
CMSC330 Fall 2017 Final Exam
Solution

Name (PRINT YOUR NAME ​IN ALL CAPS​):
 __
Discussion Time (circle one) 10am 11am 12pm 1pm 2pm 3pm

Discussion TA (circle one) JT Greg Justin Michael BT Daniel David Derek

Cameron Eric Kesha Shriraj Pei-Jo Michael Bryan Kameron

Instructions
● The exam has 17​ pages (front and back); make sure you have them all.
● Do not start this test until you are told to do so!
● You have 120 minutes to take this exam.
● This exam has a total of 130 points, so allocate 55 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /10

2 Lambda Calculus /10

3 OCaml Typing /10

4 OCaml Execution /10

5 OCaml Programming /12

6 Ruby /16

7 Prolog /20

8 Regexps, FAs, CFGs /18

9 Parsing /8

10 Operational Semantics /6

11 Security /10

 TOTAL /130

1

1 PL Concepts [10 pts]

1. [8 pts]​ Circle True or False for each of the following statements (1 point each)

1. True / ​False​ Structural (“deep”) equality implies physical equality

2. True​ / False In Prolog, green cuts can be used to eliminate redundant

computations

3. True / ​False​ Static type checking occurs during run time in OCaml

4. True / ​False ​ Both Ruby and OCaml have type inference

5. True / ​False​ In SmallC, the lexing stage outputs an abstract syntax tree

6. True​ / False Mark and sweep garbage collection can collect cyclic data

structures

7. True / ​False​ In general, static type systems are sound and complete

8. True ​/ False In lambda calculus, some beta reductions may never terminate

2. [2 pts]​ Fill in the blank

A ___​Module Signature​_____________________________ in OCaml can be used to

hide the implementation details of a module.

2

2 Lambda Calculus [10 pts]

1. [2 pts]​ Make the parentheses explicit in the following expression

(λx. y x y λa. a b)

(λ​x.(y x y​ (​λ​a.(a b))​))

 2. ​[3 pts]​ Beta reduce the following expression until it reaches normal form. Show each step
of the reduction.

 (λx.λy.x y) (λy.y) x (t a)

(​λ​x.​λ​a.x a)(​λ​y.y)(x)(t a)
(​λ​a.(​λ​y.y) a)(x)(t a)
((​λ​y.y) x)(t a)
(x)(t a)

 3. ​[5 pts]​ ​ ​Here are the Church encodings for boolean conditionals:

true λx.λy.x

false λx.λy.y

if a then b else c a b c

Give the lambda calculus encoding of the boolean ​“or”​ function. For example,​ ​or true false
should reduce to ​true​,​ and​ ​or false false​ should reduce to ​false​. ​To make it more clear,
do not substitute true, false with their lambda encodings. (hint: your answer should look like ​or
= λa.λb. ​some application of ​a​ and ​b ​here​)

Λa.λb.a a b

3

3 OCaml Types [10 pts]

1. Write the types of the following OCaml expressions or write “type error” if the expression has

no type:

1) [2 pts]
[(“I”,4.0); (“R”,0.0); (“S”,1)]

Type Error

 2) ​[2 pts]

 fun a -> fun b -> (a b) + 1

(‘a -> int) -> ‘a -> int

2. Provide expressions (without type annotations) that have the following types:

1) [3 pts]
int -> int list -> bool list

fun i l -> List.map ((=) (i + 1)) l;;

 2) ​[3 pts]

 ​(’a->’b) -> (’c->’a) -> ’c -> ’b

fun a b c -> a (b c)

4

4 OCaml Execution [10 pts]
Code for map and fold is provided for reference:
let rec map f l = match l with

 [] -> []

 | h::t -> let r = f h in r :: map f t;;

let rec fold f a l = match l with

 [] -> a

 |h::t -> fold f (f a h) t ;;

What is the output of the following OCaml expressions?

1. [3 pts]
 fold (fun a x -> if x mod 2 = 0 then a else x::a) [] [1; 2; 3; 4; 5];;

[5;3;1]

 2. [3 pts]
type taxpayer = Person of float

 |Company of float;;

let tax y =

 let income_tax a x = a *. x in

 match y with

 |Person i -> income_tax i 0.1

 |Company j -> income_tax j 0.2

in

 (tax (Person 100.0), tax (Company 200.0));;

(10.0, 40.0)

 3. [4 pts]
let f =

 let c = ref 0 in

fun a x -> c:= x+a; !c in

fold f 0 [1;2;3];;

6

5

5 OCaml Programming [12 pts]
A matrix is a two-dimensional list of floats defined as:

type row = float list

type matrix = row list

1. ​[6 pts]​ Write a function that, given matrix ​m​ and ints ​i​ and ​j​, returns the element at row ​i​ and
column ​j​. If ​i​ or ​j​ is out of bounds, return ​None​. For example:

let m = [[1.0 ; 2.0]; [3.5 ; 4.5]] in

get_element m 0 0 → Some 1.0

get_element m 0 1 → Some 2.0

get_element m 1 0 → Some 3.5

get_element m 3 0 → None

Write your answer below. (Hint: Write a helper function to get an element at an index from a list).

let rec at_index (lst : ‘a list) (i : int) : ‘a option =

match lst with

| [] -> None

| h::t -> if i = 0 then (Some h) else (at_index t (i-1))

let rec get_element (m : matrix) (i : int) (j : int) : float option =

match (at_index m i) with

| None -> None

| Some r -> at_index r j

6

2.​ [6 pts]​ Write a function that, given float ​c​ and matrix m​,​ returns a new matrix with elements
in ​m​ multiplied by ​c​.

let m = [[1.0 ; 2.0] ; [3.5 ; 4.5]] in

scalar_mult m 0.0 → [[0.0 ; 0.0] ; [0.0 ; 0.0]]

scalar_mult m 1.5 → [[1.5 ; 3.0] ; [5.25 ; 6.75]]

Write your answer below. (Hint: You know a higher-order function that makes this question very
easy).

let rec scalar_mult (m : matrix) (c : float) : matrix =

map (fun r ->

map (fun x -> x *. c) r) m

 ​ let scalar_mult m c = map (map (fun x -> x *. c)) m;;

7

6 Ruby [16 pts]
For this question, you need to write several methods to work with a data file containing
transactions. Each line of the file has three columns: ​date, amount, ​and​ location​. ​Date​ is in
YYYY-MM-DD​ format, ​amount​ is a decimal with two digits after the point, and ​location​ is an
arbitrary string. The amount does not start with a decimal point (but it can start with a zero).
Each item is separated by a comma with no whitespace. Here is an example file:

2017-11-27,-250.00,Amazon.com

2017-11-16,-9.50,Chipotle

2017-11-15,10.00,UMD Paycheck

Write the following methods for a class ​Transactions​:

1. ​[5 pts]​ ​initialize(datafile):​ The constructor takes as input a string containing the filename of
the transactions, and it loads them into field ​@t​ of the current object. The ​@t​ field should be an
array where each array element is itself an array ​[date, amount, location]​, where the first
and last items are strings and the amount is a float (use ​String#to_f. Example:
"1234.5".to_f => 1234.5)​. You must validate the formatting of the file. If the file is invalid,
raise an exception (hint: use ​raise "Invalid Input"​). You can use the following pattern to
read lines from a file:

IO.foreach("file") { |line| puts line }

def initialize(datafile)

@transactions = []

IO.foreach("file") { |line|

if line =~ /(\d{4}-\d{2}-\d{2}),(-?\d+\.\d{2}),(.*)/

@transactions << {Transaction.new($1, $2, $3)}

else

return false

end

 }

return true

end

8

2. ​[5 pts]​ ​get_net_growth(start_date,end_date):​ Returns as a float the total amount of money
made (or lost) between the given start date and end date, inclusive. You may assume both
dates are valid. To help you out, you may assume there is a function ​date_cmp(date1,
date2)​, which will return < 0 if date1 is earlier than date2, 0 if they are the same date, and > 0 if
date1 is later than date2.

def get_net_growth(start_date, end_date)

sum = 0

@transactions.each { |t|

if date_cmp(start_date, t.date) <= 0 and date_cmp(t.date,

end_date) <= 0

sum += t.amount

end

}

return sum

end

3. ​[6 pts]​ ​most_frequent: ​Takes no arguments, and returns the location that occurs most
frequently in the transaction list. If there is a tie, it does not matter which one you pick.

def most_frequent

counts = Hash.new(0)

@transactions.each { |t|

Counts[t.location] += 1

}

m = counts.values.max

return (counts.keys.select {|k| counts[k] == m})[0]

end

9

7 Prolog [20 pts]

1. ​[6 pts]​ consider the following definitions:

job(alice, programmer).
job(bob, manager).
job(celine, ceo).

supervises(A, B) :- job(A, manager), job(B, programmer).
supervises(A, B) :- job(A, ceo), job(B, manager).

can_fire(A, B) :- supervises(A, B).
can_fire(A,B) :- supervises(A,C), can_fire(C,B)

low_level(A) :- \+ can_fire(A, _). # \+ is the same as not

For each query, list the substitutions that Prolog produces that makes the query true.

1) ?- supervises(celine, X).

X = bob

2) ?- can_fire(X, alice).

{X = bob; X = celine}

3) ?- low_level(X).

false

2. ​[4 pts]​ List all substitutions that satisfy the following query, or write false if no such solution
exists.
 ?- member(X, [0, 2]), length(Q, X), append(A, Q, [1, 2, 3, 4, 5]).

{X = 0, Q = [], A = [1, 2, 3, 4, 5]; X = 2, Q = [4, 5], A = [1, 2, 3]}

10

3. ​[5 pts]​ Implement ​nim(N, L)​, where if N is a non-negative integer, then L is a list of 1s and
2s that add up to N.

?- nim(0, L).

L = [].

?- nim(3, L).

L = [1, 1, 1]; L = [1, 2]; L = [2, 1].

nim(0, []).

nim(N, [1|T]) :-

 N >= 1,

 N2 is N - 1,

 nim(N2, T).

nim(N, [2|T]) :-

 N >= 2,

 N2 is N - 2,

 nim(N2, T).

4. ​[5 pts]​ Implement ​merge(A, B, C)​, where if A and B are sorted lists of integers, then C is
the lists merged together. In other words, C is a sorted list of integers which contains all
elements in both A and B. You CANNOT use the predicate ​sort(+List, -Sorted)​.

?- merge([], [], C).

C = [].

?- merge([], [1, 2], C).

C = [1, 2].

?- merge([1, 4], [2, 3, 5], C).

C = [1, 2, 3, 4, 5].

merge([], B, B).

merge(A, [], A).

merge([A|AT], [B|BT], [A|T]) :- A =< B, merge(AT, [B|BT], T).

merge([A|AT], [B|BT], [B|T]) :- A > B, merge([A|AT], BT, T).

11

8 Regexps, FAs, CFGs [18 pts]

1. [3 pts]​ Write a regular expression for describing all the even length strings over the
alphabet {a, b}.

(aa|ab|ba|bb)*

2. ​[3 pts]​ Construct an NFA corresponding to the regular expression (s|rs)(rr)*.

12

3. Consider the following NFA:

1) [3 pts]​ What regex does this NFA represent?

(s (s|r)* r) | ​ε

 2) ​[5 pts]​ Convert the NFA to a DFA.

4. ​[4 pts]​ Write a context-free grammar for the language of strings over the alphabet {a, b}
containing an equal number of a’s and b’s. For example, “ab”, “ba”, “aabb”, “abab”, and the
empty string are in the language, but “a”, “b”, “aba”, and “aab” are not.

Some examples of correct solutions are:

● S -> aSb | bSa | SS | ​ε

● S -> aSbS | bSaS | ​ε

13

9 Parsing [8 pts]

S → BS | C
B → aB | bB | cB | ε
C → x | y

1. [3 pts]​ Given this CFG, calculate the first sets of B and S (ε represents the empty string)

First(B) = { ​a, b, c, ε​ }

First(S) = { ​ a, b, c, x, y ​ }

For the next part you are given the following utilities for parsing.

lookahead​: Variable holding next terminal
match(x)​ : Function to match next terminal to x
error()​: Signals a parse error

2. ​[5 pts]​ Write OCaml code for ​parse_S()​ for the CFG from part 1 using the above utilities.
Assume ​parse_B()​, and ​parse_C()​ are given. Any errors should be handled by raising an
exception.

parse_S() {

If (lookahead == ‘x’ || lookahead == ‘y’) {
parse_C();

} elsif (lookahead == ‘a’ || lookahead == ‘b’ || lookahead == ‘c’)) {
parse_B();
parse_S();

} else {
error(“ParseError”);

}
}

14

10 Operational Semantics [6 pts]

1. [3 pts] ​Give a derivation showing that ​let x = let x = 2 in 1 in x​ evaluates to ​1

in the empty environment using the following operational semantics rules:

2. ​[3 pts]​ Given the following rule for a while loop:

What unexpected behavior for ​while​ will the resulting language have?

Evaluates s1 even if b1 is false

15

https://www.codecogs.com/eqnedit.php?latex=%20%5Cdfrac%7B%5Cdfrac%7B%5Cdfrac%7B~%7D%7B%5Cbullet%20~%5C!%20%3B%20%5Ctexttt%7B2%7D%20%5CRightarrow%202%7D%5Cquad%5Cdfrac%7B~%7D%7B%5Ctexttt%7Bx%7D%20%3A%202%20~%5C!%20%3B%20%5Ctexttt%7B1%7D%20%5CRightarrow%201%7D%7D%7B%5Cbullet%20~%5C!%20%3B%20%5Ctexttt%7Blet%20x%20%3D%202%20in%201%7D%20%5CRightarrow%201%7D%20%5Cquad%20%5Cdfrac%7B~%7D%7B%5Ctexttt%7Bx%7D%20%3A%201%20~%5C!%3B%20%5Ctexttt%7Bx%7D%20%5CRightarrow%201%7D%7D%7B%5Cbullet%20~%5C!%20%3B%20%5Ctexttt%7Blet%20x%20%3D%20let%20x%20%3D%202%20in%201%20in%20x%7D%20%5CRightarrow%201%7D%20%0

11 Security [10 pts]
Multiple choice questions [1 point each]

1. What should you do to validate user input?
a. Reject the input with unwanted characters
b. Escape unwanted characters
c. Remove unwanted characters
d. A​ll of the above

2. What is the security benefit of using ​prepared statements​?
a. They ensure user data is parsed as input, not code
b. User data will always be encrypted
c. They make constructing queries easier
d. They prevent server-side errors

3. Consider the following code:
def sanitize_input(userString)

reg = /[-\/\\^$*+?.()@|{}]/

return userString.gsub(reg, '')

end

(Hint: gsub(pattern, replacement) returns a string where all occurrences of pattern are
substituted for the second argument.)

This snippet is an example of validating user input by
a. Whitelisting
b. Blacklisting
c. Escaping characters
d. XSS prevention

4. A stored XSS attack typically must be prevented by
a. The user’s web browser
b. A network administrator
c. The database executing SQL code
d. The web server

16

5. The following is a function used in a very buggy Ruby file transfer application.

1 def get_directory_contents(directory, userName)

2 if !directory.include?(userName) then

3 return nil

4 else

5 return `ls #{directory}` # executes shell command

6 end

7 end

1) [1 pts]​ In THREE WORDS OR FEWER, name a vulnerability that exists in the above
code

Command injection, path traversal

2) [2 pts]​ Give an example of a value for the ​directory ​ parameter that exploits your

given vulnerability:

alice; rm -rf /, alice/../bob

3) [3 pts]​ Write a short code that fixes the vulnerability while maintaining intended
functionality. Indicate at which line you want to insert your code.

Insert before line 2

if directory =~ /;/ then

puts "illegal argument"

exit 1

end

17

