A Unified Approach to Ranking in Probabilistic Databases

Jian Li, Barna Saha, Amol Deshpande University of Maryland, College Park, USA

Probabilistic Databases

- Motivation: Increasing amounts of uncertain data
 - Sensor Networks; Information Networks
 - Data Integration and Information Extraction
 - ..
- Probabilistic databases
 - Annotate *tuples* with existence probabilities, and/or attribute values with probability distributions
 - Interpretation according to the "possible worlds semantics"

Top-k Query Processing

Score values are used to rank the tuples in every pw.

Top-k Queries: Many Prior Proposals

- Return k tuples t with the highest score(t)Pr(t) [exp. score]
- Returns the most probable top k-answer [U-top-k]
 [Soliman et al. '07]
- At rank *i*, return tuple with max. prob. of being at rank *i* [U-rank-k]
 [Soliman et al. '07]
- Return k tuples t with the largest Pr (r(t) < k) values [PT-k/GT-k]
 [Hua et al. '08] [Zhang et al. '08]
- Return k tuples t with smallest expected rank: $\sum_{pw} Pr(pw) r_{pw}(t)$ [Cormode et al. '09]

Top-k Queries

- Which one should we use???
- Comparing different ranking functions

Normalized Kendall Distance between two top-k answers: Penalizes #reversals and #mismatches Lies in [0,1], 0: Same answers; 1: Disjoint answers

	E-Score	PT/GT	U-Rank	E-Rank	U-Top
E-Score		0.124	0.302	0.799	0.276
PT/GT	0.124		0.332	0.929	0.367
U-Rank	0.302	0.332		0.929	0.204
E-Rank	0.799	0.929	0.929		0.945
U-Top	0.276	0.367	0.204	0.945	

Real Data Set: 100,000 tuples, Top-100

Top-k Queries

- Which one should we use???
- Comparing different ranking functions

Normalized Kendall Distance between two top-k answers: Penalizes #reversals and #mismatches Lies in [0,1], 0: Same answers; 1: Disjoint answers

	E-Score	PT/GT	U-Rank	E-Rank	U-Top
E-Score		0.864	0.890	0.004	0.925
PT/GT	0.864		0.395	0.864	0.579
U-Rank	0.890	0.395		0.890	0.316
E-Rank	0.004	0.864	0.890		0.926
U-Top	0.925	0.579	0.316	0.926	

Synthetic Dataset: 100,000 tuples, Top-100

Our Approach

- Define two parameterized ranking functions: PRF^w; PRF^e
 - .. that can simulate or approximate a variety of ranking functions
 - PRF^e much more efficient to evaluate (than PRF^w)

Parameterized Ranking Functions

- Computing PRF
 - Independent Tuples
 - Computing PRF^e(α)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Parameterized Ranking Function

- Weight Function: ω : (tuple, rank) $\rightarrow \mathbb{C}$
- Parameterized Ranking Function (PRF)

$$\Upsilon_{\omega}(t) = \sum_{i>0} \omega(t,i) \cdot \Pr(r(t) = i).$$
Probability that t is ranked at
position i across possible worlds

Return k tuples with the highest $|\Upsilon_{\omega}|$ values.

Parameterized Ranking Function

$$\Upsilon_{\omega}(t) = \sum_{i>0} \omega(t,i) \cdot \Pr(r(t)=i).$$

- $\omega(t,i)=1$: Rank the tuples by probabilities
- ω(t,i)=score(t): E-Score
- **PRF**^{*e*}(α): $\omega(i) = \alpha^i$ where α can be a real or a complex number
- **PRF** $^{\omega}$ (h): $\omega(t,i) = \omega(i)$ and $\omega(i) = 0 \ \forall i > h$
 - Generalizes PT/GT-k and U-Rank

- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(α)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Computing PRF: Independent Tuples

Computing $Pr(r(t_i) = j)$, for a given tuple t_i and a given rank j

 $T_{i-1} = \{t_1, t_2, \dots, t_{i-1}\}$ i.e., the set of tuples with scores higher than t_i

$$\begin{aligned} \mathsf{Pr}(r(t_i) = j) &= \mathsf{Pr}(t_i) \sum_{\substack{pw: j-1 \text{ tuples in } T_{i-1} \text{ exists}}} \mathsf{Pr}(pw) \\ &= \mathsf{Pr}(t_i) \sum_{\substack{S \subseteq T_{i-1} \\ |S| = j-1}} \prod_{t \in S} \mathsf{Pr}(t) \prod_{\substack{t \in T_{i-1} \setminus S}} (1 - \mathsf{Pr}(t)) \end{aligned}$$

Generating Function Method

$$\mathcal{F}^{i}(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot x\right)\right) \left(\Pr(t_{i}) \cdot x\right)$$

The coefficient of x^j : $Pr(r(t_i)=j)$

Computing PRF: Independent Tuples

Can be improved to

O(n)

O(n) time

O(n²) overall

- Algorithm:
 - For i=1 to n
 - Expand $\mathcal{F}^i(x) = \sum_{j=1}^n \mathsf{Pr}(r(t_i) = j) x^j$
 - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \operatorname{Pr}(r(t_i) = j)$
 - Return k tuples with largest $|\Upsilon_{\omega}|$ values

$$\mathbf{F}^{i} \text{ and } \mathbf{F}^{i-1} \text{ differ in two multiplicative terms}$$
$$\mathcal{F}^{i}(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot x\right)\right) (\Pr(t_{i}) \cdot x)$$

- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(α)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Computing PRF^e(α): Independent Tuples

- Recall $\omega(j) = \alpha^j$
- Generating Function Method

•
$$\mathcal{F}^{i}(x) = \sum_{j=1}^{n} \Pr(r(t_{i}) = j)x^{j}$$

• $\Upsilon(t_{i}) = \sum_{i=1}^{n} \Pr(r(t_{i}) = j)\alpha^{j}$
 $\Upsilon(t_{i}) = \mathcal{F}^{i}(\alpha)$
• Therefore: $\mathcal{F}^{i}(\alpha) = \left(\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot \alpha\right)\right) (\Pr(t_{i}) \cdot \alpha)$
• Morevoer: $\mathcal{F}^{i}(\alpha) = \frac{\Pr(t_{i})}{\Pr(t_{i-1})}\mathcal{F}^{i-1}(\alpha)\left(1 - \Pr(t_{i-1}) + \Pr(t_{i-1})\alpha\right)$
• **O(1)**
O(n) overall

- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(α)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Computing PRF: x-Tuples

Construct generating function for t_4

r(i)=j if and only if (1) j-1 tuples with higher scores appear

(2) tuple *i* appears

 $Pr(r(t_4)=j) = \text{coeff of } x^{j-1}y$

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x)

Computing PRF^e(α): x-Tuples

$$\Upsilon(t_i) = \mathcal{F}^i(\alpha, \alpha) - \mathcal{F}^i(\alpha, 0).$$

We maintain only the numerical values of $F^i(\alpha, \alpha)$ and $F^i(\alpha, 0)$ at each node. E.g. α =0.6. Now we want to compute $F^5(0.6, 0.6)$

F⁵(0.6,0.6)=0.096*0.92*0.64

Summary of Other Results

- PRF computation for probabilistic and/xor trees
 - Generalizes x-tuples by allowing both mutual exclusivity and coexistence
 - PRF computation : O(n³)
 - PRF^e computation : O(nlogn+nd) (d = height of the tree)
- PRF computation on graphical models
 - A polynomial time algorithm when the junction tree has bounded treewidth
 - A nontrivial dynamic program combined with the generating function method.

- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Approximating Ranking Functions

Approximating PRF^ω by a linear combination of PRF^e

• Suppose $\omega(i) \approx \sum_{l=1}^{L} u_l \alpha_l^i$

$$\Upsilon(t) = \sum_{i} \omega(i) \Pr(r(t) = i) \approx \sum_{l=1}^{L} u_l \left(\sum_{i} \alpha_l^i \Pr(r(t) = i) \right)$$

- Reduce to L individual PRF^e computations
- Running time : O(nlogn+nL) (as opposed to O(n²))
- We developed a scheme based on adapting the discrete Fourier transformation of ω
- Works very well for monotonically non-increasing ω
 - E.g. the step function (PT/GT-k)
- Details in the paper

- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - X-Tuples
 - Summery of Other Results
- Approximating Ranking Functions
- Experiments

Experiments: Approximation Ability

Real Icberg sighting dataset: 100,000 tuples

Experiments: Execution Time

<u>PRF^e vs Others</u>

Real Icberg sighting dataset

Conclusions

- Proposed a unifying framework for ranking over probabilistic databases through:
 - Parameterized ranking functions
 - Incorporation of user feedback
- Designed highly efficient algorithms for computing PRF and PRF^e
- Developed novel approximation techniques for approximating PRF^w with PRF^e