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Sensor network

Collection of miniature devices that:
can sense
can actuate
can communicate
over wireless radios

e.g. berkeley moftes




Sensor network

Battery lifetime very limited
Communication expensive

Processing relatively cheap




Many real deployments
10's—100's — 1000's — 10,000's




Many real deployments
10's—100's — 1000's — 10,000's

One of the most common uses:
Collect all sensed data




Humicity (%)

Temperature °C)

base station

network of nodes



e Communication is e Anomaly detection

costly. requires periodic
sampling
e Users prefer all the data .
SELECT * e Anomaly triggers
FROM sensors notification of event

EPOCH 5 mins

e Why not let user know
e Low res. at high about all sampled

frequency rather than data?
high res. at low
frequency



Physical environments — predictable
correlated states

Bounded error is acceptable
— Sensed data is noisy

Processor inexpensive and often idle

Report data only if it differs significantly from
what is expected.



| know past samples My guess for the new
from this node: sensor samples is...
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delivered value

Model: expected value at t+]1 = value at t 930C
Another possibility: A linear model 23°C
X—H =aX'+b ' / 23°C
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ken

Barbie's boyfriend
bounded-loss in-network data
reduction

the range of perception,
understanding, or knowledge

.
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e Nodes report to base
all anomalous samples

e Base delivers to user
samples within user-tolerated error bound

 Online bounded-loss data reduction using
fime correlations. What about space?
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Use multi-dimensional prediction models

t t t t+1 t+1 t+1
(X];X2)X3 y e ) — X] ,X2 ,X3 y oo
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But, must collect all sensor readings at a single
sensor node to do prediction

Almost as expensive as bulk data collection

Also infeasible given the computation limitations
at each node 15



1 node entire network
no spatial correlations full spatial correlations
low overhead high overhead

Ken explores the spectrum between these two
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e prediction model
— someModel ([INPUT] ...) = EXPECTED_VAL

— How good is the model?

* How much does it deviate from sampled?
* What is the cost of correcting the deviatione

— Data reduction factor

e communication structure source sink

— Where do we collect INPUTs¢ O
— Total Communication cost

* infra-source O i

e source-sink
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e Allow multiple nodes (a
clique) to collect data in-
network at a clique root and
perform inference over
multfiple sensor readings.

—-— e -
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Base Station

 Cligue root decides which

readings (if any) to send back
to base station.

e Not fully specified: cligue
members, clique roofts ¢
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goal: find the cligues and cligue roofts with lowest
expected communication

cost factors: data reduction factors, intra-source
and source-sink

exhaustive algorithm
— find optimal node partitioning (NP-hard)

greedy heuristic
— prune unlikely candidates
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e Compute a composite value (e.g. average) in-network,
then disseminate computed composite.

X

7

 Run n models over two variables each: X,;, X = ==L

T

1. Run prediction mogel over X and X,
2. Send X, ¥ not prediction not accurate

Base
Station

_ Compute
X = (X1+X2+X3+X4)12
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 Average is likely to be highly correlated with individual
readings

e Communication cost of average computation is only O(n)
messages

1. Run prediction model over X and X,
zsamxllmtpfemumnotmme

Base
Station

— COtrpuie
X = (X1+X2+X3+X4)2
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e nput
— Intel Lab dataset

— UC Botanical Gardens
dataset

e compare
— Ken w/ average-value
— Ken w/ disjoint cliques
— bulk collection
— caching
— single node models

e error bounds
— £0.5°C
— 2% humidity
— 0.1V battery

results at a glance

data reduction
e 60% with 2-node clique
e 82% with 5 —nodes cligue

communication reduction
e 28% with 2-node
e 45% with 5-node clique

multi-attribute reduction
e 65% with 3 attributes
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data reported (%)

data reported (%)
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e spatial correlations
across attributes

e NO additional
communication

e Mix-and-match with
overlay of choice

data reported (%)
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B o compression
B = perature

I humidity

[ voltage

[ temperature + humidity
B temperature + voltage
B humidity + voltage i

combinations of modeling temperature,
humidity and voltage
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Approximate caching [Olston, et al.]: model-less
caching

Stream resource management using Kalman Filters
[Jain, et al.]: temporal only

BBQ [Deshpande, et al.]: pull-based query driven
approach; probabilistic guarantees only

TinyDB, TAG [Madden, et al.]: data service for
sensor networks
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exploiting both temporal and spatial correlations in
real-world datasets

Find the right communication sfructure —
substantial data reduction achievable
— 60% with only two node clique and simple model

communications savings appreciable, even for
simple models

— 28% with only two node cligue and simple model

guarantee of desired accuracy independent of
model
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e questionse
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