# Graph Data Management

#### **Amol Deshpande**

Associate Professor

Department of Computer Science and UMIACS

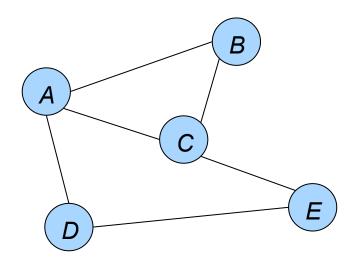
University of Maryland at College Park

### Outline

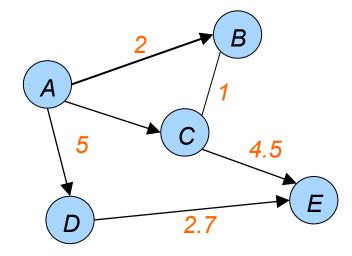
- Background and Motivation
- Graph Queries and Analysis Tasks
- Graph Data Management: Storage
- Graph Data Management: Processing
- What we are doing

## Background: Graphs

- A graph captures a set of entities/objects, and interconnections between pairs of them
  - Graphs also often called networks
  - Entities/objects represented by vertices or nodes
  - Interconnections between pairs of vertices called edges
    - Also called links, arcs, relationships



An undirected, unweighted graph



A directed, edge-weighted graph

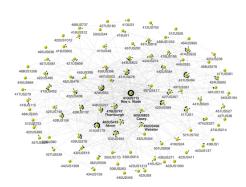
### Motivation

 Increasing interest in querying and reasoning about the underlying graph structure in a variety of disciplines





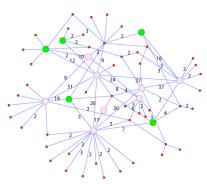
Social networks



Supreme court citation network

A protein-protein interaction network



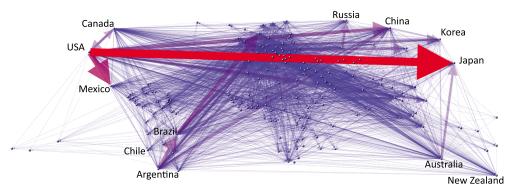


Stock Trading Networks

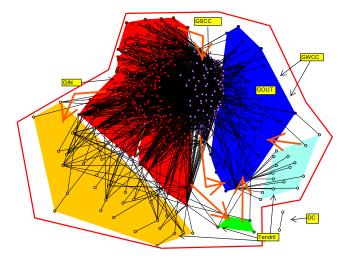
### Motivation

Increasing interest in querying and reasoning about interconnected

entities in a variety of disciplines



Global virtual water trade network



Federal funds networks

Citation networks

Parcel shipment networks

Collaboration networks

Knowledge Graph

Telecommunications networks

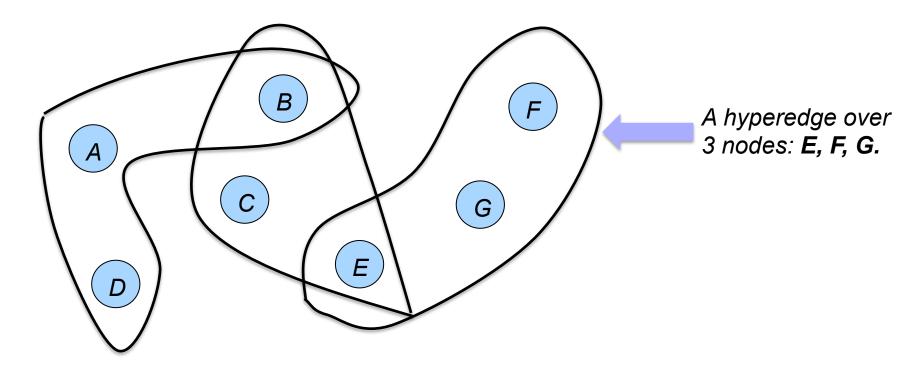
World Wide Web

Disease transmission networks

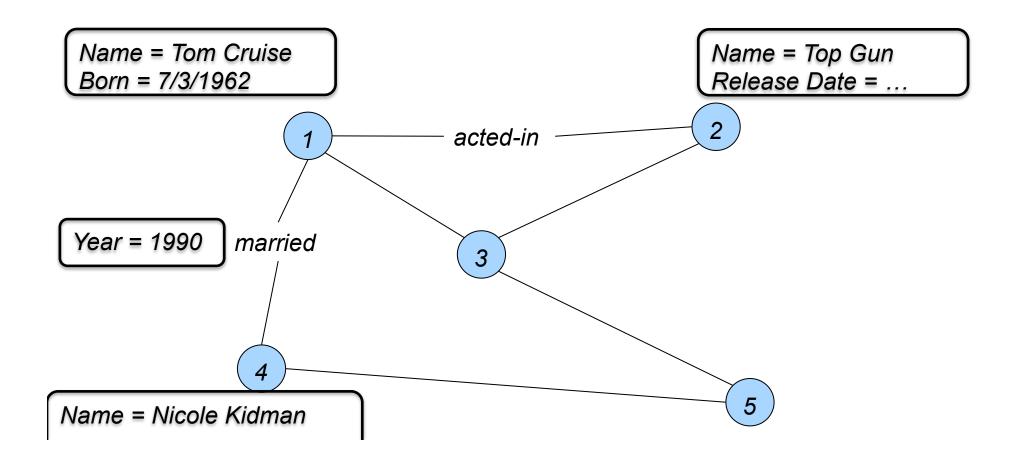
#### Motivation

- Increasing interest in querying and reasoning about interconnected entities in a variety of disciplines
- Underlying data hasn't necessarily changed that much
  - Aside from the data volumes and easier availability
- However, several new realizations in recent years:
  - Reasoning about the graph structure can provide useful and actionable insights (network science/complex network analysis)
  - Lose too much information and intuitions if graph structure ignored
  - Not easy to write many natural queries or tasks using traditional tools
    - Especially relational databases like Oracle
  - Harder to efficiently process inherently graph-structured queries or complex network analysis tasks using existing tools
    - A major concern with increasingly large graphs seen in practice

- Hypergraphs
  - A more powerful abstraction than graphs
  - An "edge" may connect more than two vertices
  - Enables modeling relationships/events between more than 2 entities
  - Much harder to reason about in general, but may be necessary in some domains

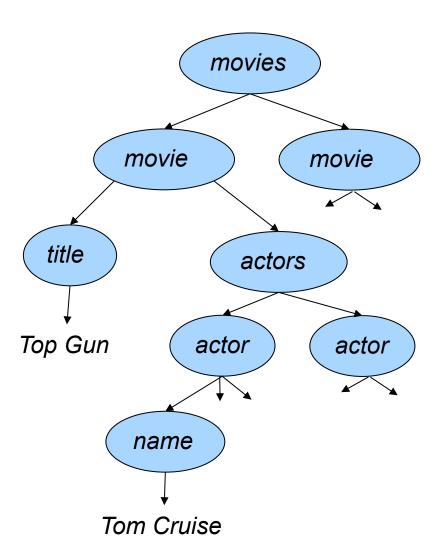


- Property Graphs
  - A graph model used by many open-source graph data management tools
  - In essence: a directed graph where each node and each edge may be associated with a set of properties

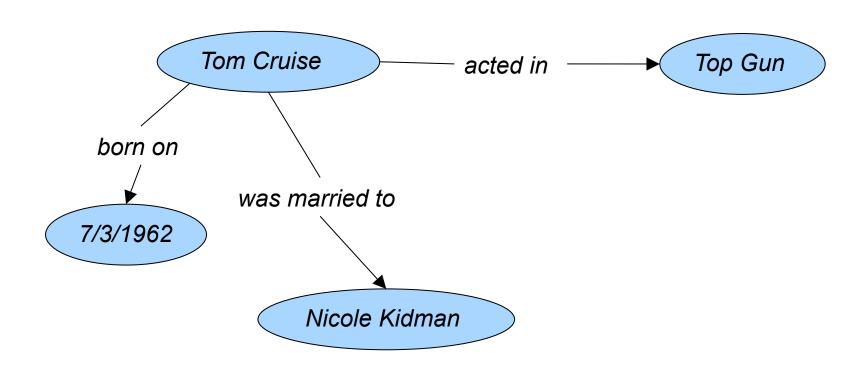


#### XML

- A commonly used data model for representing data without rigid structure
- In essence: a directed, labeled "tree"
- Very popular data exchange format



- Resource Description Framework (RDF)
  - A commonly used data model for representing knowledge bases
  - In essence: a directed, labeled graph
  - Each edge (called a triple): connects a "subject", an "object", and is associated with a "predicate"

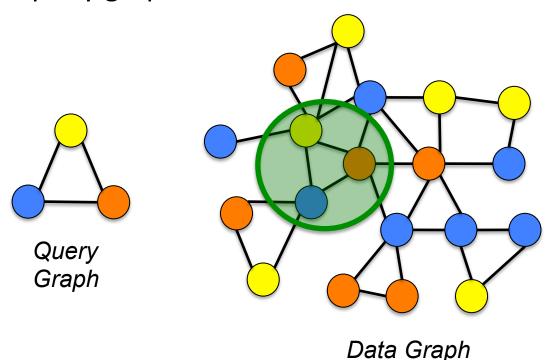


### Outline

- Background and Motivation
- Graph Queries and Analysis Tasks
- Graph Data Management: Storage
- Graph Data Management: Processing
- What we are doing

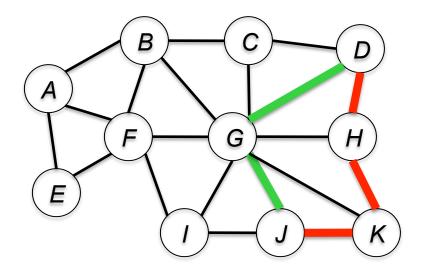
### Queries: Subgraph Matching

- Given a "query" graph, find where it occurs in a given "data" graph
  - Query graph can specify restrictions on the graph structure, on values of node attributes, and so on
  - An important variation: approximate matching
- Alternatively, given a collection of data graphs, find the ones that contain the query graph



### Queries: Connection Subgraphs

- Given a data graph and two (or more) nodes in it, find a small subgraph that best captures the relationship between the nodes
- Key question: How to define "best captures"?
  - E.g., "shortest path": but that may not be most informative



The "red" path between D and J maybe more informative than the "green" path

#### Queries

- Reachability:
  - Given two nodes, is there an undirected or directed path between them?
  - ... with constraints on the types of edges that can be used?
- Shortest path:
  - Find the shortest path between two given nodes
- Keyword search:
  - Find the smallest subgraph that contains all the specified keywords
- Historical queries:
  - Given a node, find other nodes that evolved most similarly in the past
- And so on...

## Graph Analysis: Centrality Measures

- Centrality measure: a measure of the relative importance of a vertex within a graph
- Many different centrality measures
  - ... that can give fairly different results

#### Degree centrality of a node *u*:

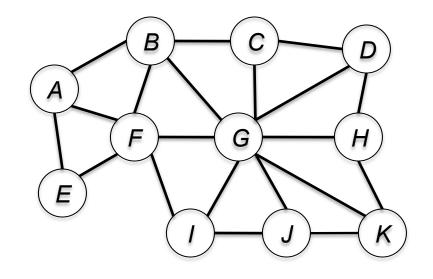
# of edges incident on u

#### Betweenness centrality of a node *u*:

# of shortest paths between pairs of vertices that go through **u** 

#### Pagerank of a node u:

probability that a random surfer (who is following links randomly) ends up at node **u** 



#### **Eigenvector centrality**

Used in a recent work on analyzing Federal Funds Network

### **Graph Analysis: Community Detection**

- Goal: partitioning the vertices into (potentially overlapping) groups based on the interconnections between them
  - Basic intuition: More connections within a community than across communities
  - Provide insights into how networks function; identify functional modules; improve performance of Web services...
- Numerous techniques proposed for community detection over the years
  - Graph partitioning-based methods
  - Maximizing some "goodness" function
  - Recursively removing high centrality edges
  - ... and so on

### Graph Analysis: Models of Evolution

- Two somewhat related goals:
  - Measuring different properties of networks
    - E.g., degree distributions, diameter, clustering coefficient, ...
  - Using those to build models of how a network forms and evolves
    - To gain insights; for predictions about the future...
- Example:
  - Most real networks exhibit highly skewed degree distributions
  - Preferential attachment model explains that phenomenon
    - Basic idea: a new node is more likely to connect to a high-degree node than a low-degree node ("rich get richer")
- Some other observed properties:
  - Shrinking diameters
  - Average degree in the network increases over time
  - High clustering coefficients

## Graph Analysis: Cleaning/Inference

- The observed, automatically-extracted information networks are often noisy and incomplete
  - Missing attributes, missing links
  - Ambiguous references to the same entity
- Need to extract the underlying true information network through:
  - Attribute Prediction: to predict values of missing attributes
  - Link Prediction: to infer missing links
  - Entity Resolution: to decide if two references refer to the same entity

### **Attribute Prediction**

Task: Predict topic of the paper

DB

NL

?

Legend

A Statistical Model for <u>Multilingual Entity</u> <u>Detection</u> and Tracking <u>Language Model Based</u>
<u>Arabic</u> Word
Segmentation.

Automatic Rule
Refinement for
Information Extraction

Why Not?

Join Optimization of Information Extraction Output: Quality Matters!

An Annotation
Management System for
Relational Databases

Tracing Lineage Beyond Relational Operators

### **Attribute Prediction**

Task: Predict topic of the paper

DB

NL

?

Legend

A Statistical Model for <u>Multilingual Entity</u> <u>Detection</u> and Tracking <u>Language Model Based</u>
<u>Arabic</u> Word
Segmentation.

Automatic Rule
Refinement for
Information Extraction

Why Not?

Join Optimization of Information Extraction Output: Quality Matters!

An Annotation
Management System for
Relational Databases

Tracing Lineage Beyond Relational Operators

#### **Attribute Prediction**

Task: Predict topic of the paper

DB

NL

?

Legend

A Statistical Model for <u>Multilingual Entity</u> <u>Detection</u> and Tracking <u>Language Model Based</u>
<u>Arabic</u> Word
Segmentation.

Automatic Rule
Refinement for
Information Extraction

Why Not?

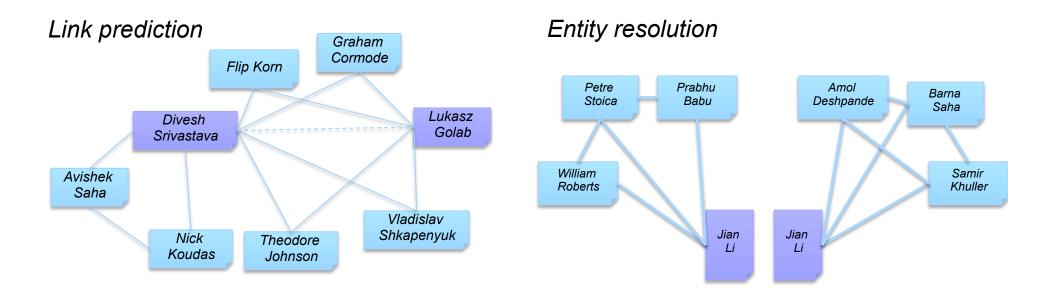
Join Optimization of Information Extraction Output: Quality Matters!

An Annotation
Management System for
Relational Databases

Tracing Lineage Beyond Relational Operators

May generate a probability distribution here instead

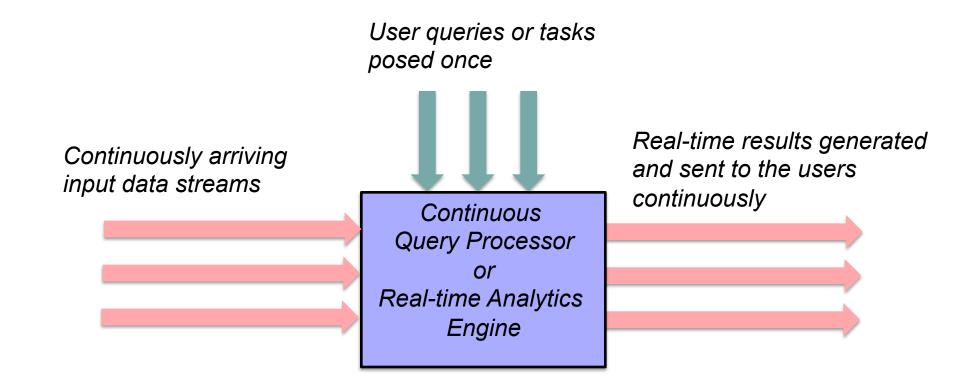
# Collective (relational) Inference



Many collective techniques have been developed over the years

### Real-time Graph Queries and Analytics

- Most of the queries/analysis so far focus on a static graph datasets
- Increasing need for doing those in real-time on "data streams"



### Real-time Graph Queries and Analytics

- Most of the queries/analysis so far focus on a static graph dataset
- Increasing need for doing those in real-time on "data streams"
- Examples:
  - Update me when a friend posts a message on a social network
  - Alert me when a topic is suddenly "trending" in my friend circle
  - Anomaly detection:
    - Alert me if the communication activity in the network changes drastically
    - Monitor constraints on the data being generated by the nodes
- Data streams very well studied for relational data, but not in the context of graph querying or analytics
- An ongoing research focus for my group

# **Graph Queries and Analysis**

- Eigenvalue analysis
- Clustering coefficients
- Ego-centric analysis
- Visualizations
- Summarization
- Motif Counting
- ...

### Outline

- Background and Motivation
- Graph Queries and Analysis Tasks
- Graph Data Management: Storage
- Graph Data Management: Processing
- What we are doing

# **Options for Storing Graph Data**

#### Use file systems

- + Very simple, and no (practical) limits on how large a dataset to manage
- No support for transactions; minimal functionality
- 2. Use a *relational* database (e.g., Oracle, IBM DB2, etc.)
  - + Mature technology much of the data is already in them anyway
  - + All the goodies (SQL, transactions, toolchains) available
  - Almost no support for traversing the graph structure

#### 3. Use NoSQL *key-value* stores

- Can handle very large datasets efficiently, in a distributed fashion
- Minimal functionality must build the analysis/querying tools on top

#### 4. Use a persistent *graph database*

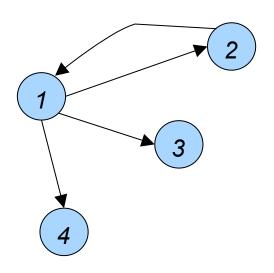
- + Efficiently support *graph traversals*
- But even the most mature products not as a mature as RDBMSs
- Typically no declarative languages (a la SQL), so must write programs

## Storage 1: File Systems

- Simplest to get started, and widely used in practice
  - Especially since the other options don't really help that much anyway for graph querying or analytics
- Many cloud computing programming frameworks read data from file systems
  - E.g., Hadoop Distributed File System (HDFS) used by Apache Hadoop and others
- Key disadvantages:
  - Almost no data management functionality
    - Everything from parsing to analyzing must be done by the programmer
  - No support for updates, or transactions
  - Hard to do "queries" without building auxiliary structures

### Storage 2: Relational Databases

- Store the entities in a set of tables, and encode the connections between them in separate tables
  - E.g., RDF and XML data predominantly stored in relational databases
- Can use SQL to query the data, and other DBMS analytic tools
- However, no support for graph traversals
  - Must extract the relevant data, & write code to construct/process the graph
  - Can be much much slower than specialized solutions for traversal operations



#### Banks

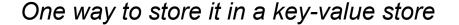
| ID | Name |  |
|----|------|--|
| 1  |      |  |
| 2  |      |  |
| 3  |      |  |
| 4  |      |  |

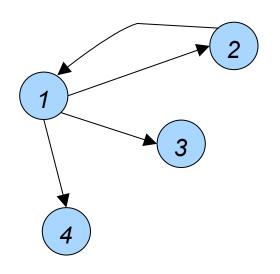
Trades

| Bank1 | Bank2 | Date |
|-------|-------|------|
| 1     | 2     |      |
| 2     | 1     |      |
| 3     | 1     |      |
| 4     | 1     |      |

# Storage 3: Key-value Stores

- A recent, and wildly popular solution, to manage large datasets
  - Examples: Apache HBase, Cassandra, Amazon Dynamo, Redis
- Very basic functionality
  - Put(k,  $\nu$ ): Store the value  $\nu$ , and associate it with key k
  - Get(k): Get the value associated with key k





| Key             | Value                                              |
|-----------------|----------------------------------------------------|
| Bank1           | Information about the bank                         |
| Bank2           | •••                                                |
| Bank1.outTrades | A list of all the trades where Bank1 is the seller |
| Bank1.inTrades  | A list of all the trades where Bank1 is the buyer  |
|                 |                                                    |

# Storage 3: Key-value Stores

- A recent, and wildly popular solution, to manage large datasets
  - Examples: Apache HBase, Cassandra, Amazon Dynamo, Redis
- Key-value stores manage the data in a distributed fashion
  - Can handle very large datasets with very low latencies
  - Underlie many Web applications (many Google products, Facebook, etc.)
- Advantages:
  - Support efficient updates (must be careful about consistency)
  - Fast retrieval → easy to traverse the graph structure
  - We chose this option for the first prototype implementation of our distributed graph data management system for dynamic graphs
- Disadvantages:
  - Everything outside of graph traversals must be built on top

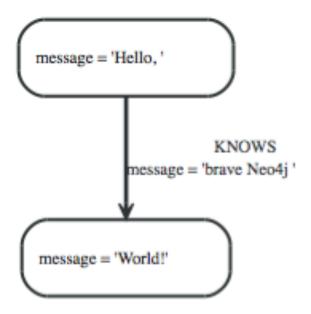
# Storage 4: Specialized Graph Databases

- Built to manage and query graph-structured data
- Many built over the years, and increasing interest in recent years
  - Neo4j: Perhaps the most mature product out there
  - InfiniteGraph: Originally an object-oriented database
  - DEX: Quite similar to Neo4j in functionality
  - AllegroGraph: An RDF database
  - HyperGraphDB: Allowing modeling hypergraphs
  - Wikipedia page on graph databases lists many more
- Key disadvantages:
  - Fairly rudimentary declarative interfaces -- most applications need to be written using programmatic interfaces
  - Or using provided toolkits/libraries

- Open-source graph database supported by Neo Technology
  - Uses the property graph model
  - The data stored on disks (unlike key-value stores)
  - Full ACID support (i.e., consistent and reliable updates)
  - Can scale to billions of nodes and edges
  - Supports many different APIs to access the data, and to retrieve the data
  - Highly efficient retrieval of nodes of interest through "indexing"

Feature-rich Programmatic API to access a Neo4j database

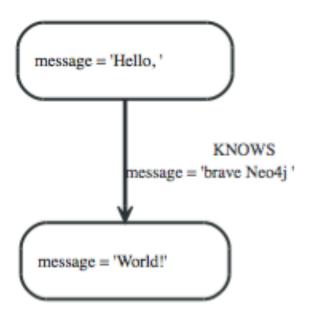
```
firstNode = graphDb.createNode();
firstNode.setProperty( "message", "Hello, " );
secondNode = graphDb.createNode();
secondNode.setProperty( "message", "World!" );
relationship = firstNode.createRelationshipTo( secondNode, RelTypes.KNOWS );
relationship.setProperty( "message", "brave Neo4j " );
```



Source: http://www.neo4j.org

Feature-rich Programmatic API to access a Neo4j database

```
System.out.print( firstNode.getProperty( "message" ) );
System.out.print( relationship.getProperty( "message" ) );
System.out.print( secondNode.getProperty( "message" ) );
```



Source: http://www.neo4j.org

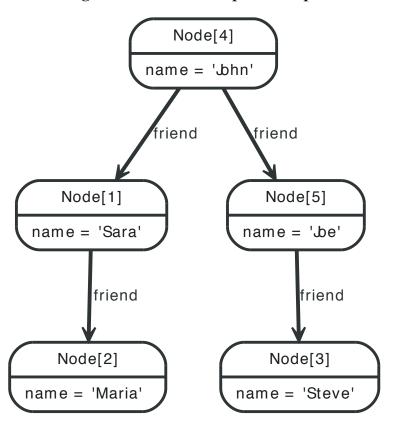
- Feature-rich Programmatic API to access a Neo4j database
  - Supports different types of indexes to quickly find "start" nodes
    - E.g., find the node for a particular person in a social network
  - Support different types of "traversals" to traverse the local neighborhoods

Source: http://www.neo4j.org

## Neo4j

 Also supports a high-level language, called cypher, for traversing and searching

Figure 15.1. Example Graph



#### Finds friends of John's friends

```
START john=node:node_auto_index(name = 'John')
MATCH john-[:friend]->()-[:friend]->fof
RETURN john, fof
```

Source: http://www.neo4j.org

## Neo4j

- Also supports a high-level language, called cypher, for traversing and searching
- Can use cypher on its own (in a console), or in an embedded fashion (e.g., from within Java)

Source: http://www.neo4j.org

## AllegroGraph

- Aimed at Semantic Web Applications
- Triple-store: stores RDF assertions of the form
  - <subject, predicate, object>
  - E.g., <"sky", "has-color", "blue" >
- Full support for transactions, concurrency, recovery
- Several different ways to query:
  - Query patterns (specify the types of triples)
  - Has a Social Network Analysis Toolkit
    - Search methods, Centrality computations, etc.
  - Supports querying using Prolog
  - Supports SPARQL query language

• ...

### **SPARQL**

- Standardized RDF query language
- Basic functionality quite similar to subgraph pattern matching
  - But recent extensions attempt to go quite a bit beyond that

Find names and emails of every person in the dataset

```
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
    ?person a foaf:Person.
    ?person foaf:name ?name.
    ?person foaf:mbox ?email.
}
```

### **SPARQL**

- Standardized RDF query language
- Basic functionality quite similar to subgraph pattern matching
  - But recent extensions attempt to go quite a bit beyond that

Find me all landlocked countries with a population greater than 15 million (revisited), with the highest population country first.

### Outline

- Background and Motivation
- Graph Queries and Analysis Tasks
- Graph Data Management: Storage
- Graph Data Management: Processing
- What we are doing

## **Options for Processing Graph Data**

- 1. Write your own programs
  - Extract the relevant data, and construct an in-memory graph
  - Different storage options help to different degrees with this
- 2. Write queries in a declarative language
  - Works for a very small class of graphs queries/tasks today
  - Ongoing research work (including in my group) on generalizing that
- 3. Use a general-purpose distributed programming framework
  - E.g.: Hadoop or MapReduce
  - Hard to program most graph analysis tasks this way
- 4. Use a graph-specific programming framework
  - Goal is to simplify writing graph analysis tasks, and scale them to very large volumes at the same time
  - Still ongoing work wide applicability still to be proven

## Option 2: Declarative Interfaces

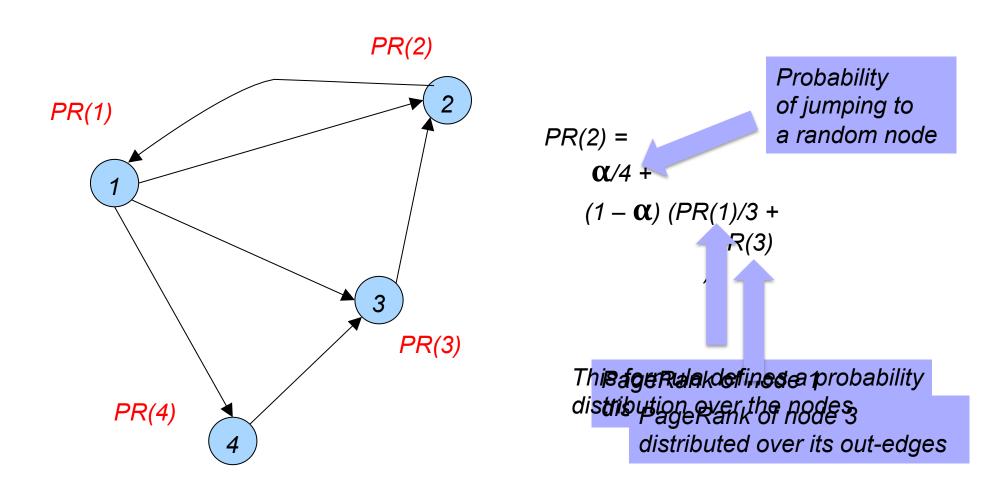
- No consensus on declarative, high-level languages (like SQL) for either querying or for analysis
  - Too much variety in the types of queries/analysis tasks
  - Makes it hard to find and exploit commonalities
- Some limited solutions:
  - XQuery for XML
    - Limited to tree-structured data
  - SPARQL for RDF
    - Standardized query language, but limited functionality
  - Cypher by Neo4j
  - Datalog-based frameworks for specifying analysis tasks
    - Mostly research prototypes, typically specific to some analysis task

## Option 3: Map Reduce

- A very popular option for (batch) processing very large datasets
  - More specifically: Hadoop, the open source implementation
- Two key advantages:
  - Scalability without worrying about scheduling, distributed execution, fault tolerance, and so on...
  - Simple programming framework
- Disadvantages:
  - Hard to use this for graph analysis tasks
  - Each "traversal" effectively requires a new "map-reduce" phase
    - Map-reduce framework not ideal for large numbers of phases
- However, much work on showing how different graph analysis tasks can be done using MapReduce

## Background: PageRank

- PageRank: A measure of centrality of a node
- PR(node) = Probability that a random surfer ends up at that node

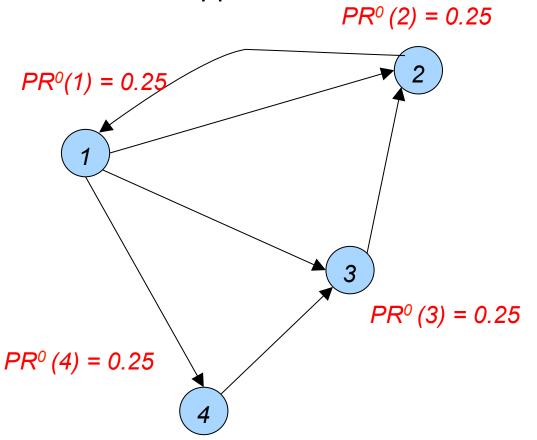


## Background: PageRank

- PageRank: A measure of centrality of a node
- PR(node) = Probability that a random surfer ends up at that node
- ullet Damping factor  $oldsymbol{lpha}$  needed to handle nodes with 0 out-degree and other special cases
  - Surfer may jump to a random page with probability  $\alpha$  and restart
- How to compute?
  - Algebraically: using Gaussian Elimination
    - Not scalable to large graphs
  - Iteratively:
    - For the first iteration: PR(n) = 1/N for all nodes
    - Repeatedly apply the formula using the PR() values from the previous iteration
    - Typically 25-50 iterations enough to converge

## Background: PageRank

- PageRank: A measure of centrality of a node
- PR(node) = Probability that a random surfer ends up at that node
- Iterative approach:

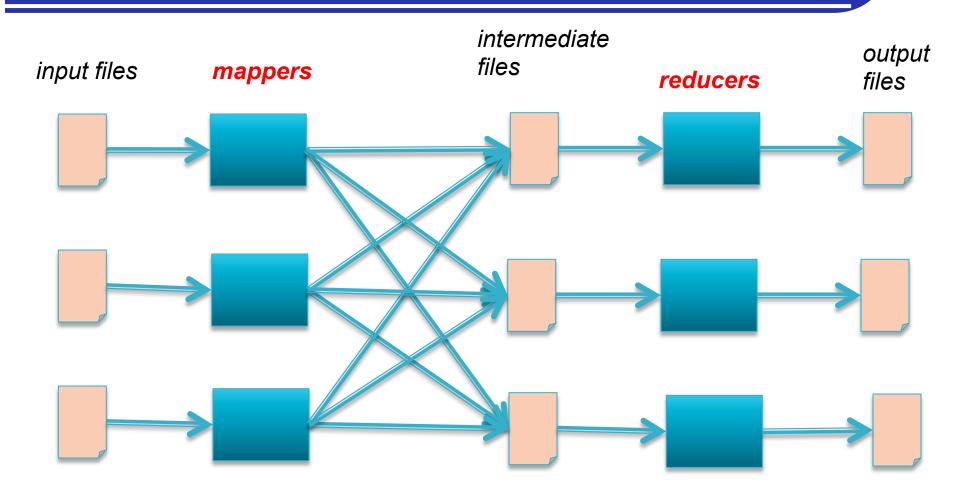


```
Compute PR^{1}(1), ..., using PR^{0}(1), ...

E.g., PR^{1}(2) = \alpha/4 + (1 - \alpha) (PR^{0}(1)/3 + PR^{0}(3))
```

### Option 3: Map Reduce

- Programmers write a pipeline of functions, called map or reduce
  - map programs
    - **inputs**: a list of "records" (record defined arbitrarily could be images, genomes etc...)
    - output: for each record, produce a set of "(key, value)" pairs
  - reduce programs
    - input: a list of "(key, {values})" grouped together from the mapper
    - **output**: no specific restrictions depends on what next
  - Both can do arbitrary computations on the input data as long as the basic structure is followed



- All mappers run in parallel, typically on separate machines Then all reducers run in parallel, typically on separate machines
- All the files are stored in a distributed file system

#### input files

#### Node 1:

outEdges = 2, 3, 4

PR = 0.25

Node 2:

outEdges = 1

PR = 0.25

#### Node 3:

outEdges = 2

PR = 0.25

#### Node 4:

outEdges = 3

PR = 0.25

#### mappers

5

1, [2, 3, 4] 2, 0.25/3

3, 0.25/3

4, 0.25/3

2, [1]

1, 0.25

Node 1's PR distributed over its outEdges

Node 2's PR distributed

over its outEdges

3, [2]

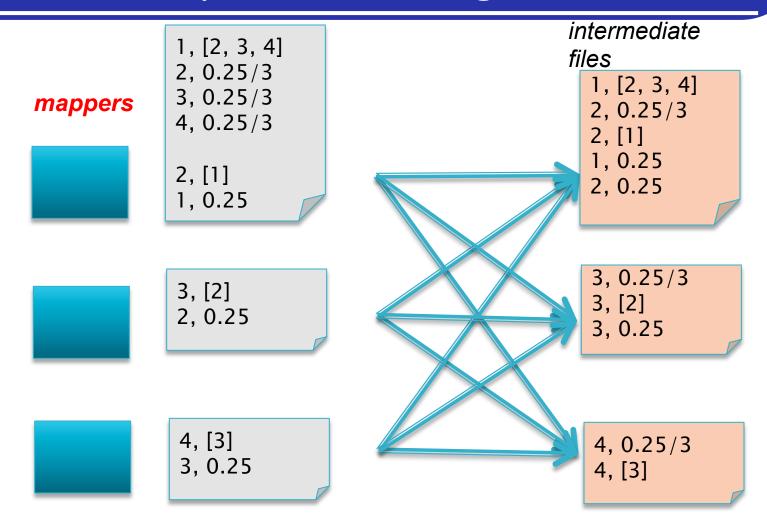
2, 0.25

Need to pass
Along the graph
structure

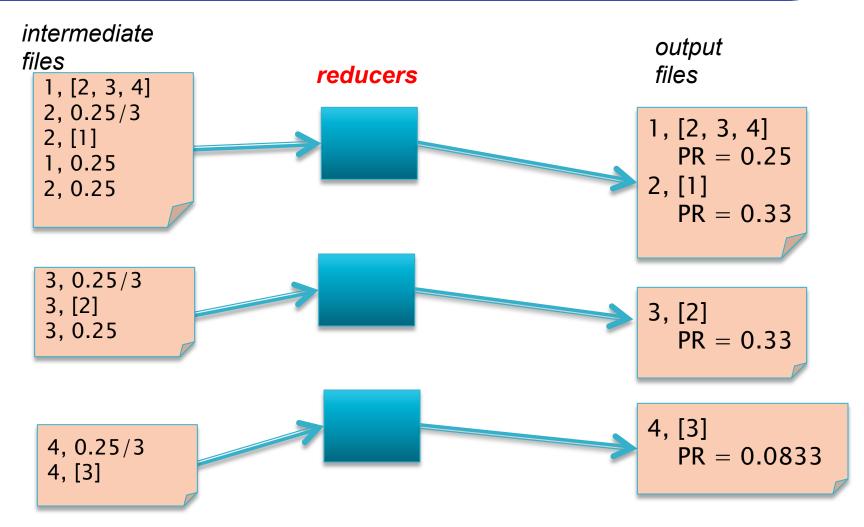
4, [3]

3, 0.25

Adjacency List Representation

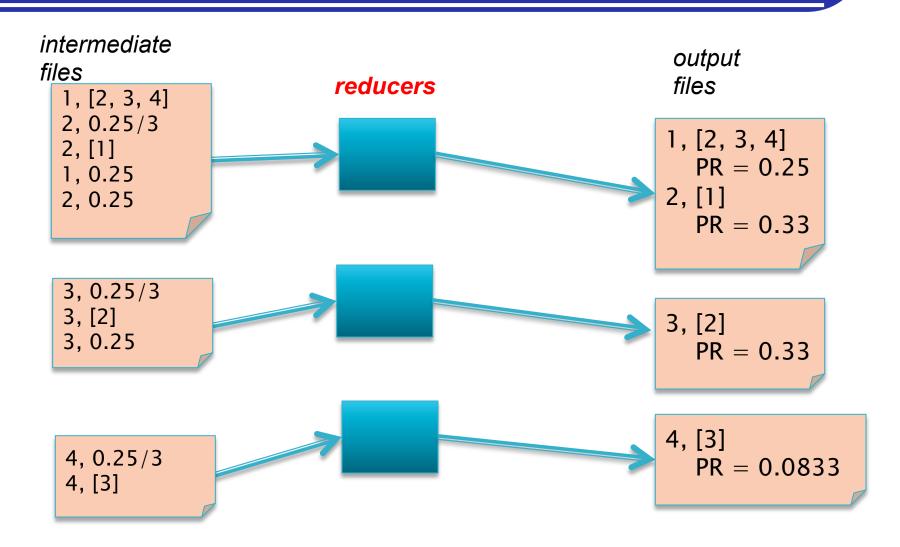


"Shuffle" so that all the records with the same "key" end up in the same file



Reduce:

Compute the new PageRank (assume  $\alpha = 0$ ) Write out: graph structure + PageRank



REPEAT UNTIL CONVERGENCE

## Option 3: Map Reduce

- A very popular option for (batch) processing very large datasets
  - More specifically: Hadoop, the open source implementation
- Two key advantages:
  - Scalability without worrying about scheduling, distributed execution, fault tolerance, and so on...
  - Simple programming framework
- Disadvantages:
  - Hard to use this for graph analysis tasks
  - Each "traversal" effectively requires a new "map-reduce" phase
    - Map-reduce framework not ideal for large numbers of phases
  - Not efficient too much redundant work
    - In PageRank example: repeated reading and parsing of the inputs

### Option 4: Graph Programming Frameworks

- Analogous frameworks proposed for analyzing large volumes of graph data
  - An attempt at addressing limitations of MapReduce
  - Most are vertex-centric
    - Programs written from the point of view of a vertex
  - Most based on message passing between nodes
- Pregel: original framework proposed by Google
  - Based on "Bulk Synchronous Protocol" (BSP)
- Giraph: an open-source implementation of Pregel
- GraphLab: asynchronous execution

### **Option 4: Pregel**

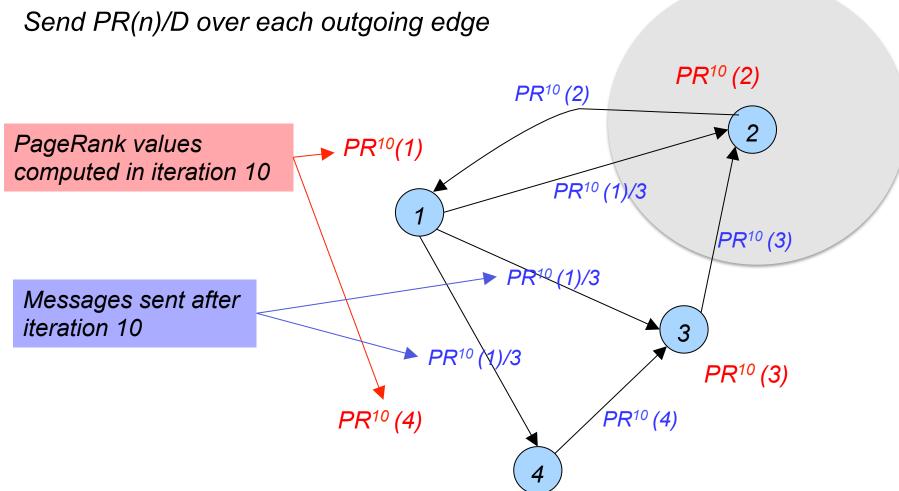
- Programmers write one program: compute()
- Typical structure of compute():
  - Inputs: current values associated with the node
  - Inputs: messages sent by the neighboring nodes
  - Do something...
  - Modify current values associated with the node (if desired)
  - Outputs: send messages to neighbors
- Execution framework:
  - Execute compute() for all the nodes in parallel
  - Synchronize (for all messages to be delivered)
  - Repeat

### Option 4: Pregel – PageRank

#### Compute() at Node n:

PR(n) = sum up all the incoming weights

Let the outDegree be D



### Option 4: Graph Programming Frameworks

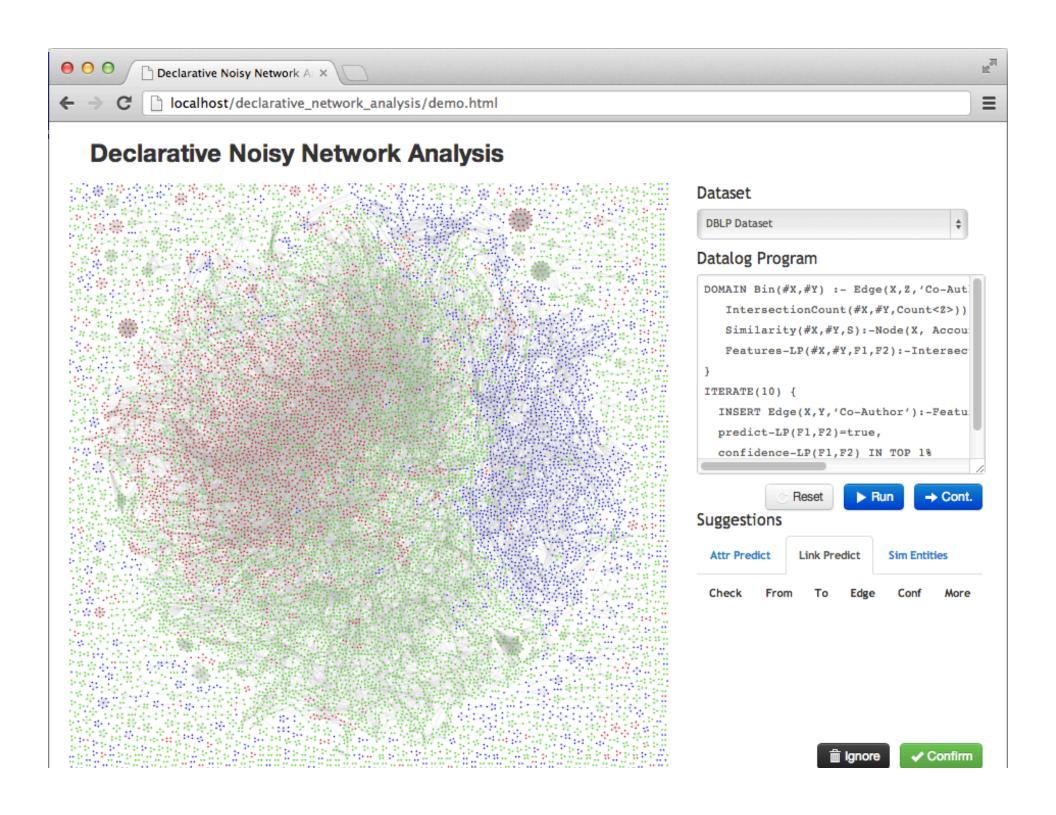
- Analogous frameworks proposed for analyzing large volumes of graph data
  - An attempt at addressing limitations of MapReduce
  - Most are vertex-centric
    - Programs written from the point of view of a vertex
  - Most based on message passing between nodes
- Vertex-centric frameworks somewhat limited and inefficient
  - Unclear how to do many complex graph analysis tasks
  - Not widely used yet
- An ongoing active area of research
  - Including in my group at UMD

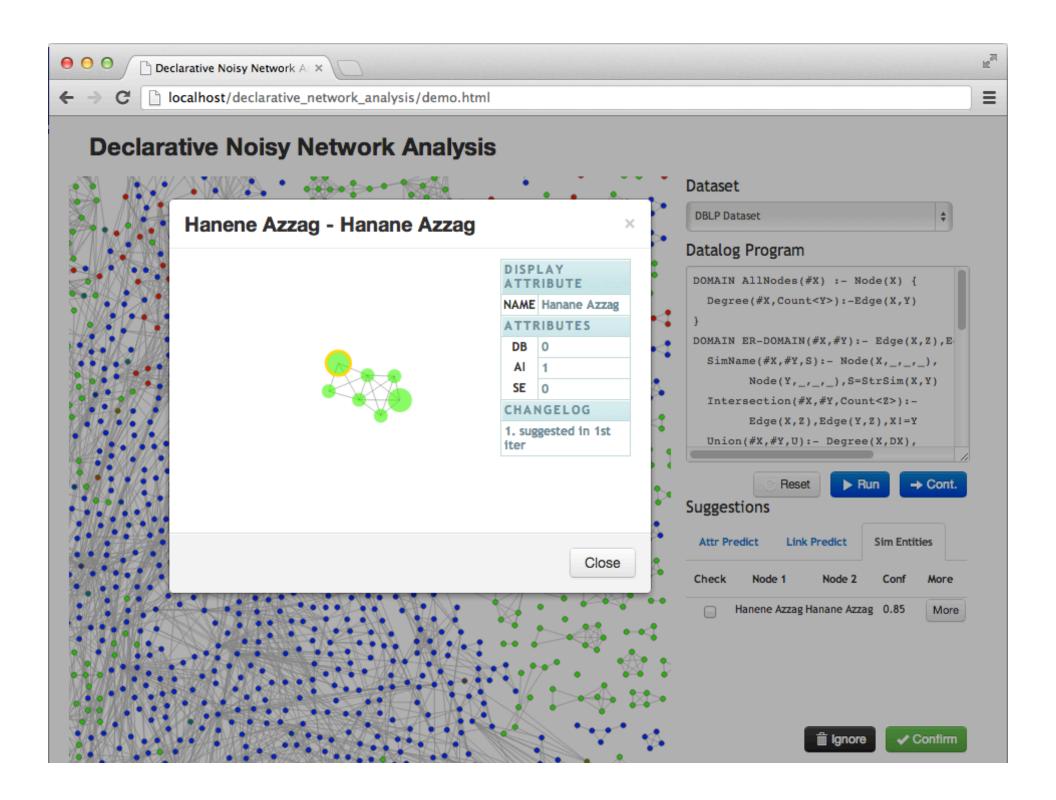
### Outline

- Background and Motivation
- Graph Queries and Analysis Tasks
- Graph Data Management: Storage
- Graph Data Management: Processing
- What we are doing

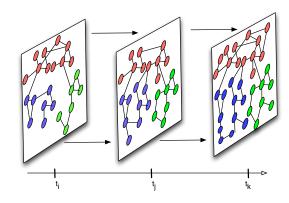
## 1. Declarative Graph Cleaning

- Enable declarative specification of graph cleaning tasks
  - Attribute Prediction: to predict values of missing attributes
  - Link Prediction: to infer missing links
  - Entity Resolution: to decide if two references refer to the same entity
- A mix of declarative constructs and user-defined functions to specify complex prediction functions
- Interactive system for executing them over large datasets
- Optimize the execution through caching, incremental evaluation, pre-computed data structures ...
  - Prototype implementation using BerkeleyDB + SQL
  - Currently changing the backend to scale to larger volumes



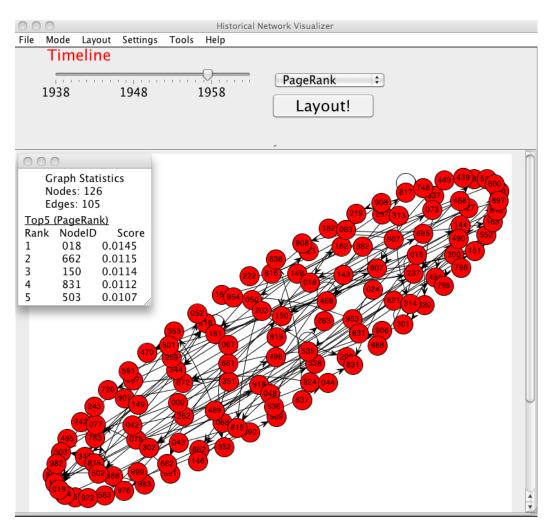


- Increasing interest in temporal analysis of information networks to:
  - Understand evolutionary trends (e.g., how communities evolve)
  - Perform comparative analysis and identify major changes
  - Develop models of evolution or information diffusion
  - Visualizations over time
  - For better predictions in the future

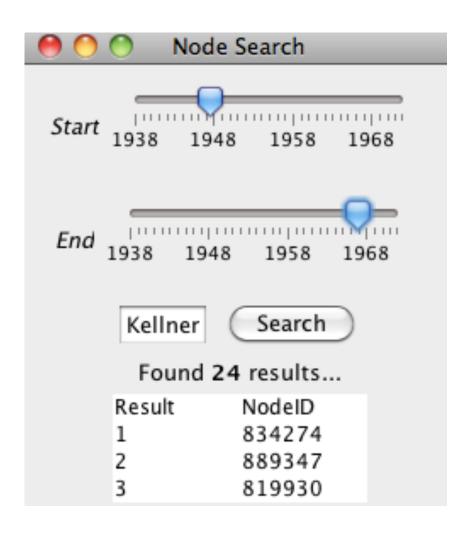


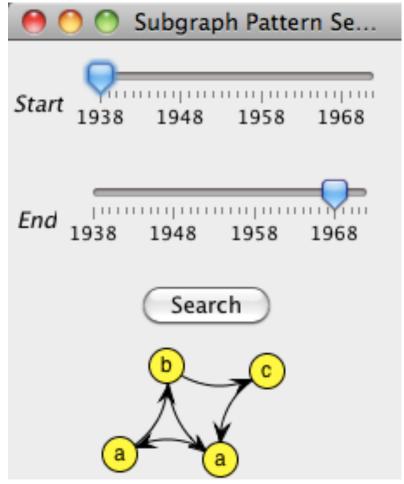
- Focused exploration and querying
  - "Who had the highest PageRank in a citation network in 1960?"
  - "Identify nodes most similar to X as of one year ago"
  - "Identify the days when the network diameter (over some transient edges like messages) is smallest"
  - "Find a temporal subgraph pattern in a graph"

 We are building a system for visualizing, analyzing, and querying historical trace data

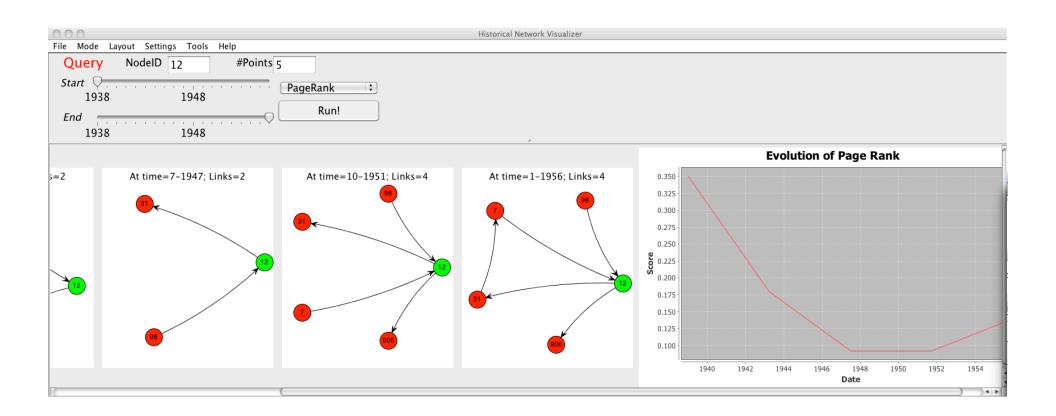


 We are building a system for visualizing, analyzing and querying historical trace data





 We are building a system for visualizing, analyzing and querying historical trace data



### What we are doing

- 3. Real-time Analytics over Graphs
  - Designing a system to support continuous queries and analytics over large, dynamic graphs
  - Ranging from simple "monitor updates in the neighborhood" to complex "trend discovery" and "anomaly detection" queries
  - A major research challenge to handle the high data volumes while guaranteeing low latencies
- 4. NScale: Neighborhood-based Graph Programming Framework
  - Address some of the limitations of Pregel/Giraph by allowing users to write queries in a neighborhood-centric way
  - Aimed at handling a larger class of queries and analysis tasks efficiently

# Thank you!!