
Jian Li, Barna Saha, Amol Deshpande

University of Maryland, College Park, USA

A Unified Approach to Ranking in
Probabilistic Databases

TexPoint fonts used in EMF.

Probabilistic Databases

 Motivation: Increasing amounts of uncertain data

 Sensor Networks; Information Networks

 Data Integration and Information Extraction

 …

 Probabilistic databases

 Annotate tuples with existence probabilities, and/or
attribute values with probability distributions

 Interpretation according to the "possible worlds
semantics"

Possible World Semantics

w.p. 0.064

w.p. 0.096

w.p. 0.256…

ID Score Prob

t1 200 0.2

t2 150 0.8

t3 100 0.4

ID Score

t1 200

t2 150

t3 100

ID Score

t1 200

t2 150

ID Score

t2 150

t3 100

A probabilistic table
(assume tuple-independence)

pw1

pw2

pw3

…

We focus on tuple uncertainty in the talk

Top-k Query Processing

w.p. 0.064

w.p. 0.096

w.p. 0.256…

Score values are used to rank the tuples in every pw.

ID Score Prob

t1 200 0.2

t2 150 0.8

t3 100 0.4

ID Score

t1 200

t2 150

t3 100

ID Score

t1 200

t2 150

ID Score

t2 150

t3 100

pw1

pw2

pw3

…The top-1 answer for each possible world

A probabilistic table
(assume tuple-independence)

Top-k Queries: Many Prior Proposals

 Return k tuples t with the highest score(t)Pr(t) [exp. score]

 Returns the most probable top k-answer [U-top-k]

[Soliman et al. ’07]

 At rank i, return tuple with max. prob. of being at rank i [U-rank-k]

[Soliman et al. ’07]

 Return k tuples t with the largest Pr (r(t)· k) values [PT-k/GT-k]

[Hua et al. ’08] [Zhang et al. ’08]

 Return k tuples t with smallest expected rank: pwPr(pw) rpw(t)

[Cormode et al. ’09]

Top-k Queries
 Which one should we use???

 Comparing different ranking functions

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.124 0.302 0.799 0.276

PT/GT 0.124 ---- 0.332 0.929 0.367

U-Rank 0.302 0.332 ----- 0.929 0.204

E-Rank 0.799 0.929 0.929 ---- 0.945

U-Top 0.276 0.367 0.204 0.945 ----

Normalized Kendall Distance between two top-k answers:
Penalizes #reversals and #mismatches
Lies in [0,1], 0: Same answers; 1: Disjoint answers

Real Data Set: 100,000 tuples, Top-100

Top-k Queries

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.864 0.890 0.004 0.925

PT/GT 0.864 ---- 0.395 0.864 0.579

U-Rank 0.890 0.395 ----- 0.890 0.316

E-Rank 0.004 0.864 0.890 ---- 0.926

U-Top 0.925 0.579 0.316 0.926 ----

Synthetic Dataset: 100,000 tuples, Top-100

 Which one should we use???

 Comparing different ranking functions
Normalized Kendall Distance between two top-k answers:

Penalizes #reversals and #mismatches
Lies in [0,1], 0: Same answers; 1: Disjoint answers

Our Approach

 Define two parameterized ranking functions: PRFw; PRFe

 .. that can simulate or approximate a variety of ranking functions

 PRFe much more efficient to evaluate (than PRFw)

Use PRFe to
approximate

Compute
directly

User

Represent as a PRFw

Preference information: e.g., a
ranking on a small dataset

A specific ranking function

Learn PRFw parameters

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Parameterized Ranking Function

• Weight Function: ! : (tuple, rank)!

• Parameterized Ranking Function (PRF)

Return k tuples with the highest values.

C

Probability that t is ranked at
position i across possible worlds

Parameterized Ranking Function

 !(t,i)= 1 : Rank the tuples by probabilities

 !(t,i)=score(t): E-Score

 PRFe(®): !(i)=®i where ®can be a real or a

complex number

 PRF!(h):

 Generalizes PT/GT-k and U-Rank

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Computing PRF: Independent Tuples

Generating Function Method

The coefficient of xj : Pr(r(ti)=j)

Ti-1={t1,t2,…,ti-1} i.e., the set of tuples with scores higher than ti

Computing Pr(r(ti) = j), for a given tuple ti and a given rank j

Expand from scratch
O(n2)

O(n3) overall

Computing PRF: Independent Tuples

 Algorithm:

 For i=1 to n

 Expand

 Return k tuples with largest values

Can be improved to
O(n)

O(n2) overall
Fi and Fi-1 differ in two multiplicative terms

O(n) time

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Computing PRFe(®): Independent Tuples

 Recall !(j)=®j

 Generating Function Method

 Therefore:

 Morevoer:

O(n) overallO(1)

No need to expand
the polynomial !!

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Computing PRF: x-Tuples

 Capture mutual exclusivity correlations

V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

Possible Worlds Pr

t4 0.02

t3 0.08

…….

t1, t4, t6 0.03

t1, t3, t6 0.018

…….

r(i)=j if and only if (1) j-1 tuples with higher scores appear

(2) tuple i appears

Pr(r(t4)=j) = coeff of xj-1y

V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

x x xy11

0.2+0.8x 1 0.1+0.2y+0.7x

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x)

Computing PRF: x-Tuples

O(n2) overall

Construct generating function for t4

V

(t2,500)

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

0.6 0.6 0.60.60.61

0.2+0.8*0.6 0.92 0.1+0.2*0.6+0.7*0.6

F5(0.6,0.6)=0.096*0.92*0.64

O(1) for each
new tuple

Overall O(n)

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node.

E.g. ®=0.6. Now we want to compute F5(0.6,0.6)

Computing PRFe(®): x-Tuples

Summary of Other Results

 PRF computation for probabilistic and/xor trees
 Generalizes x-tuples by allowing both mutual exclusivity and

coexistence

 PRF computation : O(n3)

 PRFe computation : O(nlogn+nd) (d = height of the tree)

 PRF computation on graphical models

 A polynomial time algorithm when the junction tree has
bounded treewidth

– A nontrivial dynamic program combined with the generating function

method.

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Approximating Ranking Functions

Approximating PRF! by a linear combination of PRFe

 Suppose

 Reduce to L individual PRFe computations

 Running time : O(nlogn+nL) (as opposed to O(n2))

 We developed a scheme based on adapting the discrete
Fourier transformation of !

 Works very well for monotonically non-increasing !
 E.g. the step function (PT/GT-k)

 Details in the paper

Outline

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 X-Tuples

 Summery of Other Results

 Approximating Ranking Functions

 Experiments

Experiments: Approximation Ability

Using a single PRFe

Approximating other functions using PRFe(®)
®= 1-0.9i

No. of Terms vs Approximation Quality

A linear combination of PRFes

Real Icberg sighting dataset: 100,000 tuples

Experiments: Execution Time

PRFe vs Others Approx vs Exact

Real Icberg sighting dataset

Conclusions

 Proposed a unifying framework for ranking over probabilistic
databases through:

 Parameterized ranking functions

 Incorporation of user feedback

 Designed highly efficient algorithms for computing PRF and
PRFe

 Developed novel approximation techniques for approximating
PRFw with PRFe

