approximate data collection in sensor networks

the appeal of probabilistic models

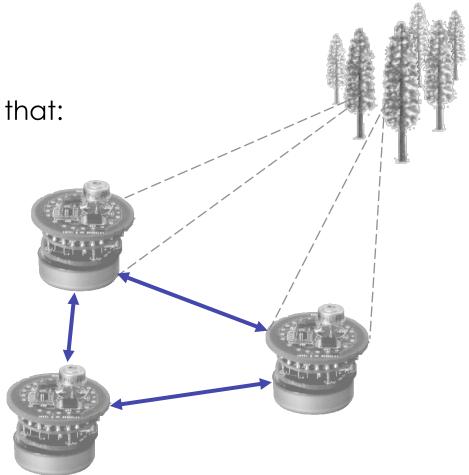
ICDE 2006 Atlanta, GA 3-7 April 2006 David Chu Amol Deshpande Joe Hellerstein Wei Hong

context

Sensor network

Collection of miniature devices that: can sense can actuate can communicate over wireless radios

e.g. berkeley motes



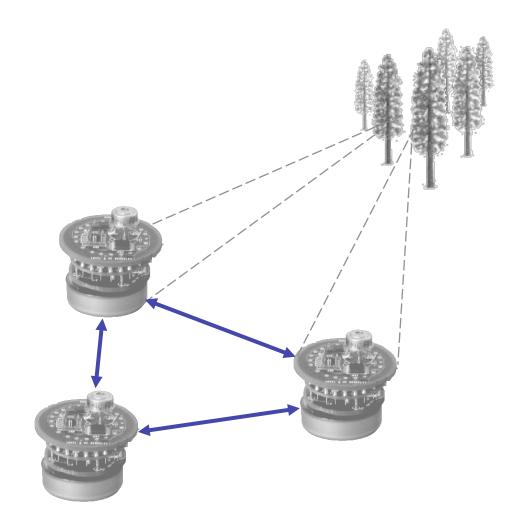
context

Sensor network

Battery lifetime very limited

Communication expensive

Processing relatively cheap

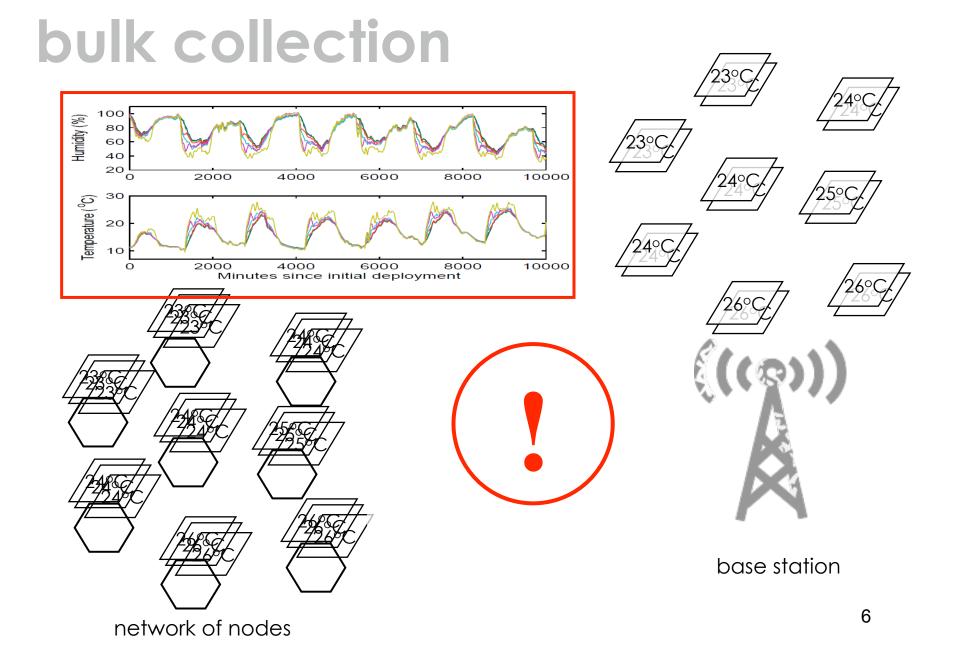


Many real deployments 10's - 100's - 1000's - 10,000's

context

Many real deployments 10's - 100's - 1000's - 10,000's

One of the most common uses: <u>Collect all sensed data</u>



problem

- Communication is costly.
- Users prefer all the data SELECT * FROM sensors EPOCH 5 mins
- Low res. at high frequency rather than high res. at low frequency

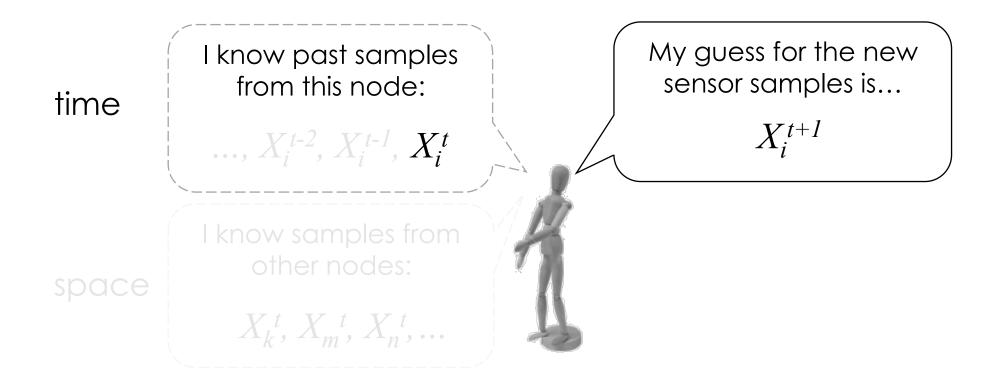
- Anomaly detection requires periodic sampling
- Anomaly triggers notification of event
- Why not let user know about all sampled data?

(event detection)

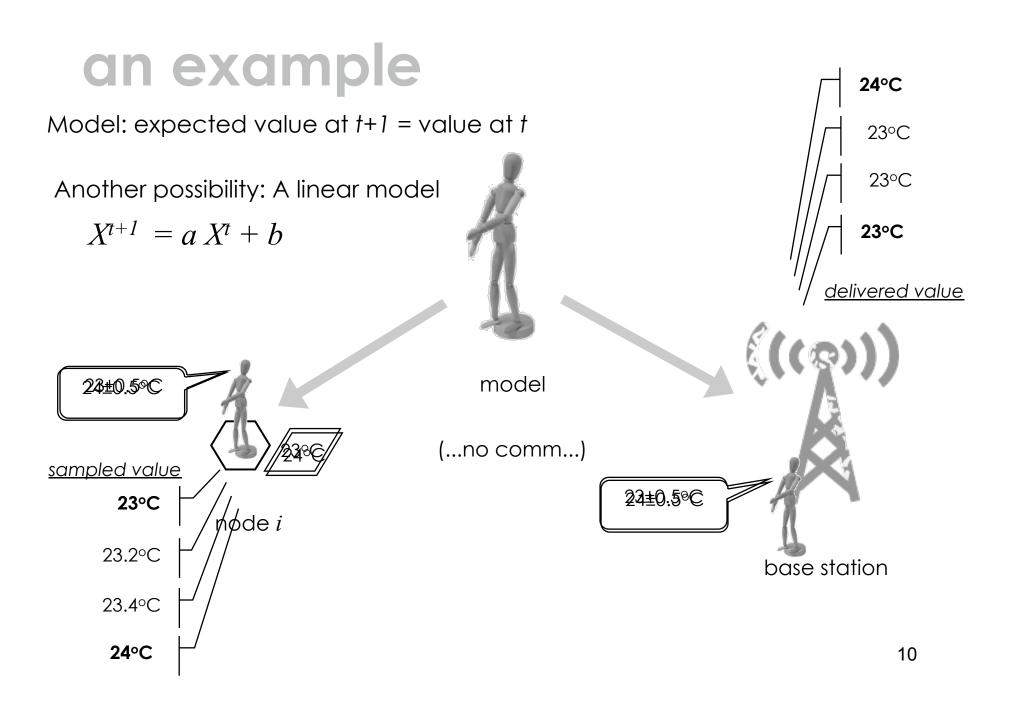
observations

- Physical environments → predictable correlated states
- Bounded error is acceptable
 Sensed data is noisy
- Processor inexpensive and often idle
- Report data only if it differs significantly from what is expected.

introducing (prediction) models



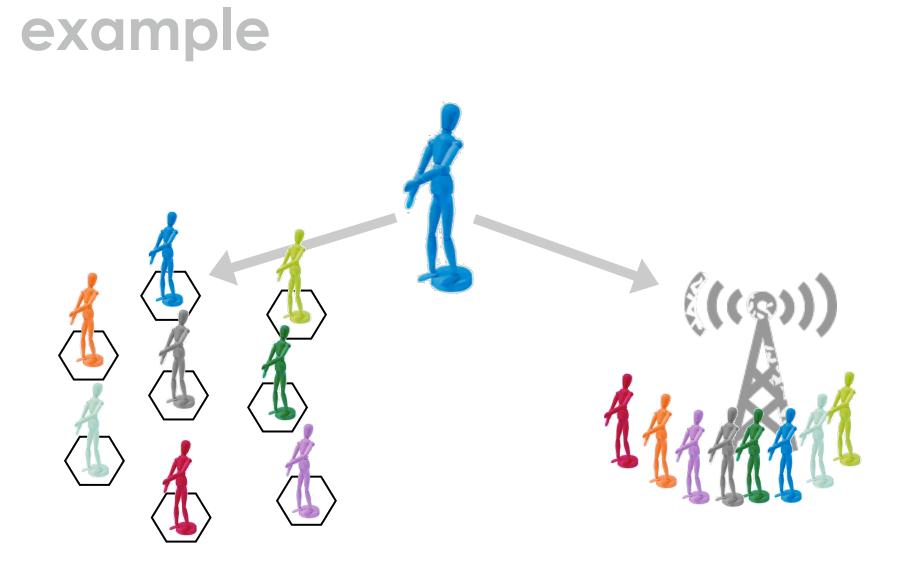
model ([INPUT] ...) \rightarrow EXPECTED_VAL



ken

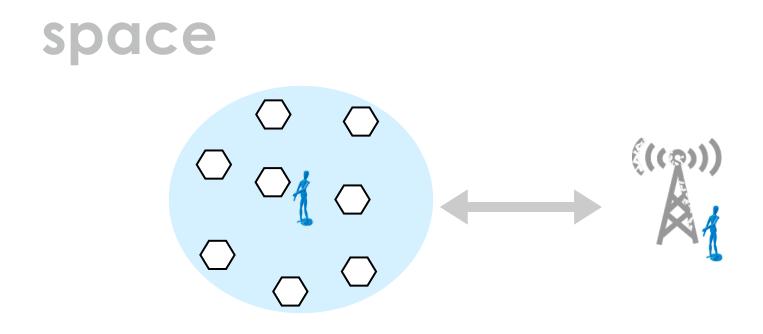
ken

- 1. Barbie's boyfriend
- 2. bounded-loss in-network data reduction
- 3. the range of perception, understanding, or knowledge



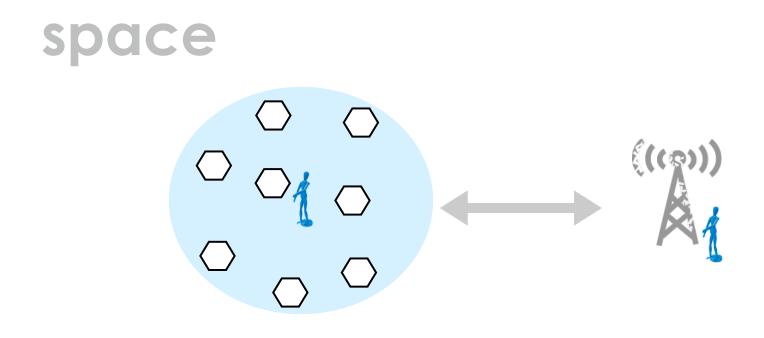
properties

- Nodes report to base all anomalous samples
- Base delivers to user samples within user-tolerated error bound
- Online bounded-loss data reduction using <u>time</u> correlations. What about <u>space</u>?



Use multi-dimensional prediction models

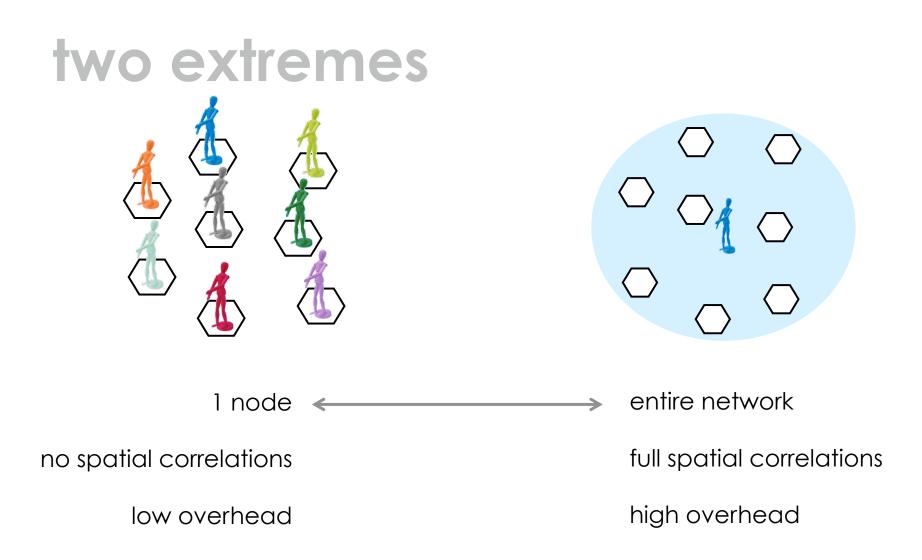
 $(X_1^t, X_2^t, X_3^t, \dots) \rightarrow X_1^{t+1}, X_2^{t+1}, X_3^{t+1}, \dots$



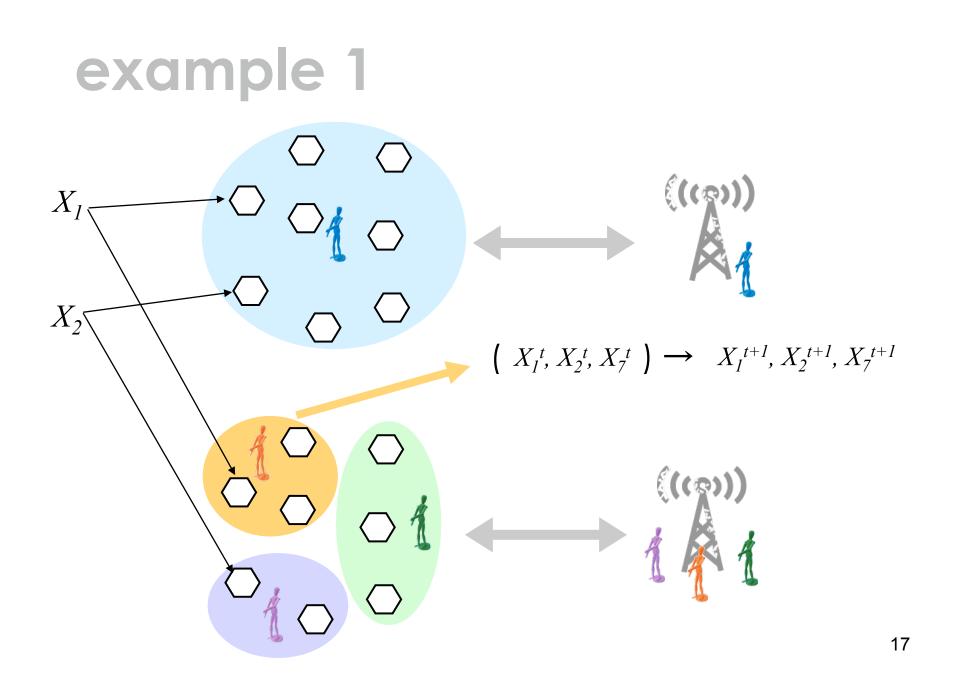
But, must collect all sensor readings at a single sensor node to do prediction

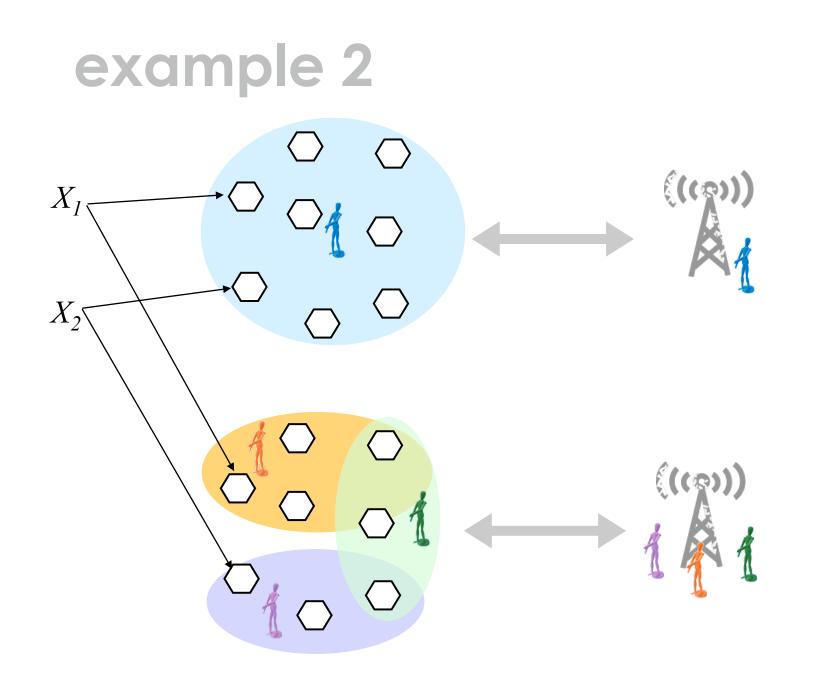
Almost as expensive as bulk data collection

Also infeasible given the computation limitations at each node



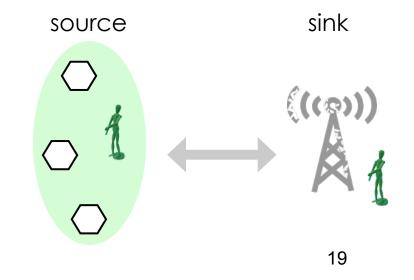
Ken explores the spectrum between these two





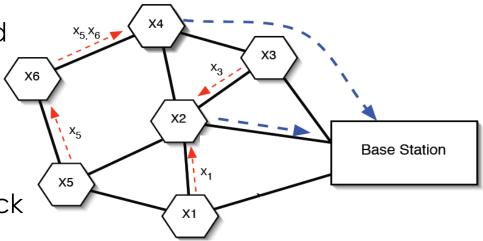
need to specify

- prediction model
 - someModel ([INPUT] ...) → EXPECTED_VAL
 - How good is the model?
 - How much does it deviate from sampled?
 - What is the cost of correcting the deviation?
 - Data reduction factor
- communication structure
 - Where do we collect INPUTs?
 - Total Communication cost
 - intra-source
 - source-sink



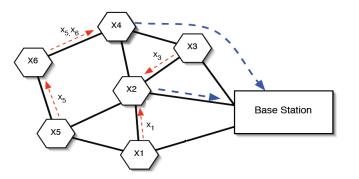
structure: disjoint cliques

- Allow multiple nodes (a clique) to collect data innetwork at a clique root and perform inference over multiple sensor readings.
- Clique root decides which readings (if any) to send back to base station.



• Not fully specified: clique members, clique roots ?

disjoint cliques

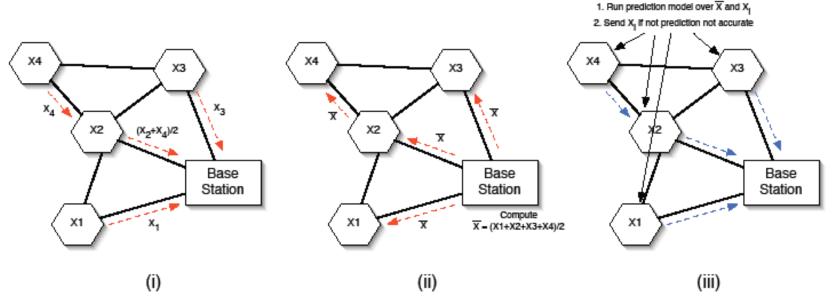


- goal: find the cliques and clique roots with lowest expected communication
- cost factors: data reduction factors, intra-source and source-sink
- exhaustive algorithm
 - find optimal node partitioning (NP-hard)
- greedy heuristic
 - prune unlikely candidates

structure: composite-value

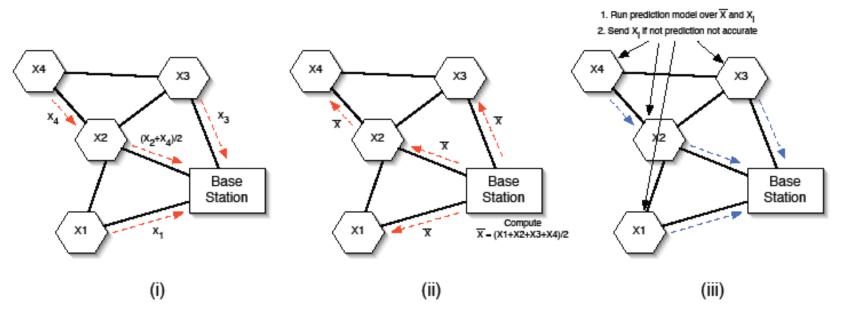
- Compute a composite value (e.g. average) in-network, then disseminate computed composite.
- Run *n* models over two variables each:

$$X_i, \bar{X} = \frac{\sum_{i=1}^n X_i}{n}$$



structure: composite-value

- Average is likely to be highly correlated with individual readings
- Communication cost of average computation is only O(n) messages



evaluation

- input
 - Intel Lab dataset
 - UC Botanical Gardens dataset
- compare
 - Ken w/ average-value
 - Ken w/ disjoint cliques
 - bulk collection
 - caching
 - single node models
- error bounds
 - ±0.5°C
 - ±2% humidity
 - $\pm 0.1V$ battery

results at a glance

data reduction

- <u>60% with 2-node clique</u>
- <u>82% with 5 nodes clique</u>

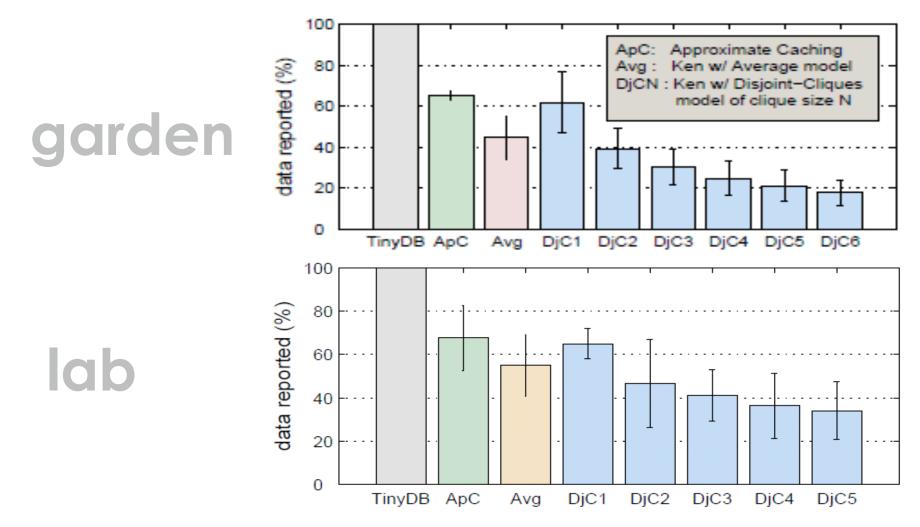
communication reduction

- <u>28% with 2-node</u>
- 45% with 5-node clique

multi-attribute reduction

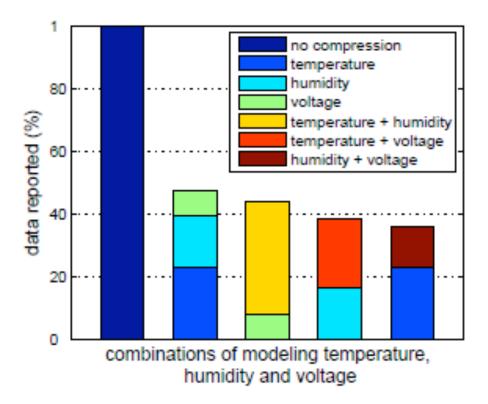
• <u>65% with 3 attributes</u>

evaluation: data reduction



evaluation: multiple attributes

- spatial correlations across attributes
- no additional communication
- mix-and-match with overlay of choice



related work

- Approximate caching [Olston, et al.]: model-less caching
- Stream resource management using Kalman Filters [Jain, et al.]: temporal only
- BBQ [Deshpande, et al.]: pull-based query driven approach; probabilistic guarantees only
- TinyDB, TAG [Madden, et al.]: data service for sensor networks

conclusion

- exploiting both <u>temporal</u> and <u>spatial</u> correlations in real-world datasets
- Find the right communication structure → substantial data reduction achievable
 - 60% with only two node clique and simple model
- communications savings appreciable, even for simple models
 - 28% with only two node clique and simple model
- guarantee of desired accuracy independent of model

thanks!

• questions?