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Probabilistic Databases

 Motivation: Increasing amounts of uncertain data

 Sensor Networks; Information Networks

 Data Integration and Information Extraction

 …

 Probabilistic databases

 Annotate tuples with existence probabilities, and/or 
attribute values with probability distributions

 Interpretation according to the "possible worlds 
semantics"



Possible World Semantics
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We focus on tuple uncertainty in the talk



Top-k Query Processing
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Score  values are used to rank the tuples in every pw. 
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…The top-1 answer for each possible world 

A probabilistic table
(assume tuple-independence)



Top-k Queries: Many Prior Proposals

 Return k tuples t with the highest score(t)Pr(t) [exp. score]

 Returns the most probable top k-answer [U-top-k]

[Soliman et al. ’07]

 At rank i, return tuple with max. prob. of being at rank i [U-rank-k]

[Soliman et al. ’07]

 Return k tuples t with the largest Pr (r(t)· k) values [PT-k/GT-k]

[Hua et al. ’08] [Zhang et al. ’08]

 Return k tuples t with smallest expected rank: pwPr(pw) rpw(t) 

[Cormode et al. ’09]



Top-k Queries
 Which one should we use???

 Comparing different ranking functions

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.124 0.302 0.799 0.276

PT/GT 0.124 ---- 0.332 0.929 0.367

U-Rank 0.302 0.332 ----- 0.929 0.204

E-Rank 0.799 0.929 0.929 ---- 0.945

U-Top 0.276 0.367 0.204 0.945 ----

Normalized Kendall Distance between two top-k answers:
Penalizes #reversals and #mismatches
Lies in [0,1],  0: Same answers; 1: Disjoint answers

Real Data Set: 100,000 tuples, Top-100



Top-k Queries

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.864 0.890 0.004 0.925

PT/GT 0.864 ---- 0.395 0.864 0.579

U-Rank 0.890 0.395 ----- 0.890 0.316

E-Rank 0.004 0.864 0.890 ---- 0.926

U-Top 0.925 0.579 0.316 0.926 ----

Synthetic Dataset: 100,000 tuples, Top-100

 Which one should we use???

 Comparing different ranking functions
Normalized Kendall Distance between two top-k answers:

Penalizes #reversals and #mismatches
Lies in [0,1],  0: Same answers; 1: Disjoint answers



Our Approach

 Define two parameterized ranking functions: PRFw; PRFe

 .. that can simulate or approximate a variety of ranking functions

 PRFe much more efficient to evaluate (than PRFw)

Use PRFe to 
approximate 

Compute 
directly

User

Represent as a PRFw

Preference information: e.g., a 
ranking on a small dataset

A specific ranking function

Learn PRFw parameters



Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®) 

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments



Parameterized Ranking Function

• Weight Function: ! : (tuple, rank)!

• Parameterized Ranking Function (PRF) 

Return k tuples with the highest           values.

C

Probability that t is ranked at 
position i across possible worlds



Parameterized Ranking Function

 !(t,i)= 1 : Rank the tuples by probabilities

 !(t,i)=score(t): E-Score

 PRFe(®): !(i)=®i where ®can be a real or a 

complex number

 PRF!(h):

 Generalizes PT/GT-k  and U-Rank
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Computing PRF: Independent Tuples

Generating Function Method

The coefficient of xj : Pr(r(ti )=j)

Ti-1={t1,t2,…,ti-1}  i.e., the set of tuples with scores higher than ti

Computing Pr(r(ti) = j), for a given tuple ti and a given rank j



Expand from scratch
O(n2)

O(n3) overall

Computing PRF: Independent Tuples

 Algorithm:

 For i=1 to n

 Expand



 Return k tuples with largest         values  

Can be improved to 
O(n)

O(n2) overall
Fi and Fi-1 differ in two multiplicative terms 

O(n) time
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Computing PRFe(®): Independent Tuples

 Recall !(j)=®j

 Generating Function Method





 Therefore:

 Morevoer:

O(n) overallO(1)

No need to expand 
the polynomial !!
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Computing PRF: x-Tuples

 Capture mutual exclusivity correlations

V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

Possible Worlds Pr

t4 0.02

t3 0.08

…….

t1, t4, t6 0.03

t1, t3, t6 0.018

…….



r(i)=j if and only if  (1) j-1 tuples with higher scores appear

(2) tuple i appears

Pr(r(t4)=j) = coeff of xj-1y

V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

x x xy11

0.2+0.8x 1 0.1+0.2y+0.7x

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x)

Computing PRF: x-Tuples

O(n2) overall

Construct generating function for t4



V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

0.6 0.6 0.60.60.61

0.2+0.8*0.6 0.92 0.1+0.2*0.6+0.7*0.6

F5(0.6,0.6)=0.096*0.92*0.64

O(1) for each 
new tuple

Overall O(n) 

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node.

E.g. ®=0.6.  Now we want to compute F5(0.6,0.6)

Computing PRFe(®): x-Tuples



Summary of Other Results

 PRF computation for probabilistic and/xor trees
 Generalizes x-tuples by allowing both mutual exclusivity and 

coexistence

 PRF computation : O(n3) 

 PRFe computation : O(nlogn+nd) (d = height of the tree)

 PRF computation on graphical models

 A polynomial time algorithm when the junction tree has 
bounded treewidth

– A nontrivial dynamic program combined with the generating function 

method. 
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Approximating Ranking Functions

Approximating PRF! by a linear combination of PRFe

 Suppose

 Reduce to L individual PRFe computations

 Running time : O(nlogn+nL) (as opposed to O(n2))

 We developed a scheme based on adapting the discrete 
Fourier transformation of !

 Works very well for monotonically non-increasing !
 E.g. the step function (PT/GT-k)

 Details in the paper
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Experiments: Approximation Ability

Using a single PRFe

Approximating other functions using PRFe(®)
®= 1-0.9i

No. of Terms vs Approximation Quality

A linear combination of PRFes

Real Icberg sighting dataset: 100,000 tuples



Experiments: Execution Time

PRFe vs Others Approx  vs Exact

Real Icberg sighting dataset



Conclusions

 Proposed a unifying framework for ranking over probabilistic 
databases through:

 Parameterized ranking functions 

 Incorporation of user feedback

 Designed highly efficient algorithms for computing PRF and 
PRFe

 Developed novel approximation techniques for approximating 
PRFw with PRFe


