

A History-Based Test Prioritization Technique for
Regression Testing in Resource Constrained

Environments
Jung-Min Kim Adam Porter

Department of Computer Science
University of Maryland, College Park

College Park, MD 20742, USA
+1-301-405-2702

{jmkim,aporter}@cs.umd.edu

ABSTRACT
Regression testing is an expensive and frequently executed
maintenance process used to revalidate modified software. To
improve it, regression test selection (RTS) techniques strive to
lower costs without overly reducing effectiveness by carefully
selecting a subset of the test suite. Under certain conditions, some
can even guarantee that the selected test cases perform no worse
than the original test suite.

But this ignores certain software development realities such as
resource and time constraints that may prevent using RTS
techniques as intended (e.g., regression testing must be done
overnight, but RTS selection returns two days worth of tests). In
practice, testers work around this by prioritizing the test cases and
running only those that fit within existing constraints.
Unfortunately this generally violates key RTS assumptions,
voiding RTS technique guarantees and making regression testing
performance unpredictable.

Despite this, existing prioritization techniques are memoryless,
implicitly assuming that local choices can ensure adequate long
run performance. Instead, we proposed a new technique that bases
prioritization on historical execution data. We conducted an
experiment to assess its effects on the long run performance of
resource constrained regression testing. Our results expose
essential tradeoffs that should be considered when using these
techniques over a series of software releases.

Keywords
Regression testing, test history, prioritization, empirical study

1. INTRODUCTION
After modifying software, developers typically want to know that
unmodified code has not been adversely affected. When such
unmodified code is adversely affected, we say that a regression
error has occurred. Developers often do regression testing to
search for such regression errors. The simplest regression testing
strategy is to rerun all existing test cases. This method is simple to
implement, but can be unnecessarily expensive, especially when

changes affect only a small part of the system.

Consequently, an alternative approach, regression test selection
(RTS) technique, has been proposed (e.g., [1],[3],[6],[7],
[13],[17]). With this approach only a subset of test cases are
selected and rerun. Since, in general, optimal test selection (i.e.,
selecting exactly the fault-revealing test cases) is impossible, the
cost-benefit tradeoffs of RTS techniques are a central concern of
regression testing research and practice.

Our understanding of these techniques, however, is limited. One
reason is that researchers commonly study this problem by finding
or creating base and modified versions of a system and
accompanying test suites. Next, they run test selection algorithms
and compare the size and effectiveness of the selected test suite to
the size and effectiveness of the original test suite (e.g.,
[5],[14],[19],[21]). There are two critical limitations to this
approach: (1) it models regression testing as a one-time activity
rather than as the continuous process it is, and (2) it does not take
real world time and resource constraints into consideration. The
fact is that regression testing is far better modeled as an ordered
sequence of testing sessions, each of whose performance may
depend upon prior testing sessions, and each of which is subject to
time and resource constraints.

From these observations two conjectures flow. One is that there
can be a big difference between what an ideal regression tester
should do and what the actual one can afford to do. For example, a
recent study of ours [9] suggests that the amount of changes made
between testing sessions strongly affects the performance of
different RTS techniques. In fact, one approach, called a safe
technique [17], routinely selected almost all test cases when more
than a few (2 or 3) changes were made to the subject programs. If
this situation arises in practice (like when a system is undergoing
heavy modifications in a time-constrained development
environment), then RTS techniques can’t be used as intended.
Instead the RTS-selected test cases must be reduced even further
so they can be executed under given constraints. This is called test
case prioritization (e.g., [20],[22]).

A second conjecture is that historical test case performance data,
which current RTS and test case prioritization techniques ignore
entirely, might be used to improve long run regression testing
performance. Current RTS and prioritization techniques are
memoryless. They are based only on the analysis of source code
and test case profiling information taken from the current and
immediately preceding software versions. This implicitly assumes
that local information can ensure adequate long run performance.
But prioritization voids RTS technique guarantees, making
regression testing performance unpredictable. Consequently, in

situations where we must resort to test case prioritization, we must
admit the possibility that new techniques not based solely on local
information might have merit.

In this article, we begin exploring these conjectures. In particular,
we evaluate how several RTS techniques perform under severe
time and resource constraints. We also present and evaluate one
simple heuristic that uses historical information to do test case
prioritization. We hypothesize that such heuristics can, over the
long run, reduce the cost and increase the effectiveness of
regression testing in constrained development environments. If
this hypothesis is true, testing practitioners may be able to better
manage and coordinate their integration and regression testing
processes, thereby saving time and money. Therefore we have
designed and implemented an experiment to examine this
hypothesis.

In the remainder of this paper we review the relevant literature,
describe our research hypotheses, present the design and analysis
of our experiment and discuss our conclusions and future research
directions.

2. BACKGROUND
2.1 Regression Testing
Let P be a procedure or program, let P′ be a modified version of P
and let T be a test suite for P. A typical regression test proceeds as
follows:

1. Select T′⊆ T, a set of test cases to execute on P′.

2. Test P′ with T′. Establish P′’s correctness with respect to T′.

3. If necessary, create T″, a set of new functional or structural
test cases for P′.

4. Test P′ with T″, establishing P′’s correctness with respect to
T″.

5. Create T″′, a new test suite and test history for P′, from T, T′,
and T″.

Each of these steps is important. However, we restrict our
attention to step 1 - the regression test selection problem.

2.2 RTS Techniques
Several regression test selection techniques have been
investigated in the literature (see [16]). Here we briefly describe
several techniques and give a representative example of each.

2.2.1 Retest-All Technique
This method reruns all test cases in T. It may be used when test
effectiveness is the utmost priority with little regard for cost.

2.2.2 Random/Ad-Hoc Technique
Testers often select test cases randomly or rely on their prior
knowledge or experience. One such technique is to randomly
select a percentage of test cases from T.

2.2.3 Minimization Technique
This approach (e.g., [4], [7]) aims to select a minimal set of test
cases from T that covers all modified elements of P′. One such
technique randomly selects test cases from T until every program
statement added or modified to create P′ is exercised by at least
one test case.

2.2.4 Safe Technique
These techniques (e.g., [3],[17]) select, under certain conditions,
every test case in T that covers changed program entities in P′.
One such technique selects every test case in T that exercises at
least one statement that was added or modified to create P′, or that
has been deleted from P.

2.3 Leung and White’s Cost Model
Leung and White [10] present a simple model of the costs and
benefits of RTS strategies. Costs are divided into two types: direct
and indirect. Indirect costs include management overhead,
database maintenance, and tool development. Direct costs include
test selection, test execution, and results analysis. Savings are
simply the costs avoided by not running unselected test cases.

Let T′ be the subset of T selected by a certain regression test
selection strategy M for program P, and let |T′| denote the
cardinality of T′. Let s be the average cost per test case of
applying M to P to select T′, and let r be the average cost per test
case of running P on a test case in T and checking its result. Leung
and White argue that for RTS to be cost-effective the inequality:
s|T′| < r(|T| - |T′|) must hold. That is, the analysis required to
select T′ should cost less than running the unselected tests, T – T′.

One limitation of this model is that it overlooks the cost of
undetected faults. Since a primary purpose of testing is to detect
faults, it is important to understand whether, and to what extent,
test selection reduces fault detection effectiveness.

2.4 Previous Empirical Studies
Initially, cost-effectiveness, as defined by Leung and White, was
the central focus of regression test selection studies.

Rosenblum and Weyuker [15] applied their technique to 31
versions of the KornShell and its test suites. Rothermel and
Harrold [17] conducted a similar study with their technique, using
several 100- to 500-line programs and a larger (50 KLOC)
program. These two studies seem to indicate that in some cases,
regression test selection can be cost-effective. Later studies,
therefore, begin to compare different methods.

Rosenblum and Rothermel [14] compared the performance of two
safe techniques in terms of test selection. The study, however, did
not compare other techniques nor consider fault detection.

Graves et al. [5] examined the costs and benefits of several
regression test selection techniques. They examined five
techniques: minimization, safe, dataflow, random, and retest-all,
focusing on their abilities to reduce test suite size and to detect
faults. The researchers drew the following overall conclusions:

Some program analysis based (PAB) techniques (e.g., safe and
dataflow) were effective in detecting faults, but the variance in the
number of test cases selected was quite large.

Equally sized, randomly selected test suites were nearly as
effective as PAB techniques.

Minimization yielded the smallest and the least effective test
suites.

Kim et al. [9] investigated how the number of changes made
between base and subsequent versions affected the performance of
several RTS techniques. They drew the following conclusions:

The percentage of test cases selected by safe RTS techniques
grew to almost 100% when as few as 3 changes were made.

Random selection was surprisingly cheap and effective and its
effectiveness was not greatly affected by change activity.

Minimization selected very few tests and became much more
effective as the number of changes increased.

Profile data on P using T became much less predictive of
execution behavior as the number of changes grew.

Some work has also been done to study test case prioritization.
Wong et al. [22] proposed several techniques: (1) modification-
based test selection then block-coverage-preserving minimization
and (2) modification-based test selection then prioritization based
on the increasing order of additional cost per coverage. They
conducted a case study in which their techniques were applied to a
5000 line program with ten faulty versions. They concluded that
both techniques could be cost-effective alternatives in constrained
environments.

Rothermel et al. [20] also proposed and evaluated a family of
prioritization techniques. Based on several different programs and
test suites, their study suggested that their techniques could
improve fault detection rate (faults/number of test cases run). It
also suggested that more expensive techniques might not be as
cost-effective as other less expensive techniques.

Both of these efforts involved memoryless prioritization
techniques and modeled regression testing as a one-time activity
ignoring possible effects across multiple software releases.
Finally, neither took time or resource constraints into
consideration. This leads us to consider several open questions.

2.5 Open Questions
In this research, we consider three facets of RTS:

The test selection technique,

The application policy - the conditions that trigger regression
testing: periodic execution (daily, weekly, or monthly), or rule-
based execution (after all changes, after changing critical
components, or at final release), and

Process factors such as resource constraints and deadline - when
regression testing is done in constrained environments developers
may have to limit their testing efforts.

Most previous studies have focused on the first facet while
ignoring the second and third. Yet, these latter facets are
important because they may greatly affect the practical costs and
benefits of regression test selection.

We recently studied the second facet [9], showing that it strongly
affects RTS costs and benefits. This paper continues that line of
research, investigating how process factors such as time and
resource constraints affect the regression testing process. In
particular, we focus on test case prioritization techniques. Our
goal is to see whether basing test case prioritization on historical
data affects the long-term performance of regression testing done
in constrained environments.

3. EVOLUTION MODELS
Previous studies model regression testing as a set of unordered,
independent testing sessions. Regression testing is far better
modeled as an ordered sequence of testing sessions, each of which

may be dependent on the previous testing sessions. Ignoring this
distinctions risks:

Losing important information. For example, minimization
techniques focus testing on parts of the program that have changed
since the last testing session. So it is possible that a change, once
tested, is never re-tested. If that change contains a fault, we have
only one chance to find it. Unless we consider interactions
between testing sessions, we won’t uncover those kinds of
situations.

Misinterpreting results. Our previous research shows that
regression testing frequency affects performance. Existing studies
haven’t considered this issue, which severely limits the
applicability of their results.

Missing improvement opportunities. Regression testing generates
huge amounts of data that are currently ignored. Analysis of this
data might reveal dependencies that can be exploited. For
example, such analysis might uncover groups of test cases that
perform similarly (have correlated pass/fail behavior), allowing
test suites to be pruned.

Thus we believe that there is an overwhelming need for more
rigorous and more realistic regression testing models. In this
paper, we use two different models of regression testing.

3.1 Model 1
Here we model an evolving software system: P0,P1,…Pn-1,Pn,
where P0 is the base version, and Pi+1 is Pi with a single change
applied. With our available subject programs, each single change
is faulty. Our regression test process starts with versions P0 and
P1, then P1 and P2. The process continues until all the faults
inserted are detected, (but no new changes are added after Pn.)

3.2 Model 2
Here we model a fault removal process: P0,P1,…Pn-1,Pn, where P0
contains all existing faults, Pi+1 is the subsequent version of Pi
after applying some RTS technique and then removing any
identified fault(s). This process continues until all known faults
are detected.

4. TEST CASE PRIORITIZATION
Until now researchers have assumed that developers could, if
necessary, rerun all test cases in a single testing sessions. As we
have said, this is not always possible. For example, if we want to
regression test every night, then compilation and testing time must
take less than, say 8-10 hours. Also, regression testing of
embedded systems is often done using sophisticated simulation
environments. Such environments are expensive and, as they are
usually shared by multiple projects, access to them is very limited.
Current RTS techniques are oblivious to these constraints and,
thus, may select more test cases than can be run in a given testing
session. In such cases we must find a way to further reduce the
selected test suite.

At a high level, test case prioritization works as follows: (1) apply
an RTS technique to test suite T, yielding T′, (2) assign a selection
probability to each test case in T′, (3) draw a test case from T′
using the probabilities assigned in step 2, and run it, and (4) repeat
step 3 until testing time is exhausted.

The key question is how to set/assign the selection probabilities.
Our idea is to use information about each test case’s prior

performance to
used in the curr
taken from st
moving avera
smoothing)[2].

We define the s
to be Ptc,t(Htc, α
{h1, h2, …, ht
smoothing cons
(higher values e
emphasize olde
as probabilities.

 P0 = h

 Pk = α

Different test
prioritizations.
based upon eac
and/or the progr

Based on test
which test case
takes the value
higher selection
recently and lo
cycle through a

Based on demo
testing session
Otherwise it tak
assign high sele
faults recently a
should be to li
reveal faults. A
related to unsta
until that code s

The third appro
Program entitie

use pairs, etc. Without loss of generality, let’s use functions as the
program entity of interest. Our goal is to give higher priority to
test cases that cover functions infrequently covered in past testing
sessions. Thus, for every testing session, i, we execute the
following two steps. First, we assign a weight to each function
such that infrequently covered functions have much higher
weights than frequently covered ones. Specifically, we calculate
the number of test cases that covered each function. Then we
weight each function such that its weight has an inverse
exponential relationship to the number of test cases that covered it
and such that the total weights over all functions sums to 1.
Second, we define the test history, Htc. Specifically, hi is the sum
of the weights for all functions that tc covered. If we use high α-
value, we will assign high selection probabilities to test cases that
cover functions not recently exercised. The net effect would be to
limit the possibility that any particular function goes unexercised
for ling periods of time.

4.1 Constraint-aware Prioritization Methods
For this article we have implemented a prioritization method
based on test execution history and we compare it against two

Pr
og

ra
m

N

am
e

replace

printtokens

printtokens2

schedule

schedule2

tcas

totinfo

space
Table 1: Experimental Subjects

Fu
nc

tio
ns

LO
C

of

V

er
si

on
s

Te
st

 P
oo

l
Si

ze

A
vg

. T
es

t
Su

ite
 S

iz
e

21 516 15 5542 226

18 402 5 4130 128

19 483 8 4113 65

18 299 8 2650 107

16 297 8 2710 113

9 138 18 1600 84

7 346 18 1052 92

136 6218 30 5179 80

 increase or decrease the likelihood that it will be
ent testing session. Our approach is based on ideas
atistical quality control (exponential weighted
ge) and statistical forecasting (exponential

election probabilities of each test case tc at time t
), where Htc is a set of t, time-ordered observations
} drawn from previous runs of tc, and α is a
tant used to weight individual history observations
mphasize recent observations, while lower values

r ones). These values are then normalized and used
 The general form of P is:

1

hk + (1 - α)Pk-1, 0 ≤ α ≤ 1, k ≥ 1

histories (definitions of Htc) will yield different
For example, we are investigating test histories
h test case’s execution history, its fault detection,
am entities it covers.

execution history. For every testing session i, in
 tc is executed, hi takes the value 0. Otherwise it
 1. If we use a low value of α this will assign
 probabilities to test cases that have not been run
wer ones to those that have. The net effect is to
ll test cases over multiple testing sessions.

nstrated fault detection effectiveness. For every
i, in which test case tc passed, hi takes the value 0.
es the value 1. If we use a high α-value, we will
ction probabilities to test cases that have revealed
nd low weights to those that have not. One effect

mit the running of test cases that rarely, if ever,
nother should be that test cases whose failures are
ble sections of code would continue to be selected
tabilizes.

ach is based on the coverage of program entities.
s might include statements, paths, functions, def-

controls:

1. Lru(n): This approach uses the test execution history
described in the previous section, with α set as close to 0 as
possible (actual value is machine dependent). Additionally
we assume that time constraints allow us to execute only n%
of the original test suite. Therefore, lru(n) chooses the n% of
the test suite with the highest selection probabilities. One of
the virtues of this method is that it cycles through all test
cases over multiple testing sessions.

2. Safe-random(n): As a control we examined another approach
called safe-random(n). This approach starts by using a safe
RTS technique. If the number of test cases selected by the
safe technique is greater than the limit (n% of original test
suite), then, from this set, we select the appropriate number
of test cases on a random basis. The rest are timestamped and
saved in a repository. If, instead, the number of test cases
selected by the RTS technique is fewer than the limit, then
we use the entire selection, and add test cases randomly
selected from the repository.

3. Random(n): Randomly select n% of the original test suite.

5. THE EXPERIMENT
5.1 Hypotheses
We hypothesize that history-based test prioritization methods help
to reduce the cost and to increase the effectiveness of regression
testing process in the long run.

5.2 Measures
To investigate our hypothesis we need to measure the costs and
benefits of each test selection and prioritization technique. To do
this we constructed two models: one for calculating savings in
terms of total efforts, and another for calculating costs in terms of
age of fault. We restrict our attention to these costs and benefits,
but there are many other costs and benefits these models do not
capture. Some other costs and benefits are mentioned in Section 0.

5.2.1 Measuring Total Effort
Reducing test suite size saves time because we run fewer test

cases, examine fewer test results, and manage less test data. In our
experiment we used each RTS technique until all faults were
detected or we reached 50 testing sessions. We then summed the
number of test cases run across all testing sessions. This allowed
us to measure the total effort expended across all sessions.

This approach makes several simplifying assumptions. It assumes
that the cost of all test cases is uniform and all the constituent
costs can be expressed in equivalent units (e.g., we don’t
differentiate between CPU time and human effort). It also does
not measure the savings that may result from reusing analyses
done during early testing sessions during later testing sessions.

5.2.2 Measuring Fault Age
We considered two types of costs. The first comes from the
analysis needed to select test cases. The second may occur when
the selected test cases do not detect faults that could have been
detected by the original test set. Our cost model focuses on the
latter cost, assuming that regression test selection is cost-effective
under the definition given by Leung and White (see Section 2.3).

To determine whether a given test selection approach reduces
fault detection effectiveness we need to know which test cases
reveal which faults in P′. Because this information is difficult to
obtain, we estimate it in the following way [9]. At the end of each
testing session we determine which faults were identified.

In order for a test case t to detect a fault f, three conditions must
be satisfied: (1) t must traverse the program point containing f
in P′, (2) immediately after t traverses the program point
containing f in P′, key program state must be perturbed (3) the
final program state of P′ for test case t must be different from
that of P run on test case t.

If a given fault was not identified we increment a counter
associated with that fault. Testing continues until either all the
faults have been detected and removed or until 50 testing sessions
have been conducted. The value of these counters at the end of the
testing process is called the fault age of that fault.

5.3 Experimental Instrumentation
5.3.1 Programs
For our study, we obtained eight C programs with a number of
modified versions and test suites for each program. The subjects
come from two sources. One is a group of seven C programs
collected and constructed initially by Hutchins et al. [8] for use in
experiments with dataflow- and control-flow-based test adequacy
criteria. The other, Space, is an interpreter for an array definition
language (ADL) used within a large aerospace application. We
slightly modified some of the programs and versions in order to
use them with our tools. Table 1 describes the subjects, showing
the number of functions, lines of code, distinct versions, test pool
size, and the size of the average test suite. We describe these and
other data in the following paragraphs.

Siemens Programs: Seven of our subject programs come from a
previous experiment done by Hutchins et al. [8]. These programs
are written in C, and range in size from 7 to 21 functions and from
138 to 516 lines of code.

For each of these programs Hutchins et al. created a pool of black-
box test cases [8] using the category partition method and
Siemens Test Specification Language tool [12]. They then
augmented this set with manually created white-box test cases to

ensure that each exercisable statement, edge, and definition-use
pair in the base program or its control flow graph was exercised
by at least 30 test cases.

Hutchins et al. also created faulty versions of each program by
modifying code in the base version; in most cases they modified a
single line of code, and in a few cases they modified between 2
and 5 lines of code. Their goal was to introduce faults that were as
“realistic” as possible, based on their experience with real
programs.

Ten people performed the fault seeding, working “mostly without
knowledge of each other’s work” ([8], p. 196). To obtain
meaningful results, the researchers retained only faults that were
detectable by at least 3 and at most 350 test cases in the associated
test pool.

Space Program: The Space system, written in C, is an interpreter
for an array definition language (ADL). The program reads a file
that contains ADL statements, and checks the contents of the file
for adherence to the ADL grammar, and to specific consistency
rules. If the ADL file is correct, Space outputs an array data file
containing a list of array elements, positions, and excitations;
otherwise the program outputs error messages.

Space has 30 versions, each containing a single fault that was
discovered either during the program’s development or later by
the authors of this study.

The test pool was constructed in two phases. First we obtained a
pool of randomly generated test cases created by Vokolos and
Frankl [21]. Then we added new test cases until every
dynamically executable edge1 in the program’s control flow graph
was exercised by at least 30 test cases.

5.3.2 Versions
In this experiment program versions needed to contain several
faults at the same time. To do this, we identified “mutually
independent” faults. That is faults that could be automatically
merged into the base program without interfering with each other.
For example, if fault f1 is caused by changing a single line and
fault f2 is caused by deleting the same line, then these
modifications interfere with each other. Table 1 shows the number
of mutually independent versions for each subject program,
ranging from 5 to 30.

5.3.3 Test Suites
We used test pools to obtain augmented edge-coverage-adequate
test suites for each program. To do this, we took the test pool for
the base program and its associated test coverage information and
used it to generate 1000 edge-coverage-adequate test suites for
each base program. Then we augmented each test suite, making
sure that the test suite contained at least one fault revealing test
case for each fault. This augmentation prevents us from confusing
an inadequate test quite with an ineffective test selection and
prioritization approach.

5.3.4 Test Selection Techniques and Tools
To perform the experiments, we needed implementations or
simulations of regression test selection tools. For the safe

1 Excluding those edges that can be exercised only by the
occurrence of malloc faults.

technique we used an implementation of Rothermel and Harrold’s
DejaVu tool [18]. For minimization, we created a tool that selects
a minimal test suite T′ such that T′ has at least one test case that
covers every node in the control flow graph for P that was
changed between P and P′. For the random(n) technique we
created a tool that randomly selects n% of the test cases from the
suite. We implemented our own lru(n) technique. To do this we
needed to save the test history from each regression testing
session. We implemented the safe-random(n) technique by first
calling the safe technique. This returns a set of test cases that we
call the selected test cases. Our goal is to run x test cases, where x
is equal to n% of the original test suite. If there are more than x
test cases in the selected test suite, then we randomly select x of
them and place the rest into a repository. Otherwise, we use all
selected test cases and then add some more from the repository
until we have selected a total of x test cases. Retest-all does not
require any tools.

5.4 Experimental Design
5.4.1 Variables
The experiment manipulated three independent variables:

1. The subject program (there are 8 programs, each with a
variety of modified versions).

2. The test selection technique (one of safe, minimization,
retest-all, random(5), random(10), random(20), lru(5),
lru(10), lru(20), safe-random(5), safe-random(10), and safe-
random(20)).

3. Two different evolution models (see Section 3).

For each combination of program and technique we applied 100
augmented edge-coverage-adequate test suites. On each test run,
with base program P, modified version P′, technique M, and test
suite T, we measured:

1. The number of test cases in the selected test suite T′.

2. The number and identity of faults revealed by T and T′.

From these data points we computed two dependent variables:

1. Total testing effort.

2. Average fault age.

The experiment used a full-factorial design with 100 repeated
measures. That is, for each subject program we selected 100 test
suites from the test suite universe. For each test suite, we then
applied each test selection technique and measured the size and
fault detection effectiveness of the selected test suites. In total,
the experiment required us to run nearly 4,000,000 test cases.

5.4.2 Threats to Validity
In this section we consider some of the potential threats to the
validity of our study.

Threats to internal validity are influences that can affect the
dependent variables without the researcher’s knowledge. They
can thus affect any supposition of a causal relationship between
the independent and dependent variables. In our study, our
greatest concern is that instrumentation effects can bias our
results. Instrumentation effects may be caused by differences in
the experimental instruments (in this case the test process inputs:
the code to be tested, the locality of the program changes, the

composition of the test suite, or the composition of the series of
versions). One related issue is that all modifications to our subject
programs are considered faults. In reality, some modifications will
not result in faults. In this study we used augmented edge-
coverage-adequate test suites. However, at this time we do not
control for the structure of the subject programs, or for the locality
of program changes. To limit problems related to this, we run our
test selection algorithm on each suite and each subject program.

Threats to external validity are conditions that limit our ability to
generalize the results of our experiment to industrial practice. One
threat to external validity concerns the representativeness of the
subject programs. The subject programs are of small and medium
size, and larger programs may be subject to different cost-benefit
tradeoffs. Also, the Siemens programs contain seeded faults
although every effort to make them as realistic as possible was
taken. Another issue is that these faults are roughly the same
“size”. Therefore, a program with, say, ten faults has been
changed more than a program with one fault. Industrial programs
have much more complex error patterns. Another threat to
external validity for this study is process representativeness. This
arises when the testing process we used is not representative of
industrial ones. This may endanger our results since the test suites
we utilized may be more or less comprehensive than those that
could appear in practice. Also, the modifications we make do not
change the program specification. In practice, this does happen.
We have tried to allow for different kinds of evolution by using
two different software evolution models. These threats can only be
addressed through additional studies using a greater range of
software artifacts.

6. DATA AND ANALYSIS
In this paper, we use box plots (e.g., Figure-1) to represent data
distributions. In these plots, a box represents each distribution.
The box’s width spans the central 50% of the data and its left and
right ends mark the upper and lower quartiles. The bold dot within
the box denotes the median. The dashed horizontal lines attached
to the box indicate the tails of the distribution; they extend to the
standard range of the data (1.5 times the inter-quartile range). All
other detached points are “outliers”.

6.1 Model 1
Model-1 involves a correct base version with testing after each
new change.

6.1.1 Fault Age
Figure-1 is a box plot showing the distribution of fault age for
each RTS technique under Model-1. Table-2 shows the median,
average and standard deviation of fault age for each RTS
technique under Model-1.

As each test suite is augmented edge-coverage-adequate, the
retest-all and safe techniques immediately detect each fault in
each version. The other techniques sometimes missed faults,
which passed into subsequent versions, raising average fault age.

Minimization had the highest median and average fault age and
the largest standard deviation.

One interesting observations is that the standard deviation of fault
age for the lru(n) techniques is less that that for the other
techniques. This is because the lru(n) techniques found all faults
well before the 50 testing session cutoff. In contrast, the
minimization, safe-random(n) and random(n) techniques allowed

faults to go undetected over 50 testing sessions. Moreover, since
the cutoff is simply an artifact of the experiment, it is likely that
the faults would persist even longer in practice.

We now compare the prioritization methods in more detail.

LRU vs. Random. For equal values of n, the median fault age of
random(n) is slightly lower2 than that of lru(n). The mean and
standard deviation, however, are lower for lru(n). Note that the
“outliers” for random(5) and random(10) reach the cutoff value of
50, implying that these statistics might be higher in practice.

Random vs. Safe-Random. For equal values of n, the fault age
for safe-random(n) had a lower median, average, and standard
deviation random(n) did. Both techniques, however, have outliers
at 50 testing sessions, indicating that in some cases faults went
completely undiscovered.

LRU vs. Safe-Random. For equal values of n, safe-random(n)
performed better than lru(n) in terms of median and average fault
age. However, the standard deviation is lower for the lru(n)
technique. Also, the difference in standard deviation increases as
n decreases.

6.1.2 Total Effort
Figure-2 contains a box plot showing the distribution of total
effort across different RTS techniques.

Total effort is defined as 100 times the proportion of the total
number of test cases executed by a given technique to the total
number of test cases executed by retest all. For example, the
Space program has 30 versions and its average test suite has 80
test cases. Retest-all detects all faults after 30 regression test
sessions, using 2400 test cases in total. Let’s assume that a given

2 We say that one method performed better (worse) than another
only if such a statement is supported by a t or wilcoxon test with p
< 0.5. Qualifiers like slightly or substantially are subjective.

experimental run applied lru(5) to the Space program, involved 4
test cases per testing session, and required 40 sessions to identify
all faults. Here the total effort would be 5 ― 100 times 120 (the
total number of test cases executed across all runs of lru(5))
divided by 240 (the total executed by retest-all). Table-3 shows
the median and average total efforts for each different RTS
techniques for Model-1.

We draw several observations from this data. The total effort for
the safe technique is less than that of retest-all, although the
variance (not shown) is quite large. At least for these programs
this is consistent with our earlier observation that safe techniques
may be difficult to use in constrained environments.

We also see that the total effort of minimization is very low
(median 5.1). The tradeoff, as we saw in the previous section, is
that it takes longer to find faults this way. (median fault age 7).

Finally, all methods besides retest-all required less total effort
than the safe technique.

We now compare the prioritization methods in more detail.

LRU vs. Random. For equal values of n, lru(n) required less total
effort than random(n) both in terms of the median and the
average.

Random vs. Safe-Random. For equal values of n, safe-
random(n) required less total effort than random(n) both in terms
of the median and the average.

LRU vs. Safe-Random. For equal values of n, safe-random(n)
performed slightly better than lru(n) in terms of median and
average total efforts.

6.1.3 Cost-Benefit Tradeoffs
Safe. The operating assumption in this paper is that we are in a
constrained environment that prevents us from using unmodified
safe techniques (or retest-all). In this study, we saw that the
average safe test suite was roughly 60% as large as the original
test suite (although it varied considerably). These data are

Table-2: Median, Average and Standard Deviation of
Fault Age by RTS Technique (Model-1).

 median average std.
dev.

safe 1 1 0

retest-all 1 1 0

min 7 11.0 13.0

lru(5) 6 7.4 6.3

lru(10) 4 5.2 4.9

lru(20) 2 3.5 3.8

rand(5) 5 8.7 10.0

rand(10) 3 5.8 6.8

rand(20) 2 3.7 4.5

safe-rand(5) 3 6.5 9.1

safe-rand(10) 2 3.9 5.4

safe-rand(20) 1 2.5 3.8

Figure-1: Fault Age by RTS Technique (Model-1).

consistent with our conjecture that in some cases unmodified safe
techniques may be inappropriate (although this is obviously
situation dependent). It is also interesting to note that all other
techniques (besides retest-all) required much less total effort than
the safe technique at the cost of delaying fault detection for a few
testing sessions.

Minimization. Minimization presents an interesting alternative. It
had the smallest total effort (≈ 6% on the average), but had the
highest fault age (11 regression test sessions on the average).
Therefore it might be cost-effective when testing sessions must be
short and when the cost of failures is low. We should also note
that with minimization can’t guarantee the maximum number of
test cases selected.

Random(n). The random(n) technique is arguably dominated by
the safe-random(n) and lru(n) methods. Its average fault age is
higher than theirs and has a much larger standard deviation. Also,
its total effort is considerably higher than theirs.

Safe-random(n). On the average, this technique detected faults
earlier and with less effort than both lru(n) and random(n). One
drawback is that the standard deviation of fault age is
substantially higher than that of lru(n). This appears to be because
safe-random(n), like random(n), allowed some faults to go
entirely undetected. The effect of this in practice needs to be
studied further. This technique might be cost-effective when the
cost of failures is not too high.

Lru(n). This approach appeared to be competitive with others in
terms of fault age and total effort, but was not the best performer
under either measure. It did, however, have the lowest standard
deviation for fault age and was the only technique that detected all
faults before the experimental cutoff of 50 testing sessions. We
believe that this property is quite interesting and deserves further
study.

6.2 Model 2
In Model-2 P0 contains all existing faults. After each regression

te
re
fa
g
(a
s
th

6
F
b
a
te

A
h
b
te
h
to
fa

A
w
d
w

W
te
e
th
d
E
p

W
m
a

L
lo
d

Table-3: Median and Average Total Effort by
RTS Technique under Model-1.

 median average

safe 61.3 60.1

retest-all 100 100

min 5.1 5.7

lru(5) 12.1 12.7

lru(10) 14.3 16.2

lru(20) 25.0 26.5

rand(5) 15.6 17.7

rand(10) 20.4 23.2

rand(20) 28.3 31.4

safe-rand(5) 9.9 11.4

safe-rand(10) 13.6 15.8

safe-rand(20) 22.2 25.0

Figure-2: Distribution of Total Effort (Model-1).
sting session any newly identified faults are removed and
gression testing is done once more. This continues until all
ults are detected or 50 testing sessions have been conducted. In

eneral we see that many faults are detected early in the process
fter 1 or 2 testing sessions), but that the remaining faults are

ometimes quite persistent (many runs were stopped only when
ey hit the cutoff of 50 testing sessions).

.2.1 Fault Age
igure-3 contains a box plot showing the distribution of fault age
y RTS technique under Model-2. Table-4 shows the median,
verage, and standard deviation of fault age for each RTS
chnique.

ll techniques had a low median fault age, but a substantially
igher average fault age with a large standard deviation. This is
ecause the majority of faults were detected during the initial
sting sessions, while the remaining ones were sometimes quite
ard to detect. Even retest-all and the safe technique were not able
 immediately detect every fault (i.e., unlike in Model-1, some
ults have age greater than 1).

lthough for minimization the median fault age was 2, the average
as roughly 6 with a standard deviation of about 12. Again, this is
ue to the fact many testing runs reached the 50-session cutoff
ithout detecting all the faults.

e had expected that lru(5) would need no more than 20 or so
sting sessions to detect all defects since that would have been

nough to execute each test case at least once. But as shown by
e outliers in Figure-3 some faults took over 30 test sessions to

etect. Nevertheless, no lru(n) technique reached the cutoff of 50.
xcept for random(20) all other techniques did reach the cutoff
oint without detecting all faults.

e now compare the prioritization methods in more detail. The
edian fault ages are nearly the same, so we will focus on the

verage and standard deviation.

RU vs. Random: For equal values of n, lru(n) has a slightly
wer average fault age than random(n) does. Its standard

eviation is also lower. An important difference between them,

however, is that lru(n) detected every fault, while random(n) did
not (i.e., random(5) and random(10) sometimes ran to the cutoff
point of 50 testing sessions).

Random vs. Safe-Random: For equal values of n, safe-
random(n) performed better than random(n) in terms of average
fault age. Its standard deviation is also smaller.

LRU vs. Safe-Random: For equal values of n, the average fault
age of lru(n) is nearly identical to that of safe-random(n). The
standard deviation of lru(n) is smaller, however.

6.2.2 Total Effort
Figure-4 contains a box plot showing the distribution of total
effort for each RTS technique. Table-5 shows the median,
average, and standard deviation.

NOTE: Our measure of total effort under Model-2 is different
from that of Model-1. Here we normalize by the size of the
original test suite, not by the total effort expended by retest-all.
We did this because behavior of retest-all varies considerably
from program to program.

The total effort required by the safe technique (117% of original
test suite size) is less than that required by retest-all (200% of
original test suite size).

Here again, minimization required the least total effort (median
value 51.7% of original test suite size or about 25% of effort
required for retest-all). Yet, in contrast to Model-1, here
random(n) required more effort than the safe method.

We now compare the prioritization methods in detail.

LRU vs. Random: For equal values of n, lru(n) requires much
less effort than random(n) in terms of the median and average. In
addition, the variance of lru(n) is much smaller.

R
ra
m

L
pe
di
th

6
W
R
di

Sa
be
w
te
di
ef

M
ef
M
m
te
ca

R
do
ho
ot

Sa
le
lim
m
th

L
m

Figure-3: Distribution of Fault Age (Model-2).
andom vs. Safe-Random: For equal values of n, safe-
ndom(n) requires less effort than random(n) in terms of the
edian and the average.
Table-4: Median, Average and Standard Deviation
Fault Age by RTS Technique (Model-2).

 median average std. dev.

safe 1 1.2 0.4

retest-all 1 1.2 0.4

min 2 6.1 11.8

lru(5) 1 4.5 5.6

lru(10) 1 2.7 2.8

lru(20) 1 1.8 1.5

rand(5) 2 5.9 9.0

rand(10) 1 3.5 5.3

rand(20) 1 2.1 2.5

safe-rand(5) 2 4.7 7.1

safe-rand(10) 1 2.7 3.8

safe-rand(20) 1 1.8 1.8
RU vs. Safe-Random: For equal values of n, safe-random(n)
rformed better than lru(n) in terms of median, but there is no
fference in the average total effort. On the other hand, we see
at the variance is much higher for safe-random(n).

.2.3 Cost-Benefit Tradeoffs
hen we consider both the costs and the benefits of the different

TS techniques for Model-2, we find both similarities and
fferences with Model-1.

fe. As with Model-1 we assume that the safe technique cannot
 used in a constrained environment. Again, the data is consistent
ith the assumption even though this specific point at which the
chnique exceeds its constraints will be situation-dependent. One
fference is that under Model-2 the safe technique required less
fort than the random(n) methods did.

inimization. The minimization expended the smallest total
fort and had the greatest average fault age. In contrast with
odel-1, however, the difference in total effort between
inimization and other techniques is less pronounced. This
chnique might be cost-effective when the cost of executing test
ses is very high.

andom(n). As with Model-1, random(n), appears to be
minated by safe-random(n) and lru(n). Under this model,
wever, the total effort is substantially higher than that of the
her methods.

fe-random(n). Safe-random(n) detects fault earlier and with
ss effort than random(n), but behaves similarly to lru(n). One

itation is that allowed faults to go undetected. This technique
ight be cost-effective when the cost of test execution is high and
e cost of failures is low.

ru(n). From the perspective of fault age and total effort, lru(n)
ay be more attractive under Model-2 than under Model-1.

Nevertheless, in both cases it detected all faults within the cutoff
of 50 testing sessions. With the exception of rand(20), no other
prioritization techniques did that. Thus, lru(n) might be most
especially cost-effective when the cost of failures is high.

7. CONCLUDING REMARKS
We have presented the initial results of an empirical study on
using historical test execution data to prioritize test case selection
in a constrained regression testing process. We investigated some
of the costs and benefits of several RTS techniques under two
different software evolution models. Our results highlight several
differences among RTS and test case prioritization techniques,
illustrate tradeoffs, and provide directions for further research.

As we discussed earlier, this study has several limits to its
validity. Particularly, several threats to external validity limit our
ability to generalize our results. These threats can only be
addressed by extensive experiments with a wider variety of
programs, test suites, series of versions, type of faults, etc.
Keeping this in mind, we tentatively draw several conclusions.

Our experimental results strongly support our first conjecture that
regression testing may have to done differently in constrained
environments than non-constrained ones. They also support our
second conjecture – that historical information may be useful in
reducing costs and increasing the effectiveness of long-running
regression testing processes.

As has been shown in other studies, safe techniques select widely
varying and sometimes large numbers of test cases. In a
constrained environment, such an approach may be simply
infeasible. In other environments, of course, it may be a very
powerful tool. Clearly, the decision to use or forego this technique
must be made on a case-by-case basis. One interesting
observation, however, was that under Model-2, the total effort for
the safe technique was less than that of the random(n) method.

Minimization chose the smallest test suites, but was the weakest at

detecting all faults. Nevertheless, it did detect many of the faults
at low cost. For example, under Model-2 it detected most faults in
one or two sessions while running only a handful of test cases.
Thus, although it will miss some faults, it may be cost-effective
for some part of the regression testing process (possibly in
conjunction with some other technique). We should note however,
that minimization, like safe and safe-random(n), have substantial
analysis costs that were not considered in this study.

Experience tells us that random techniques are cheap and
reasonably effective, but it also tells us that their effectiveness
increases considerably as n increases. This study, however,
suggests that for severely constrained environments (i.e., at low
settings of n) other approaches may be more attractive.

Under certain conditions safe methods guarantee that the selected
test suite detect any defects that retest-all would have. As we see
in this study, prioritization nullifies this guarantee. In fact, we saw
that safe-random(n) had fault ages greater than 1 and that some
faults escaped detection completely. Still its average fault age and
total effort were better than those of other methods under Model-
1. Under Model-2, only lru(n) did as well. As with minimization,
analysis costs are high for safe-random(n), but have not been
factored into this study.

In terms of both fault age and total effort, lru(n) was competitive
with other prioritization methods. One particularly interesting
result was that the standard deviation of fault age when using
lru(n) was less than that obtained from other methods. This
appears to be because lru(n) always detected all faults long before
the cutoff point. We assume that this is because lru(n) effectively
cycles through the test suite eventually using each test case. We’re
obviously intrigued by this result and believe that it supports our
conjecture that historical information may be useful in test case
prioritization.

We are continuing this family of experiments. We plan to (1)
improve our cost models to account for factors such as the
overhead of each individual testing session and source code
analysis costs, (2) extend our experiment to larger programs with
a wider variety of naturally-occurring faults, (3) implement and

Table-5: Median and Average Total Efforts by
RTS Technique (Model-2) as a percentage of

the Original Test Suite Size

 median average

safe 117.2 119.6

retest-all 200 165.8

min 51.7 56.4

lru(5) 95.4 85.0

lru(10) 98.5 84.2

lru(20) 100 92.7

rand(5) 132.1 145.3

rand(10) 132.3 156.1

rand(20) 123.9 149.4

safe-rand(5) 62.6 83.3

safe-rand(10) 59.0 88.6

safe-rand(20) 77.1 96.0

Figure-4: Distribution of Total Efforts for Model-2

evaluate other history-based prioritization techniques such as
those described in Section 4, and (4) compare these methods to
other non-history-based methods described in the literature.

8. ACKNOWLEDGEMENTS
This work was supported in part by grants from National Science
Foundation Award CCR-0098158 to University of Maryland, and
by National Science Foundation Award CCR-9707792 to
University of Maryland. Siemens Laboratories supplied some of
the subject programs. Alberto Pasquini, Phyllis Frankl, and Filip
Vokolos provided the Space program and many of its test cases.

9. REFERENCES
[1] H. Agrawal, J. Horgan, E. Krauser, and S. London.

Incremental regression testing. In Proc. of the Conf. on
Softw. Maint., pages 348-357, Sept. 1993.

[2] R.G. Brown, Statistical Forecasting for Inventory Control.
New York: McGraw-Hill, 1959.

[3] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. In Proc. of the 16th Int’l. Conf.
on Softw. Eng., pages 211-222, May 1994.

[4] K. Fischer, F. Raji, and A. Chruscicki. A methodology for
retesting modified software. In Proc. of Nat’l. Tele. Conf. B-
6-3, pages 1-6, Nov. 1981.

[5] T. Graves, M.J. Harrold, J.-M. Kim, A. Porter, and G.
Rothermel. An empirical study of regression test selection
techniques. In Proc. of the 20th Int’l. Conf. on Softw. Eng.,
pages 188-197, Apr. 1998.

[6] M.J. Harrold and M.L. Soffa. An incremental approach to
unit testing during maintenance. In Proc. of the Conf. on
Softw. Maint., pages 362-367, Oct. 1988.

[7] J. Hartmann and D. Robson. Techniques for selective
revalidation. IEEE Software, 16(1):31-38, Jan. 1990.

[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of the 16th
Int’l Conf. on Softw. Eng., pages191-200, May 1994.

[9] J.-M. Kim, A. Porter, and G. Rothermel. An empirical study
of regression test application frequency. In Proc. of the 22nd
Int’l. Conf. on Softw. Eng., pages 126-135, Jun. 2000.

[10] H.K.N. Leung and L.J. White. Insights into regression

testing. In Proc. of Int’l. Conf. on Softw. Maint., pages 60-69,
Oct. 1989.

[11] H.K.N. Leung and L.J. White. A cost model to compare
regression test strategies. In Proc. of Int’l. Conf. on Softw.
Maint., pages 201-208, Oct. 1991.

[12] T. Ostrand and M. Balcer. The category-partition method for
specifying and generating functional tests. Commun. ACM,
31(6), June 1988.

[13] T. Ostrand and E. Weyuker. Using dataflow analysis for
regression testing. In Sixth Annual Pacific Northwest Softw.
Qual. Conf., pages 233-247, Sept. 1988.

[14] D. Rosenblum and G. Rothermel. A comparative study of
regression test selection techniques. In Proc. of the 2nd Int’l.
Workshop on Empir. Studies of Softw. Maint., Oct. 1997.

[15] D. Rosenblum and E.J. Weyuker. Lessons learned from a
regression testing case study. Empir. Softw. Eng. Journal,
2(2), 1997.

[16] G. Rothermel and M.J. Harrold. Analyzing regression test
selection techniques. IEEE Trans. on Softw. Eng., 22(8):529-
551, Aug. 1996.

[17] G. Rothermel and M.J. Harrold. A safe, efficient regression
test selection technique. ACM Trans. on Softw. Eng. and
Methodology, 6(2):173-210, Apr. 1997.

[18] G. Rothermel and M.J. Harrold. Aristotle: A system for
research and development of program analysis based tools.
Technical Report OSU-CISRC-3/97-TR17, The Ohio State
University, Mar. 1997.

[19] G. Rothermel and M.J. Harrold. Empirical studies of a safe
regression test selection technique, IEEE Trans. on Softw.
Eng., 25(6), pages 401-419, June 1998.

[20] G. Rothermel, R. Untch, C. Chu and M.J. Harrold. Test case
prioritization: an empirical study. In Proc. of Int’l. Conf. on
Softw. Maint., pages 179-188, Aug. 1999.

[21] F.I. Vokolos and P.G. Frankl. Empirical evaluation of the
textual differencing regression testing technique. In Proc. of
the Int'l. Conf. on Softw. Maint., pages 44-53, Nov. 1998.

[22] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In Proc. of
the 8th Int’l. Symp. on Softw. Rel. Engr., pages 230-238, Nov.
1997.

	INTRODUCTION
	BACKGROUND
	Regression Testing
	RTS Techniques
	Retest-All Technique
	Random/Ad-Hoc Technique
	Minimization Technique
	Safe Technique

	Leung and White’s Cost Model
	Previous Empirical Studies
	Open Questions

	EVOLUTION MODELS
	Model 1
	Model 2

	TEST CASE PRIORITIZATION
	Constraint-aware Prioritization Methods

	THE EXPERIMENT
	Hypotheses
	Measures
	Measuring Total Effort
	Measuring Fault Age

	Experimental Instrumentation
	Programs
	Versions
	Test Suites
	Test Selection Techniques and Tools

	Experimental Design
	Variables
	Threats to Validity

	DATA AND ANALYSIS
	Model 1
	Fault Age
	Total Effort
	Cost-Benefit Tradeoffs

	Model 2
	Fault Age
	Total Effort
	Cost-Benefit Tradeoffs

	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

