management

® Increasing interest in temporal analysis of information networks to:
Understand evolutionary trends (e.g., how communities evolve)
Perform comparative analysis and identify major changes
Develop models of evolution or information diffusion

Visualizations over time

= A
P

® Focused exploration and querying

For better predictions in the future

|
T >
t

“Who had the highest PageRank in a citation network in 1960?”
“Identify nodes most similar to X as of one year ago”

“Identify the days when the network diameter (over some transient edges
like messages) is smallest”

“Find a temporal subgraph pattern in a graph”

analyzing, and querying

A

j

v
W

l’/‘ N {
, . ,ﬁv,ﬂQ
i B WY

A

PageRank
Layout!

Historical Network Visualizer

o _ oo & AN
3 L3 N
o g%ﬂ?ﬁﬁ%?.
s | A NS L
o LA { N
- N /.,//(/
N X
: Y
i . MR e
g |M... Swin N > \
w = = oY 40O A)
- 4 A = \
, = cocoooo
S5(Q |- @ g oocococo
2lE |- N8 go
Sl= - yllRﬂ
3 iy 98332 mS
M.W - % wMWhNOOGISS
AmT Iw Ammmr)k
° A a5
= (e AN s n
()

historical trace data

.
C
Q
&
Q
o]§)
(qV)
C

=
(4°)

T
(O

)

-
Q.
(O
. -

O

(©
O

o
O

)

A

L

N

® We are building a system for visualizing,

2. Historical Graph Data Management

® We are building a system for visualizing, analyzing and querying
historical trace data

M M O Node Search ® M O Subgraph Pattern Se...
[—

I”“IIII\(”IIIII‘I“””“‘I”” trrrrrrnnpnrnrnnen IIIIIIIIIIII)I

Start 1935 1948 1958 1968 Start lg; 19'48 19'58 19'68

1938 1948 1958 1968 1938 1948 1958 1968

{ 3\
Kellner (Search) (Search)

Found 24 results...

Result NodelD Q o

1 834274 .
2 889347

3 819930 OO

2. Historical Graph Data Management

® We are building a system for visualizing, analyzing and querying
historical trace data

Historical Network Visualizer

File Mode Layout Settings Tools Help

Query NodelD 1 #Points 5
Start === (PageRank %)
1938 1948
End e O { Run!
1938 1948
Evolution of Page Rank
At time=7-1947; Links=2 At time=10-1951; Links=4 At time=1-1956; Links=4 0.350

0.325
0.300
0.275
0.250
0 225
0 200
0.175
0.150
0.125
0.100

1940 1942 1944 1946 1948 1950 1952 1954
Date

What we are doing

3. Real-time Analytics over Graphs

Designing a system to support continuous queries and analytics
over large, dynamic graphs

Ranging from simple “monitor updates in the neighborhood” to
complex “trend discovery” and “anomaly detection” queries

A major research challenge to handle the high data volumes
while guaranteeing low latencies

4. NScale: Neighborhood-based Graph Programming Framework

Address some of the limitations of Pregel/Giraph by allowing
users to write queries in a neighborhood-centric way

Aimed at handling a larger class of queries and analysis tasks
efficiently

Thank you !!

