Scalable Platforms for Graph Analytics and Collaborative Data Science

Amol Deshpande

Associate Professor

Department of Computer Science and UMIACS

University of Maryland at College Park

Joint work with many students and collaborators

Big Data

- Explosion of data, in pretty much every domain
 - Sensing devices and sensor networks (IoT) that can monitor everything from temperature to pollution to vital signs 24/7
 - Increasingly sophisticated smart phones
 - Internet, social networks making it very easy to publish data
 - Scientific experiments and simulations
 - Many aspects of life being turned into data ("dataification")
- "Big Data" (= extracting knowledge and insights from data) becoming fundamental
 - Science, business, politics -- largely driven by data and analytics
 - Many others (Education, Social Good) are slowly being

Four V's of Big Data

- Big data not just about "Volume"
 - Large scale of data certainly poses many problems
 - But most datasets are pretty small (10GB-500GB)...
- Variety and heterogeneity in both data and applications
 - Text, networks, time series, nested/hierarchical, multimedia, ...
 - Increasingly complex and specialized analysis tasks

Velocity

 Data generated at very high rates and often needs to be processed in real time

Veracity

- What/who to trust? How to reason about data quality issues?
- Easy to draw wrong statistical conclusions from large datasets
- Issues becoming more important with increasing automation...

Focus of My Research Group at UMD

- Building data management systems to address challenges in managing and analyzing big data by..
 - Designing intuitive, formal, and <u>declarative abstractions</u> to empower users, and
 - Developing <u>scalable platforms</u> and algorithms to support those abstractions over large volumes of data
- Major research thrusts over the last 10 years
 - Uncertain and probabilistic data management
 - Graph data management
 - Data management in the cloud
 - Collaborative data analytics
 - Query processing and optimization

Outline

- Graph Data Management
 - A Framework for Distributed Graph Analytics
- DataHub: A platform for collaborative data science

Background: Graphs

- A graph captures a set of entities/objects, and interconnections between pairs of them
 - Graphs also often called networks
 - Entities/objects represented by vertices or nodes
 - Interconnections between pairs of vertices called edges
 - Also called links, arcs, relationships

An undirected, unweighted graph

A directed, edge-weighted graph

Background: Graphs

- A graph captures a set of entities/objects, and interconnections between pairs of them
 - Graphs also often called networks
 - Entities/objects represented by vertices or nodes
 - Interconnections between pairs of vertices called edges
 - Also called links, arcs, relationships

- Graph theory, graph algorithms very well studied in Computer
 Science
 - Not as much work on managing large volumes of graphstructured data, or doing analytics over them

Graph Data

 Increasing interest in querying and reasoning about the underlying graph (network) structure in a variety of disciplines

A protein-protein interaction network

Citation networks

Communication networks

Disease transmission networks

Social networks

Federal funds networks

World Wide Web

Knowledge Graph

Financial transaction networks

Stock Trading Networks

Motivation

- Underlying data hasn't necessarily changed that much
 - Aside from the data volumes and easier availability
- However, several new realizations:
 - Reasoning about graph structure provides useful and actionable insights (network science/complex network analysis)
 - Lose too much information/intuitions if graph structure ignored
 - Not easy to write many natural queries or tasks using traditional tools
 - Especially relational databases like Oracle
 - Hard to efficiently process inherently graph-structured queries or complex network analysis tasks using existing tools
 - A major concern with increasingly large graphs seen in practice

Different types of "queries"

Subgraph pattern matching: Given a "query" graph, find where it occurs in a given "data" graph

Reachability; Shortest path; Keyword search; ...

Historical or Temporal queries: "Find most important nodes in a communication network in 2002?"

Query Graph

Data Grapi

Citation networks

Communication networks

Disease transmission networks

Financial transaction

networks

Knowledge Graph

World Wide Web

Stock Trading Networks

Different types of "queries"

Subgraph pattern matching; Reachability; Shortest path; Keyword search; Historical or Temporal queries...

Continuous "queries" and Real-time analytics

Online prediction in response to new data Monitoring: "Tell me when a topic is suddenly trending in my friend circle"

Anomaly/Event detection: "Alert me if the communication activity around a node changes drastically"

network

facebook. Lwitter Linked in

Social networks

A protein-protein interaction

Citation networks

Communication networks

Disease transmission networks

Knowledge Graph

World Wide Web

Financial transaction networks

Stock Trading Networks

Different types of "queries"

Subgraph pattern matching; Reachability; Shortest path; Keyword search; Historical or Temporal queries...

Continuous "queries" and Realtime analytics

Online prediction; Monitoring; Anomaly/Event detection

Batch analysis tasks

Centrality analysis: Find the most central nodes in a network

Community detection: Partition vertices into groups with dense interactions

Network evolution: Build models for network formation and evolution

Network measurements: Measure statistical properties

Graph cleaning/inference: Remove noise in the observed network data

network

facebook twitter
Linked in

Social networks

ciai rietworks

Citation networks

Communication networks

Disease transmission networks

Know

Examples of Graph Analysis Tasks

- Community Detection: partitioning the vertices into (potentially overlapping) groups based on the interconnections between them
 - Provide insights into how networks function; identify functional modules; improve performance of Web services...
- Analyzing "ego-networks"
 - Properties of neighborhoods around a large number of nodes
- Building models of evolution
 - Measuring properties of networks
 - Constructing evolution models that can explain those

Feed-fwd Loop Feed- back Loop Bi-parallel Motif

Counting network motifs

<u>Different types of "queries"</u>

Subgraph pattern matching; Reachability; Shortest path; Keyword search; Historical or Temporal queries...

Continuous "queries" and Realtime analytics

Online prediction; Monitoring; Anomaly/Event detection

Batch analysis tasks

Centrality analysis; Community detection; Network evolution; Network measurements; Graph cleaning/inference

network

facebook. Lwitter Linked in

A protein-protein interaction

Citation networks

Communication networks

Disease transmission networks

Knowledge Graph World Wide Web

Federal funds

networks

Financial transaction networks

Stock Trading Networks

Machine learning tasks

Many algorithms can be seen as message passing in specially constructed graphs

Graph Data Management: State of the Art

- Much prior and ongoing work most of it outside, or on top of, general-purpose data management systems
 - Specialized indexes or algorithms for specific types of queries
 - Stand-alone prototypes for specific analysis tasks
- Emergence of specialized graph databases in recent years
 - Neo4j, Titan, OrientDB, DEX, AllegroGraph, ...
 - Rudimentary declarative interfaces/query languages
- Several "vertex-centric" frameworks in recent years
 - Pregel, Giraph, GraphLab, GRACE, GraphX, ...
 - Only work well for a very limited set of tasks
- Little work on continuous/real-time query processing, or on supporting evolutionary or temporal analytics

What we are doing

- Goal: A graph data management system with unified declarative abstractions for graph queries and analytics
- Work so far
 - Declarative graph cleaning [GDM'11, SIGMOD Demo'13]
 - NScale: a distributed analysis framework [VLDB Demo'14, VLDBJ'15]
 - Real-time continuous queries [SIGMOD'12, ESNAM'14, SIGMOD'14]
 - Techniques for continuous query processing over large dynamic graphs
 - Expressive query language for specifying anomaly detection queries
 - Historical graph data management [ICDE'13, SIGMOD Demo'13, arXiv'15]
 - A distributed indexing structure for retrieving historical snapshots
 - Temporal/evolutionary analytics framework, built on top of Apache Spark
 - Subgraph pattern matching and counting [ICDE'12, ICDE'14]
 - GraphGen: graph analytics over relational data [VLDB Demo'15]

Outline

- Graph Data Management
 - A Framework for Distributed Graph Analytics
- DataHub: A platform for collaborative data science

Scaling Graph Analysis Tasks

- Graph analytics/network science tasks too varied
- Hard to build general platforms like Hadoop/Dryad/Spark
 - What is a good programming abstraction to provide?
 - Needs to cover a large fraction of use cases, and be easy to use
 - MapReduce works very well for other analysis tasks, but not a good fit for graph analytics
 - No clear winner yet, so little progress on systems
 - Especially on distributed or parallel systems
 - Application developers largely doing their own thing

"Vertex-centric" Frameworks

- Introduced by Google in a system called "Pregel"
 - Inspired by BSP (Bulk Synchronous Protocol)
- Adopted by many other systems
 - GraphLab, Apache Giraph, GraphX, Xstream, ...
 - Most of the research, especially in databases, focuses on it
- "Think like a vertex" paradigm
 - User provides a single compute() function that operates on a vertex
 - Executed in parallel on all vertices in an iterative fashion
 - Exchange information at the end of each iteration through message passing

Example: PageRank

Compute() at Node n:

PR(n) = sum up all the incoming weights Let the outDegree be D Send PR(n)/D over each outgoing edge $PR^{10}(2)$ PR¹⁰ (2) PageRank values PR¹⁰(1) computed in iteration 10 PR¹⁰ (1)/3 PR¹⁰ (3) Messages sent after iteration 10 PR¹⁰ (1)/3 PR¹⁰ (3) PR¹⁰ (4) PR¹⁰ (4)

Programming Frameworks

- Vertex-centric framework
 - Works well for some applications
 - Pagerank, Connected Components, ...
 - Some machine learning algorithms can be mapped to it
 - However, the framework is very restrictive
 - Most analysis tasks or algorithms cannot be written easily
 - Simple tasks like counting neighborhood properties infeasible
 - Fundamentally: Not easy to decompose analysis tasks into vertex-level, independent local computations
- Alternatives?
 - Galois, Ligra, GreenMarl: Not sufficiently high-level
 - Some others (e.g., Socialite) restrictive for different reasons

Example: Local Clustering Coefficient

Compute() at Node n:

Need to count the no. of edges between neighbors

But does not have access to that information

Option 1: Each node transmits its list of

neighbors to its neighbors

Huge memory consumption

Option 2: Allow access to neighbors' state

Neighbors may not be local

What about computations that require 2-

hop information?

NScale Programming Framework

- An end-to-end distributed graph programming framework
- Users/application programs specify:
 - Neighborhoods or subgraphs of interest
 - A kernel computation to operate upon those subgraphs

• Framework:

- Extracts the relevant subgraphs from underlying data and loads in memory
- Execution engine: Executes user computation on materialized subgraphs
- Communication: Shared state/ message passing

NScale programming model

Underlying graph data on HDFS

Subgraph extraction query:


```
Compute (LCC) on
Extract ({Node.color=orange}
{k=1}
{Node.color=white}
{Edge.type=solid}
)
```

Query-vertex predicate

Neighborhood Size

Neighborhood vertex predicate

Neighborhood edge predicate

NScale programming model

Underlying graph data on HDFS

Specifying Computation: BluePrints API

```
ArrayList<RVertex> n_arr = new ArrayList<RVertex>();
for(Edge e: this.getQueryVertex().getOutEdges)
     n_arr.add(e.getVertex(Direction.IN));
int possibleLinks = n_{arr.size}() * (n_{arr.size}()-1)/2;
// compute #actual edges among the neighbors
for (int i=0; i < n_arr.size()-1; i++)
   for (int j=i+1; j n arr.size(); j++)
     (if (edgeExists(n_arr).get(i), n_arr.get(j)))
         numEdges++;
```

Program cannot be executed as is in vertex-centric programming frameworks.

GEP: Graph extraction and packing

Underlying graph data on HDFS

GEP: Graph extraction and packing

GEP: Graph extraction and packing

Goal:

- Group graphs with high similarity
- Minimizes memory consumption

Techniques explored

 Set bin packing, graph partitioning, clustering

Shingle based set bin packing

- Min-hash signatures based sorting
- Grouping based on Jaccard similarity

Bin Packing

- Set union operation
- Bin Capacity: Elastic resource allocation
- Max # Subgraphs: Handles Skew

GEP: Graph extraction and packing

Graph Extraction Underlying graph data on HDFS and Loading MapReduce (Apache Yarn) Subgraph extraction **Cost Based** Optimizer 10 Data Rep & **Placement**

Sample bin packing using Shingles

GEP: Graph extraction and packing

Underlying graph data on HDFS 10 9

Graph Extraction and Loading

Subgraphs in Distributed Memory

Distributed execution of user computation

Underlying graph data on HDFS 3 10

Graph Extraction and Loading

MapReduce (Apache Yarn)

Subgraph extraction

Cost Based Optimizer

Data Rep & Placement

Subgraphs in Distributed Memory

Distributed Execution Engine

NScale: Summary

- Users write programs at the abstraction of a graph
 - More intuitive for graph analytics
 - Captures mechanics of common graph analysis/cleaning tasks
- Generalization: Flexibility in subgraph definition
 - Subgraph = vertex and associated edges: vertex-centric programs
 - Subgraph = an entire graph: global programs
- Scalability
 - Only relevant portions of the graph data loaded into memory
 - User can specify subgraphs of interest, and select nodes or edges based on properties
 - Carefully partition (pack) nodes across machines so that:
 - Every subgraph is entirely in memory on a machine, while using very few machines

Experimental Evaluation

Datasets

- Web graphs
- Communication/interaction graphs
- Social networks

Graph applications

- Local Clustering Coefficient
- Motif counting
- Identifying weak ties
- Triangle Counting
- Personalized Page Rank

Baselines

- Apache Giraph
- GraphLab
- GraphX

Evaluation Metrics

- Computational Effort
- Execution Time
- Cluster Memory

Cluster Setup

- 16 Node Cluster
- Apache YARN (MRv2)
- Each Node:
 - 2 x 4-core Intel Xeon
 - 24GB RAM, 3 x 2 TB disks

Experimental Evaluation

		Local Clustering Coefficient													
Dataset	1	NScale			Giraph				Grap)	GraphX				
	CE (Node- Secs)	Cluster Mem (G	В)	CE (Node- Secs)		Cluster Mem (GB)		CE (Node- Secs)		Cluster Mem (GB)		CE (Node- Secs)		Cluster Mem (GB)	
EU Email	377	9.00		1150		26.17		365		20.10		225		4.95	
NotreDame	620	19.07		1564		30.14		550		21.40		340		9.75	
Google Web	658	25.82		2024	35.35			600		33.50		1485		21.92	
WikiTalk	726	24.16		DNC		ООМ		1125		37.22		1860		32.00	
LiveJournal	1800	50.00		DNC		ООМ		550	5500		3.62	4515		84.00	
Orkut	2000	62.00		DNC		ООМ		DNC		ООМ		20175		125.00	
		Personalized Page Rank on 2-Hop Neighborhood													
Dataset		NSc	ale			Giraph		G		raphLab		GraphX		phX	
	#Source Vertices	CE (Node- Secs)	Cluster Mem (GB)		CE (Node- Secs)		Cluster Mem (GB)		CE (Node Secs)	e-	Cluster Mem (GB)	CE (Noc Secs)	de-	Cluster Mem (GB)	
EU Email	3200	52	3.35		782		17.10		710		28.87	9975		85.50	
NotreDame	3500	119	9.56		6 1058		31.76		870		70.54	50595		95.00	
Google Web	4150	464	21.52		10482		64.16		1080		108.28	DNC		-	
WikiTalk	12000	3343	79.43		DNC		ООМ		DNC		ООМ	DNC		-	
LiveJournal	20000	4286	84.94		DNC		ООМ	DNC			ООМ	DNC		-	
Orkut	20000	4691	93.07		DNC		ООМ		DNC		ООМ	DNC		-	

Outline

- Graph Data Management
 - A Framework for Distributed Graph Analytics
- DataHub: A platform for collaborative data science

Collaborative Data Science

Widespread use of "data science" in many many domains

Collaborative Data Science

- Widespread use of "data science" in many many domains
- Increasingly the "pain point" is managing the process, especially during collaborative analysis
 - Many private copies of the datasets

 Massive redundancy
 - No easy way to keep track of dependencies between datasets
 - Manual intervention needed for resolving conflicts
 - No efficient organization or management of datasets
 - No way to analyze/compare/query versions of a dataset
- Ad hoc data management systems (e.g., Dropbox) used
 - Much of the data is unstructured so typically can't use DBs
 - The process of data science itself is quite ad hoc and exploratory
 - Scientists/researchers/analysts are pretty much on their own

DataHub: A Collaborative Data Science Platform

The one-stop solution for collaborative data science and dataset version management

http://data-hub.org

Work being done in collaboration with Sam Madden (MIT) and Aditya Parameswaran (UIUC)

DataHub: A Collaborative Data Science Platform

- a dataset management system import, search, query, analyze a large number of (public) datasets
- a dataset version control system –
 branch, update, merge, transform large structured or unstructured datasets
- an app ecosystem and hooks for external applications (Matlab, R, iPython Notebook, etc)

DataHub Architecture

No, because they typically use fairly simple algorithms and are optimized to work for code-like data

- No, because they typically use fairly simple algorithms and are optimized to work for code-like data
- X Git ends up using large amounts of RAM for large files

- No, because they typically use fairly simple algorithms and are optimized to work for code-like data
- X Git ends up using large amounts of RAM for large files
- Querying and retrieval functionalities are primitive, and revolve around single version and metadata retrieval
- No way to specify queries like:
 - identify all datasets derived of dataset A that satisfy property P
 - identify all predecessor versions of version A that differ from it by a large number of records
 - rank a set of versions according to a scoring function
 - find the version where the result of an aggregate query is above a threshold
 - find parent records of all records in version A that satisfy certain property

- No, because they typically use fairly simple algorithms and are optimized to work for code-like data
- ★ Git ends up using large amounts of RAM for large files
 - VQuel: A Unified Query Language for querying versioning and derivation information [USENIX TAPP'15]
 - Example: What changes did Alice make after January 01, 2015?

- Illiu the version where the result of an aggregate query is above a threshold
- find parent records of all records in version A that satisfy certain property

Outline

- Graph Data Management
 - A Framework for Distributed Graph Analytics
- DataHub: A platform for collaborative data science
 - Recreation/Storage Tradeoff in Version Management [VLDB'15]

Storage cost is the space required to store a set of versions

Recreation cost is the time* required to access a version

A delta between versions is a file which allows constructing one version given the other

Example: Unix diff, xdelta, XOR, etc.

A delta has its own storage cost and recreation cost, which, in general, are independent of each other

Storage-Recreation Tradeoff

Storage-Recreation Tradeoff

Given

- 1) a set of versions
- partial information about deltas between versions

Find a Storage Solution that:

- minimizes total recreation cost given a storage budget, or
- minimizes max recreation cost given a storage budget

	Storage Cost	Recreation Cost	Undirected Case, $\Delta = \Phi$	Directed Case, $\Delta = \Phi$	Directed Case, $\Delta \neq \Phi$
P1	min C	R _i < ∞, ∀ i	PTime, Minimum Cost Arborescence (MCA)		
P2	C < ∞	$\min \left\{ \max \left\{ R_i \mid 1 \le i \le n \right\} \right\}$	PTime, Shortest Path Tree (SPT)		
P3	C≤β	$\min\left\{\sum_{i=1}^{n}R_{i}\right\}$	NP-hard,	NP-hard, LMG Algorithm	
P4	C≤β	$\min \left\{ \max \left\{ R_i \mid 1 \le i \le n \right\} \right\}$	LAST* Alg	NP-hard, MP Algorithm	
P5	min C	$\sum_{i=1}^{n} R_i \leq \theta$	NP-hard,	NP-hard, LMG Algorithm	
P6	min C	$\max \{R_i \mid 1 \le i \le n\} \le \theta$	LAST* Alg	NP-hard, MP Algorithm	

Baselines

Minimum Cost Arborescence (MCA) Edmonds' algorithm Time complexity = O(E + V logV) Shortest Path Tree (SPT)
Dijkstra's algorithm
Time complexity = O(E logV)

Comparing Different Solutions

Storage budget of 1.1X the MCA reduces total recreation cost by 1000X

The Road Ahead

Extensions

- Include user defined functions e.g., custom "diff" functions for two versions
- Additional graph traversal operators

Engagement with users to refine the constructs

Implementation Challenges

Data is stored in a compressed fashion, to exploit overlaps between versions

Need new query execution and optimization strategies

Version graph can become very large in a "dynamic update" environment

Need scalable methods to handle the version graph

Thanks !!

More at: http://www.cs.umd.edu/~amol

Questions?