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ABSTRACT 

Regression testing is an expensive maintenance process used to revalidate modified software. 
Regression test selection (RTS) techniques attempt to reduce the cost of regression testing by 
selecting and running a subset of an existing test suite. Many RTS techniques have been proposed 
in the research literature, and studies have shown that they can produce savings.  Other studies 
have shown that the cost-effectiveness of RTS techniques can vary widely with various 
characteristics of the workloads (programs, versions, and test suites) to which they are applied.  It 
seems plausible, however, that another set of factors impacting the cost-effectiveness of RTS 
techniques involves the process by which they are applied.   In particular, issues such as the 
frequency with which regression testing is done have a strong effect on the behavior of RTS 
techniques. Therefore, in earlier work an experiment was conducted to assess the effects of test 
application frequency on the cost-effectiveness of RTS techniques. The results exposed essential 
tradeoffs that should be considered when using these techniques over a series of software 
releases. This work, however, was limited by several threats to external validity; in particular, the 
subject programs utilized were relatively small. Therefore, in this work, the previous experiment 
has been replicated on a large, multi-version program.  This second experiment largely confirms 
the initial findings of the first study. In particular, results indicate that the cost of using safe RTS 
techniques was strongly and negatively affected by testing interval; that is, as the number of 
changes made to the program since the previous testing session increased, the number of test 
cases selected rose rapidly. Conversely, results show that the effectiveness of minimization RTS 
techniques was strongly and positively affected; that is, as the number of changes increased, so 
did the effectiveness of the test suites selected by minimization. 
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1 INTRODUCTION 

After modifying software, developers typically want to know that existing system functionality 

has not been adversely affected. To obtain such knowledge, developers often perform regression 

testing. The simplest regression testing strategy is to rerun all existing test cases. This strategy is 

easy to implement, but can be unnecessarily expensive, especially when changes affect only a 

small part of the system.  

Consequently, an alternative approach, regression test selection (RTS), has been extensively 

investigated [e.g., 1, 2,5, 6,10, 14]. With this approach only a subset of the test cases contained in 



 

a test suite are selected and rerun. Reducing the number of test cases rerun reduces regression 

testing costs, but may also cause fault-revealing test cases to be omitted. Since, in general, 

optimal test selection (i.e., selecting exactly the fault-revealing test cases) is impossible [13], the 

cost-benefit tradeoffs of RTS techniques are a central concern of regression testing research and 

practice.  

A common way to empirically study this problem has been to find or create base and modified 

versions of a system and accompanying test suites. Next, one or more RTS techniques are run 

and the size and effectiveness of the selected test suites are compared to the size and 

effectiveness of the original test suite [e.g., 4, 11, 12, 16, 17]. 

Empirical studies of this sort have revealed several cost-effectiveness tradeoffs between RTS 

techniques, but they have also revealed that the performance of RTS techniques can vary widely 

with characteristics of programs, modifications, and test suites [16].   Recent studies [18, 22] 

have thus attempted to empirically evaluate some of these sources of differences. 

One limitation of all this prior empirical work is that it fails to account for differences in testing 

processes, which may affect the cost-effectiveness of RTS techniques.  In particular, previous 

studies of RTS techniques have all modeled regression testing as a one-time activity.  In practice, 

however, regression testing is often a continuous process. For example, software releases often 

require many changes to a system with regression testing sessions interspersed between various 

numbers of changes rather than performed just once prior to product release.  Similarly, many 

companies integrate system components and then regression test software changes on a monthly, 

weekly, or even daily basis.   

One can hypothesize that the amount of change made between regression testing sessions 

strongly affects the costs and benefits of different RTS techniques. That is, it is possible that 



 

some RTS techniques will perform less cost-effectively as the amount of changes made between 

regression testing sessions grows. This is because they will select increasingly larger test suites 

and because these suites will become increasingly less cost-effective at finding faults.  If this 

hypothesis is correct, testing practitioners may be able to better manage and coordinate their 

integration and regression testing processes by altering them to accommodate the effects of 

change size; this in turn may result in savings in time and money.   

To test this hypothesis, in earlier work [20] an experiment was conducted to assess the effects of test 

application frequency on the costs and benefits of RTS techniques. The results exposed essential tradeoffs 

that should be considered when using these techniques over a series of software releases. This work, 

however, was limited by several threats to external validity; in particular, the subject programs utilized 

were relatively small. Therefore, in this work, the previous experiment is replicated on a large, multi-

version program.  This second experiment largely confirms the findings of the first. In particular, the cost 

of using safe RTS techniques was strongly and negatively affected by testing interval; that is, as the 

number of changes made to the program since the previous testing session increased, the number of test 

cases selected rose rapidly. Conversely, the effectiveness of minimization RTS techniques was strongly 

and positively affected; that is, as the number of changes increased, so did the effectiveness of the test 

suites selected by minimization. 

The remainder of this paper reviews the relevant background material and literature, and then 

presents the design and analysis of both the initial experiments and the replication of those 

experiments.  Finally, the results of the two experiments are compared, and then conclusions and 

future directions for research are presented. 

2 BACKGROUND AND LITERATURE REVIEW 

2.1 Regression Testing 

Let P be a procedure or program, let P′ be a modified version of P and let T be a test suite for P. 



 

A typical regression test proceeds as follows: 

1 Select T′⊆ T, a set of test cases to execute on P′. 

2 Test P′ with T′, establishing P′’s correctness with respect to T′. 

3 If necessary, create T″, a set of new functional or structural test cases for P′. 

4 Test P′ with T″, establishing P′’s correctness with respect to T″. 

5 Create T″′, a new test suite and test history for P′, from T, T′, and T″. 

Each of these steps involves important problems. However, this work concerns only step 1 - the 

regression test selection problem. 

2.2 Regression Test Selection Techniques 

Several RTS techniques have been investigated in the research literature (see [13]). Here several 

classes of techniques are briefly described, and a representative example of each is presented. 

Retest-All. This approach reruns all test cases in T. It may be used when test effectiveness is the 

utmost priority with little regard for cost. 

Random/Ad-Hoc. Testers often select test cases randomly or rely on their prior knowledge or 

experience. One such technique is to randomly select a percentage of test cases from T. 

Minimization. These approaches (e.g., [3, 6]) aim to select a minimal set of test cases from T 

that covers all modified or affected elements of P′. One such technique randomly selects test 

cases from T until every statement added to or modified in creating P′ is exercised by at least one 

test case.  

Safe. These approaches (e.g., [2,14]) select, under certain conditions, every test case in T that 

covers changed program entities in P′. One such technique [14] selects every test case in T that 

exercises at least one statement that was added to or modified in creating P′, or that has been 

deleted from P.  



 

2.3  Cost and Benefit Models 

Leung and White [8] present a model of the costs and benefits of RTS strategies. Costs are 

divided into two types: direct and indirect. Indirect costs include management overhead, 

database maintenance, and tool development. Direct costs include costs of test selection, test 

execution, and results analysis. Savings are simply the costs avoided by not running unselected 

test cases.  

Let T′ be the subset of T selected by a certain RTS technique M for program P, and let |T′| 

denote the cardinality of T′. Let s be the average cost per test case of applying M to P to select T′, 

and let r be the average cost per test case of running P on a test case in T and checking its result. 

Leung and White argue that for RTS to be cost-effective the inequality: s|T′| < r(|T| - |T′|) must 

hold. That is, the analysis required to select T′ should cost less than the cost of running the 

unselected test cases, T – T′.  

One limitation of this model is that it overlooks the cost of undetected faults. Since a primary 

purpose of testing is to detect faults, it is important to understand whether, and to what extent, 

test selection reduces fault detection effectiveness.  To address this limitation, Malishevsky et al. 

[21] extend Leung and White’s to factor in benefits related to fault detection effectiveness.  

2.4 Previous Empirical Studies 

Initially, cost-effectiveness, as defined by Leung and White, was the central focus of regression 

test selection studies.  

Rosenblum and Weyuker [12] applied the technique TestTube to 31 versions of the KornShell 

and its test suites. For 80% of the versions, their method selected all existing test cases. They 

note that the test suite is relatively small (16 test cases), and that many of the test cases exercise 

all the components of the system. 



 

Rothermel and Harrold [14] conducted a similar study with their technique, DejaVu, using 

several 100-500 line programs and a larger (50 KLOC) program. The savings averaged 45% for 

small and medium sized programs, and 95% for the larger program. 

These two studies seem to indicate that in some cases, regression test selection can be cost-

effective. Later studies, therefore, began to compare different methods, and also to examine 

fault-detection effectiveness. 

Bible et al. [11] compared the performance of TestTube and DejaVu in terms of test selection 

and fault-detection effectiveness.  The two techniques often performed similarly, but in some 

cases DejaVu substantially outperformed TestTube. 

Graves et al. [4] examined the relative costs and benefits of several RTS techniques. They 

examined five techniques: minimization, safe, dataflow, random, and retest-all, focusing on their 

abilities to reduce test suite size and to detect faults. The study revealed several results.   First, 

the safe technique detected all faults while on the average selecting 68% of the test cases; 

however, it sometimes selected all test cases. Second, the safe and dataflow techniques 

performed nearly identically; they typically detected the same faults while selecting the same 

numbers of test cases. Third, on average, random test suites were nearly as effective as those 

selected by the safe technique.  Finally, minimization yielded the smallest and the least effective 

test suites; for example, small random test suites (with 5 or so test cases) were equally effective 

at finding faults, but required no analysis. 

Data from the studies described above revealed that several factors involving workload 

(programs, versions, and tests suites) could affect RTS technique performance.  To begin to 

examine these factors, Elbaum et al. [22] studied the effects of change size on the effectiveness 

of RTS techniques.  This study showed that change distribution has a greater effect on technique 



 

performance than change size; however, change attributes and test case interaction patterns 

interact in such effects.   

Subsequently, Rothermel et al. [18] investigated the impact of test suite granularity (a measure of 

the way in which test cases are grouped into test suites) on RTS techniques. They considered 

four techniques: safe, modified-non-core-entity (like safe techniques, but ignoring changes in 

core functions, thus trading some safety for efficiency), minimization, and retest-all. They 

measured the effects of test suite granularity on regression test execution time and fault detection 

effectiveness, across these techniques, on several versions each of two large software systems.  

Results indicated that fine granularity suites (utilizing relatively large numbers of small tests) are 

more supportive of test selection than coarse granularity suites, but that granularity effects are 

also associated with fault-detection effectiveness effects. 

2.5 Open Questions 

Most previous studies of regression test selection have focused on the choice of RTS technique.  

This is obviously an important issue. However, this ignores another equally important issue – the 

application policy. That is, what are the conditions that trigger regression testing: periodic 

execution (daily, weekly, or monthly), rule-based execution (after all changes, after changing 

critical components, or at final release), or something else? 

It seems likely that application policy is important because it may greatly affect the practical 

costs and benefits of regression test selection. Therefore, this paper investigates application 

policies, by considering how the amount of change made to a system between regression testing 

sessions affects the costs and benefits of different RTS techniques. In particular, for different 

RTS techniques the goal is to determine the following:  

• How, as the amount of change between two software versions increases, do test suite 



 

reduction and fault detection effectiveness change?  

• As amount of change increases, what tradeoffs exist between test suite reduction and fault 

detection effectiveness? 

•  As amount of change increases, when is one RTS technique more cost-effective than 

another? 

The next three sections first describe an initial experiment investigating these questions; then, the 

replicated experiment performed for this work is presented, and finally the two studies are 

compared. The complete discussion of the initial experiment appears in Kim et al. [20]. 

3 INITIAL EXPERIMENT 

3.1 High-Level Hypotheses 

Two high-level hypotheses are addressed, addressing cost and effectiveness factors in turn: 

H1: (cost) test selection ratios change as the number of modifications made between 

regression testing sessions changes; 

H2: (effectiveness) fault detection ratios change as the number of modifications made 

between regression testing sessions changes. 

3.2 Measures 

To investigate these hypotheses it was necessary to measure the costs and benefits of each RTS 

technique. To facilitate this, two models were constructed: one for calculating savings in terms of 

test suite size reduction, and another for calculating costs in terms of fault detection 

effectiveness. Attention was restricted to these costs and benefits, but there are many other costs 

and benefits these models do not capture (some of these are outlined in Section 3.4.1). 

Measuring Savings. Reducing test suite size provides savings because it allows testers to run 

fewer test cases, examine fewer test results, and manage less test data. These savings are 



 

proportional to the reduction in test suite size. Thus, in this work, savings are measured in terms 

test selection ratio, as given by |T′|/|T|.  

This approach makes several simplifying assumptions. It assumes that the cost of all test cases is 

uniform and all the constituent costs can be expressed in equivalent units (e.g., no differentiation 

is made between CPU time and human effort).  It also does not measure the savings that may 

result from applying analyses, done for early testing sessions, to later testing sessions.  

Measuring Costs. Two types of costs are considered. The first comes from the analysis needed 

to select test cases. The second may occur when the selected test cases do not detect faults that 

could have been detected by the original test set.  The cost model used for this experiment 

focuses on the latter cost.  

To determine whether regression test selection reduces fault detection effectiveness, it is 

necessary to measure which test cases reveal which faults in P′. However, there is no simple way 

to determine this because when a test case fails on a program that contains multiple faults it is 

not always obvious exactly which fault(s) caused the failure.  Thus, three estimators were 

considered. 

Estimator 1 - On a per-test-suite basis.  One way to measure test effectiveness is to classify the 

selected test suite into one of three cases: (1) no test case in T detects faults, and thus, no test 

case in T′ detects faults; (2) some test cases in both T and T′ detect faults; or (3) some test cases 

in T detect faults, but no test case in T′ detects faults.  Cases 1 and 2 indicate test selection that 

does not reduce fault detection, and case 3 captures the situation in which test selection 

compromises fault detection. 

This method is imprecise because it treats all faults in P′ as a single fault.  The main advantage 

of this method is that it is inexpensive to implement. 



 

Estimator 2 - On a per-test-case basis.  Another approach is to identify those test cases in T 

that detect faults in P′ but that are not included in T′.  The number of test cases in T that detect 

faults in P′ then normalizes this quantity.  

This approach is also imprecise because it assumes that every fault revealing test case reveals a 

different fault. When multiple test cases reveal the same fault, duplicate test cases could be 

discarded without sacrificing fault detection effectiveness. This measure penalizes such a 

decision.  

Estimator 3 - On a per-fault basis.  This approach tries to identify all test cases that might 

“theoretically” reveal each fault.  A test case t that detects a fault f must satisfy three conditions: 

(1) t must traverse the program point containing f in P′, (2) immediately after t traverses the 

program point containing f in P′, program state must be perturbed (3) the final program state of 

P′ for test case t must be different from that of P run on test case t [19].  

Using this information, one can determine which faults may be detected by each test case.  This 

method is the most precise, but because it requires hand-instrumentation it is also the most 

expensive.  

For this study, this third approach was selected and implemented as follows.  To detect the first 

condition, every program modification point in P′ was instrumented to determine whether t 

traversed the program point containing f.  To detect the second condition the program was further 

instrumented, creating two blocks – one with the faulty code and one without.  The state of all 

global and in-scope local variables was captured immediately before the change, then both 

blocks were executed, and then their states upon exit were compared.  If these states differed 

then it was concluded that t perturbed the program state, thus satisfying the second condition.  To 

detect the third condition, the output of P and P′ was compared to identify whether they 



 

produced different outputs for test case t. 

After this analysis had been performed for each test case in T, the number of faults for which 

there existed at least one fault-revealing test case in T was counted. This number was called 

NFdet. Next, T′ was examined, and again the number of faults for which there existed at least one 

fault-revealing test case was counted.  This number was called NFdet′. Finally, the total number of 

faults in P′ was designated as NF. 

These numbers were used to calculate two measures of effectiveness.  One is relative 

effectiveness, defined as NFdet′/NFdet and the other is absolute effectiveness, defined as NFdet′/NF. 

3.3 Experiment Instrumentation 

Programs, Tests and Faults. For this experiment, eight C programs, with a number of modified 

versions and test suites for each program, were utilized.  The subjects come from two sources. 

One is a group of seven C programs collected and constructed initially by Hutchins et al. [7] for 

use in experiments with dataflow- and control-flow-based test adequacy criteria. The other, 

Space, is an interpreter for an array definition language (ADL) used within a large aerospace 

application. Table 1 describes the subjects, showing the number of functions, lines of code, 

distinct versions, test pool size, and the size of the average test suite. These and other aspects of 

the data are described in the following paragraphs. 

Siemens Programs: Seven of the subject programs come from a previous experiment by 

Hutchins et al. [7].  These programs are written in C, and range in size from 7 to 21 functions 

and from 138 to 516 lines of code.  



 

For each of these programs Hutchins et al. created a pool of black-box test cases [7] using the 

category partition method and Siemens Test Specification Language tool [8]. They then 

augmented this set with manually created white-box test cases to ensure that each exercisable 

statement, edge, and definition-use pair in the base program or its control flow graph was 

exercised by at least 30 test cases.  

Hutchins et al. also created faulty versions of each program by modifying code in the base 

version; in most cases they modified a single line of code, and in a few cases they modified 

between 2 and 5 lines of code. Their goal was to introduce faults that were as “realistic” as 

possible, based on their experience with real programs. 

Ten people performed the fault seeding, working “mostly without knowledge of each other’s 

work” [7, p. 196]. To obtain meaningful results, the researchers retained only faults that were 

detectable by at least 3 and at most 350 test cases in the associated test pool. 

Space Program: The Space system, written in C, is an interpreter for an array definition 

language (ADL).  The program reads a file that contains ADL statements, and checks the 

contents of the file for adherence to the ADL grammar, and to specific consistency rules. If the 

ADL file is correct, Space outputs an array data file containing a list of array elements, positions, 

and excitations; otherwise the program outputs error messages.  

Program  Functions LOC # 1st-order versions Tot. Size Avg Suite Size 
replace 21 516 12 5542 398 
printtokens2 18 402 7 4130 318 
printtokens 19 483 9 4115 389 
schedule 18 299 7 2650 225 
schedule2 16 297 8 2710 234 
tcas 9 138 12 1608 83 
totinfo 7 346 12 1054 199 
space 136 6218 10 13585 4361 

Table 1: Experiment Subjects 



 

Space has 38 versions, each containing a single fault that was discovered either during the 

program’s development or later by the authors of this study.  

The test pool was constructed in two phases.  First a pool of 10,000 randomly generated test 

cases, created by Vokolos and Frankl [17], was obtained. Then, new test cases were added until 

every dynamically executable edge in the program’s control flow graph was exercised by at least 

30 test cases (excluding those edges that can be exercised only by the occurrence of malloc 

faults). This process yielded a test pool of 13,585 test cases.  

Versions.  In this experiment, programs with varying numbers of modifications were needed.  

These were generated in the following way. Each subject program initially consisted of a correct 

base version and a number of modified versions, each containing exactly one fault: these are 

called 1st-order versions. These versions were selected because the faults they contain are 

“mutually independent.” That is, any number of these faults can be merged into the base program 

simultaneously. For example, if fault f1 is caused by changing a single line and fault f2 is caused 

by deleting the same line, then these modifications interfere with each other.  Table 1 shows the 

number of 1st-order versions for each subject program, ranging from 7 to 12.  

Next, higher-order versions were created by combining appropriate 1st-order versions.  For 

example,  to create an nth-order version, n unique 1st-order versions were combined. This was 

done for every subject program until all possible kth-order versions had been created, where k was 

the minimum of 10 or the number of 1st-order versions available for that program. As an 

example, the tcas program had 12 1st-order versions.  Therefore, 12 1st-order versions, 66 2nd-

order versions, and so on up to 66 10th-order versions were constructed, for a total of 4082 

versions.  An exception was made, however, for the Space program.  Since its test suites are 

much larger than those of the Siemens programs - they take 10-100 times longer to run – the 



 

number of 1st-order versions for the Space program was limited to 10. 

In this way the regression testing of systems in which varying amounts of modifications have 

been made since the previous regression testing session was modeled. 

Test Suites.  The test pools for the subject programs were used to obtain two types of test suites 

for each program: edge-coverage-adequate test suites and random test suites (non-coverage-

based). To create edge-coverage-adequate test suites,  the test pool for the base program, and test 

coverage information gathered from the test cases, was used to generate 1000 edge-coverage-

adequate test suites for each base program.  

1000 randomly-selected test suites were also generated for each base program.  To generate the 

kth random test suite T for base program P (1 ≤ k ≤ 1000), n, the number of test cases in the kth 

edge-coverage-adequate test suite for P, was determined. Next, test cases were chosen at random 

from the test pool for P and added to T until it contained n test cases. This process yielded 

random test suites of the same size as the edge-coverage-adequate suites.  

Regression Test Selection Tools.  To perform the experiments, implementations or simulations 

of RTS techniques were needed. For safe techniques an implementation of Rothermel and 

Harrold’s DejaVu tool [14, 15] was used, and another safe technique, TestTube [2], was 

simulated. For minimization, a tool that selects a minimal test suite T′ was selected, such that T′ 

had at least one test case that covers every node in the control flow graph for P that was changed 

between P and P′. As a random technique a tool called random(n), that randomly selects n% of 

the test cases from the suite, was created. Retest-all did not require any tools (because all the test 

cases are selected).  

3.4 Experiment Design 

The experiment manipulated four independent variables: 



 

1. The subject program (there are 8 programs, each with a variety of modified versions). 

2. The RTS technique (one of DejaVu, TestTube, minimization, retest-all, random(25), 

random(50), random(75)). 

3. Test suite composition (edge-coverage-adequate or random). 

4. Test interval (from base to modified program, from 1 to 10 changes can be made). 

For each combination of program, test interval and technique, 100 edge-coverage-adequate test 

suites and 100 random test suites were used. On each test run, with base program P, modified 

version P′, technique M, and test suite T, the following measurements were collected: 

1. The proportion of test cases selected in T′ to test cases in the original test suite T. 

2. The number of faults revealed by T and T′.  

From these data points, two dependent variables were calculated: 

1. Average selected test suite size. 

2. Average fault detection effectiveness. 

The experiment used a full-factorial design with 100 repeated measures. That is, for each subject 

program, test interval and test suite composition criterion,100 test suites were selected from the 

test suite universe. For each test suite, each RTS technique was applied, and the size and fault 

detection effectiveness of the selected test suites was measured.  In total, 20,004,600 test suites 

were executed and evaluated. 

3.4.1 Threats to Validity 

Threats to internal validity are influences that can affect the dependent variables without the 

researcher’s knowledge. They can thus affect any supposition of a causal relationship between 



 

the independent and dependent variables. In this study, the greatest concern was that 

instrumentation effects could bias the results.  Instrumentation effects may be caused by 

differences in the experimental instruments (in this case the test process inputs: the code to be 

tested, the locality of the program changes, the composition of the test suite, or the composition 

of the series of versions). One related issue is that all modifications to the subject programs were 

considered faults. In reality, some modifications will not result in faults. In this study two 

different criteria were used for composing test suites: edge-coverage-adequate and random. In 

order to reduce effects due to program versions, all possible combinations of versions were used. 

However, there was no attempt made to control for the structure of the subject programs, or for 

the locality of program changes. To limit problems related to this, the RTS techniques were run 

on each suite and each subject program. 

Threats to external validity are conditions that limit one’s ability to generalize the results of an 

experiment to industrial practice.  One threat to external validity concerns the representativeness 

of the subject programs. The subject programs are of small and medium size, and larger 

programs may be subject to different cost-benefit tradeoffs.  Also, the Siemens programs contain 

seeded faults although efforts were made to make them as realistic as possible. Another issue is 

that these faults are roughly the same “size”.  Therefore, a program with, say, ten faults has been 

changed more than a program with one fault.  Also, the faults utilized are mutually independent 

whereas naturally-occurring faults may sometimes overlap or obscure one another. In short, 

industrial programs have much more complex error patterns.  Another threat to external validity 

for this study is process representativeness. This arises when the testing process used is not 

representative of industrial ones.  This may endanger the results of this study since the test suites 

utilized may be more or less comprehensive than those that could appear in practice.  Also, this 



 

experiment mimics a corrective maintenance process where the specification is not changed, but 

there could be many other types of maintenance in which regression testing might be used.  

These threats can be addressed only through additional studies using a greater range of software 

artifacts. In fact, Section 4 contains a first attempt to replicate this experiment in order to address 

these concerns. 

3.5 Data and Analysis 

In this paper, extensive use is made of box plots (e.g., Figure 3) to represent data distributions. In 

these plots, a box represents each distribution. The box’s width spans the central 50% of the data 

and its left and right ends mark the upper and lower quartiles. The bold dot within the box 

denotes the median. The dashed horizontal lines attached to the box indicate the tails of the 

distribution; they extend to the standard range of the data (1.5 times the inter-quartile range). All 

other detached points are considered “outliers”. Typically, one box plot will present several 

boxes side by side to allow for visual comparison of the distributions. For example, Figure 3 

shows the relative effectiveness of the retest-all technique grouped by testing interval. Therefore, 

each box labeled “i” represents only the data from test runs with testing interval i. 

In many cases, multiple box plots are combined to allow grouping by a third variable. For 

example, Figure 1 is composed of 7 box plots, where each box plot contains the data for 1 

specific RTS technique. Each individual box plot then shows the distribution of test selection 

size broken down by testing interval for just that one technique. 

The data are analyzed in three steps. First, the ability of different RTS techniques to reduce test 

suite size and still detect faults as the testing interval grows is compared.  Second, the 

effectiveness of the original test suite is examined as the testing interval grows. Finally, the cost-

benefit tradeoffs of program-analysis-based (i.e., safe and minimization) and random techniques 



 

are compared, and the factors that may be responsible for the differences between them are 

discussed.   

Note that this analysis does not rely on statistical null hypothesis testing.  There are several 

reasons for this, including the facts that the number of versions for each subject program was 

quite different so only a small number of programs we represented at the highest testing 

intervals, and that the large number of sub-hypotheses investigated might chop up the data too 

finely. These and other factors led to concerns about violating certain assumptions underlying 

traditional statistical tests. Therefore, the analyses performed here are restricted to graphical 

techniques to visualize the data and descriptive statistics for all distributions of interest. 

Size Reduction. Figure 1 shows the ability of each RTS technique to reduce test suite size by 

testing interval, conditioned on the technique itself.  The random(n) methods selected n% of the 

test cases by construction and the retest-all method always selected all test cases. Therefore only 

program-analysis-based methods are considered here.  



 

First, observe that DejaVu selected a median of 66.5% of the test suite when the testing interval 

was 1 (as was found in earlier experiments [4]). However, the median ratio increased rapidly as 

testing interval increased. For example, DejaVu’s median test selection across all programs and 

intervals was 97.4%. Inspection of the programs suggested that selection ratio was heavily 

dependent on the program, and the type and location of code changes. For example, DejaVu’s 

selection ratios ranged from 2.2% to 98.1% for printtokens for testing interval 1.  

Next, note that TestTube selected a median of 91.8% of the test suite when the testing interval 

was 1.  As the testing interval increased, selection ratios increased to 99.3%. 

Minimization selected a median of 0.4% of the test suite for interval 1 to a median of 2.0% for 

interval 10.  This increase is less than one new test case for each added change. For example, for 

totinfo, a median of 4.2 test cases was selected when testing interval was 10 and 1 test case 
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Figure 1: Test Selection Ratio by Testing Interval Conditioned on RTS Technique 



 

was selected when the testing interval was 1. 

Relative Effectiveness. Figure 2 shows the relative effectiveness of selected test suites by testing 

interval, broken down by technique used.  

Safe methods, by virtue of  being “safe”, guarantee that all “detectable” faults will be detected 

(given certain assumptions outlined in [2,14]). That is, their effectiveness is the same as that of 

retest-all. Therefore,  this section concentrates on the random and minimization methods. 

For random methods, the median relative effectiveness was always over 90% when the testing 

interval was 1.  As testing interval increased, relative effectiveness also increased up to a point 

and then stayed essentially flat.  For example, the median effectiveness of random(25) was 

96.8%. Another thing to note is that, on average, random(50) and random(75) were nearly as 

effective as retest-all – with median relative effectiveness of 99.7% and 100%, respectively.  
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Figure 2: Relative Effectiveness by Testing Interval Conditioned on Test Selection 

Method 



 

Minimization had a median relative effectiveness of 16.0% at interval 1. However, effectiveness 

climbed rapidly as the interval increased – with a median relative effectiveness of 60.0% at 

interval 10.  

Effectiveness of T.  During this study, it was hypothesized that a test suite that revealed a fault f 

in P′ when f was the only fault in P′ might no longer reveal the same fault when f is mixed with 

other faults. One possible reason is that failures can be “hidden” by interacting faults. Another 

may be that some faults may change a program’s control flow, causing other faults to go 

unexecuted.  If this happens, then increasing the testing interval may negatively affect not only 

the fault-detection effectiveness of RTS techniques, but of retest-all as well. 
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Figure 3: Absolute Effectiveness for Retest-All by Interval 



 

This hypothesis was evaluated by running the original suite T on instrumented P′.   The number 

of faults in P′ that were “detectable” by T was then counted (see Section 3.2 for the conditions 

under which we consider a fault to be detectable).  

Figure 3 shows the percentage of detectable faults broken down by testing interval.  By 

construction, it is necessarily the case that the fault in each 1st-order version was detectable by 

some test cases in the test “pool” associated with that program. However, there were some test 

suites that did not detect particular faults.  

As testing interval increased, the percentage of detectable faults dropped steadily, with a median 

of 88.9% when the testing interval was 10.  However, since most of the higher-order (after 8th-

order) versions come from three subject programs (tcas, totinfo, and replace), the 

behavior after interval eight needs to be interpreted with caution. Nevertheless, the data are 

consistent with the hypothesis that fault detection effectiveness decreased as the number of faults 

increases. Therefore, the absolute effectiveness of selected test suites was also investigated. 

Absolute Effectiveness.  Figure 4 shows the absolute effectiveness of selected test suites by test 

interval, conditioned on technique.  

Safe techniques always had a relative effectiveness of 100%.  However, their absolute 

effectiveness dropped as interval increased.  Random techniques showed a similar pattern.  In 

contrast, the median absolute effectiveness of minimization increased as the testing interval 

grew. 

3.6 Cost-Benefit Tradeoffs 

When both the costs and the benefits of the different RTS techniques are considered, several 

interesting patterns emerge for the Siemens/Space programs.  

Overall, DejaVu selected 97.4% of the test cases while showing 91.8% absolute effectiveness, 



 

but it was most cost-effective when the testing interval was small (66.5% of test cases were 

selected).  TestTube also performed best under these circumstances although the difference was 

not as great. These techniques may also be cost-effective when the cost of missing faults is very 

high or when the cost of running test cases is very high. For example, for some safety-critical 

systems the cost of missing a fault may be so high that non-safe RTS techniques cannot be used. 

Across all observations, minimization selected 1.5% of the test cases and showed 44.2% absolute 

effectiveness. It was most cost-effective when the interval was large – at interval 10 it selected 

2.0% of the test cases while showing 52.4% absolute effectiveness.  Minimization might 

therefore be recommended when the cost of running test cases is very high and the cost of 

missing faults is not too high.  

All random techniques had high effectiveness at low testing intervals and increasing 
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Figure 4: Absolute Effectiveness by Testing Interval Conditioned on RTS Technique 



 

effectiveness as testing interval increased.  As testing interval increased, differences between 

different random methods decreased.  Thus, if the cost of missing faults is not too high, then a 

small random technique, random(25), would be the most cost-effective when the testing interval 

is high. 

4 EXPERIMENT 2 

In an attempt to address some of the threats to validity found in our initial experiment, the 

experiment was replicated using a larger, real-world software system. 

4.1 Hypothesis 

It was hypothesized that the behaviors seen in Experiment 1 would repeat themselves in larger 

software artifacts. That is, test selection ratios and test effectiveness ratios change as the number 

of modifications made between regression testing sessions changes. Therefore, a large, real-

world program called DNAM (DNA Mapping) was acquired, and Experiment 1 was replicated 

on this new program to see if this hypothesis would remain true. 

4.2 Measures 

Measuring Savings. The savings model already defined in Section 3.2 was used (|T′|/|T|). 

Measuring Costs.  DNAM is different from the Siemens/Space programs in many respects. One 

difference is that DNAM has successive versions, not a base version with faulty derivatives. In 

addition, for DNAM, the changes between successive versions are not always faults, but include 

successful updates to fix bugs, enhance performance, and add new functionality.  Therefore, this 

experiment focused on modification points (MPs) rather than faults.   

Cost model on a per-MP basis: The cost model is similar, but not identical, to the one used in 

Experiment 1.  One important difference stems from focusing on modification revealing test 

cases rather than fault revealing ones.  Here, the approach used is to identify all test cases that 



 

might “theoretically” reveal each MP.  A test case t that detects an MP m must satisfy three 

conditions (similar to those needed to reveal a true fault [23]): (1) t must traverse the program 

point containing m in P′, (2) immediately after t traverses the program point containing m in P′, 

program state must be perturbed, and (3) the final program state of P′ for test case t must be 

different from that of P run on test case t.  

Using this information it can be determined which MPs can be detected by each test case. The 

first and second conditions are determined just as in Experiment 1. To detect the third condition, 

however, some manual inspection was required. For the Siemens/Space programs the final 

program states of P and P′ can be assessed for differences by comparing their outputs. For 

DNAM, however, it is possible that the outputs of P′ and P may be different, while their final 

program states are not; for example, because of changes to formatting code, changes to menu 

text, or when timestamps are embedded in program output. Consequently, it was necessary to 

manually compare the outputs of successive versions to decide whether their output differences 

stemmed from functional changes. 

Another difference between DNAM and earlier subjects is that DNAM’s test pool does not cover 

every exercisable edge and thus every potential modification in the program. In fact only 264 

MPs of the 1457 total MPs (18%) are traversed by at least one test case in the test pool. This 

means that at least 82% of the time neither T nor T′ detect the MP. These unexercised MPs 

would significantly bias the cost model used in Experiment 1. Therefore, it was necessary to 

focus only on “exercisable” MPs. 

After the analysis for each test case in T, the number of MPs for which there exists at least one 

revealing test case in T is counted.  This number is called NMPdet. Next, T′ is examined again, 

and the number of MPs for which there exists at least one revealing test case is counted. This 



 

number is NMPdet′. Finally, the total number of exercisable MPs in P′ is designated as NMP.  

These numbers are used to calculate relative effectiveness, defined as NMPdet′/NMPdet.  

4.3 Experimental Instrumentation 

DNAM is a DNA mapping program developed in C by a research group from Washington 

University in St. Louis.  It consists of 216 C files and 216 header files with 8414 functions 

resulting in 205 KLOC (non-comment, non-blank) with 232 test cases in the test pool.  DNAM 

functions as follows.  In a biological laboratory, pieces of DNA called genomes are broken up 

into overlapping pieces called clones. One specific type of clone is called a restriction fragment. 

DNAM reads a command file and a file describing restriction fragments as input and produces 

maps explaining how the clones are related to one another as output. DNAM’s input files are 

obtained from the biology laboratory. 

From an experimenter’s point of view, DNAM is a mixed blessing.  Its greatest advantage is that 

it is not a “toy” program.  Rather, it is a large system with complex behaviors and change 

patterns.  Nevertheless, it has several limitations. First, the configuration management process 

used during its development appears to have resulted in check-ins roughly once per week, so its 

fine-grained change history has been lost.  Second, no control can be had over the system’s 

development process, so change size is not uniformly distributed. This limits the reasoning that 

can be made about the effect of change size. Third, as with many software systems, DNAM’s 

test suite is seriously inadequate, leaving large portions of the system untested. This problem is 

compounded by the fact that the test inputs must correspond to actual pieces of DNA, making it 

impossible for us to easily obtain more test data. It was necessary to work within these 

limitations. 

Versions.  The DNAM source code resides in a Revision Control System (RCS) repository. The 



 

repository records run from June 1997 through February 1998. While setting up this experiment, 

daily source snapshots were retrieved using the RCS checkout utility’s date/time option. It was 

discovered that, out of a possible 246 daily snapshots, only 40 versions contained non-cosmetic 

changes. Of these, the amount of change between successive versions ranged from very small 

(just a few lines in one file) to quite large (up to 15K lines spread across 16 C files). To smooth 

out these size differences, “intermediate versions” were generated from several of the greatly 

changed versions. 

In creating the intermediate versions, great care was taken to generate incrementally changing 

versions. First the changes between two successive versions were reviewed, in an attempt to find 

a series of logically related partial deltas. For example, in one case a new function had been 

created.  Therefore, the C file containing the new function and all changes to C files from which 

the newly created version was called formed a logically related partial delta.  Next, an attempt 

was made to build the system with only the partial delta.  It successfully linked and ran.  This 

process was then repeated, identifying a new partial delta from the remainder of the original delta 

(previous delta minus the partial delta).  These steps continued until every change in the original 

delta was contained in one of the partial deltas.  Obviously, this job couldn’t be automated, but 

through this trial-and-error methodology, 102 successive versions were created. 

Test Cases, Test Pools, and Test Suites.  Initially DNAM had 232 test cases in its test pool. 

Each test case is based on an input clone file provided from the biology laboratory, and a 

command file.  These test cases do not cover each statement; in fact, 64 of 102 versions do not 

have any MP-revealing test cases. There is also a significant imbalance between the number of 

test cases exercising some functions and the number of modifications applied to them. 

DNAM consists of five major libraries (i.e., libmstrat, libmap, libstruct, libadt, and libutil), and 



 

each library is composed of 3 to 11 small libraries. Figure 5 shows the distribution of 

modifications applied to each small library and the percentage of test cases in the test pool 

covering each small library.  For example, almost half the test cases in the test pool (103 of 232) 

test the functions in libmstrat/linterm, while the library itself is modified in only 16 versions 

(about 7%).  Another extreme example is that three libraries (i.e., libmap/lntopo, 

libmap/lmcdscd, and libmap/lincorp) were modified in 62% of the versions, but there are no test 

cases that exercise the functions in those libraries.  

Although adding new test cases would have been desirable, this turned out to be impossible. Test 

cases for this system are based on actual DNA sequences, making it impossible for the 

 

 

Figure 5: Distribution of Modifications and Test Cases for Each Library 



 

experimenters to generate them by themselves.  Moreover, the developers who built DNAM are 

no longer maintaining it and are unable to provide additional test cases.  

The test cases in the test pool test sixty-four different system functions.  To create test suites, 

each test case was categorized by the functions it tests. Then, one test case was selected from 

each category and added to the test suite. Finally, the test suite was augmented with randomly 

selected test cases. The selected subset of test cases was called function-coverage-adequate.  100 

function-coverage-adequate test suites and 100 random test suites (whose size was the same as 

their corresponding function-coverage-adequate suites) were created. Each function-coverage-

adequate test suite covered each of the 64 functions at least once. The average size of the test 

suites was 150. 

Regression Test Selection.  For DNAM, it was necessary to possess simulations of safe and 

minimization RTS techniques. To do this the code was hand-simulated at the entry to each 

modification point to report the set of test cases that reached that point. For a safe technique, then 

all test cases through each point were selected. For minimization, one test case through each 

point was selected.  When all selection was complete, duplicate test cases were eliminated. This 

use of simulation affects tool analysis time, not test selection results, and thus does not impact 

results.  The random(n) and retest-all techniques were implemented as in Experiment 1. To speed 

up the experiment, the TestTube method was omitted for this study.  

4.4 Experimental Design 

The experiment manipulated several independent variables: 

1. The subject program version (there are 32 usable versions). 

2. The RTS technique (one of DejaVu, minimization, retest-all, random(25), random(50), 

random(75)). 



 

3. Test suite composition (function-coverage-adequate or random).  

Unlike in Experiment 1 there is no testing interval variable. This is because the testing interval is 

dictated by the actual data, not set artificially as it was in Experiment 1.  For each technique, 100 

function-coverage-adequate test suites and 100 random test suites were run.  For each testing 

session, with base program P, its modified successive version P′, technique M, and test suite T, 

the following were measured: 

1. The proportion of test cases in the selected test suite T′ to test cases in the original suite T. 

2. The number of MPs revealed by T and T′.  

From these data points two dependent variables were computed: 

1. Average selected test suite size. 

2. Average MP detection effectiveness. 

Threats to Validity. In this study, the main concern for threats to internal validity is that 

instrumentation effects can bias the results. Instrumentation effects may be caused by differences 

in the experimental instruments (in this case the test process inputs: the code to be tested, the 

locality of the program changes, the composition of the test suite, or the composition of the series 

of versions). In contrast to Experiment 1, all modifications to DNAM are naturally occurring, not 

seeded.  On the other hand, the test suites do not exercise large parts of the program. Since it was 

not possible to create new test cases, it was not possible to control for this situation. It was also 

not possible to control the number of changes made between two versions, or the number of 

versions with a specific number changes made to them.  

For threats to external validity, the greatest concern involves the representativeness of the 

program. This threat is partially overcome in this study since DNAM is a real project that is used 

in the field, with real changes incorporated over time by user demand. In addition, the program is 



 

quite large. Nevertheless, DNAM is just one program and does not represent all kinds of 

programs so further studies will be needed. Another threat to external validity for this study is 

process representativeness. This arises when the testing process used is not representative of 

industrial ones. This may endanger results since the test suites used may be more or less 

comprehensive than those that could appear in practice. Also, this experiment mimics a 

corrective maintenance process where the specification is not changed, but there could be many 

other types of maintenance in which regression testing might be used. These threats can be 

addressed only through additional studies using a greater range of software artifacts. 

4.5 Data and Analysis 

Size Reduction. Figure 6 shows the ability of each RTS technique to reduce test suite size, by  

interval, conditioned on the technique itself. Because the data at various settings of the interval is 

sparse, the program changes are grouped into three categories: 1-3 MPs, 4-7 MPs, and 8 or more 
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Figure 6: Test Suite Size by Change Interval 



 

MPs. Each of these categories contains roughly one third of the data points.  The random(n) 

methods selected n% of the test cases by construction and the retest-all method always selected 

all test cases. 

For the safe technique, the selection ratio appears to grow as the interval grows.  The median 

selection ratio for interval group-1 was 15.58%, while it increased to 54.55% for interval group-2 

and 45.64% for interval group-3. This is consistent with the hypothesis that the selection ratio is 

affected by the number of modifications made between the testing sessions. 

For minimization, the selection ratio for DNAM increases as the interval grows.  The median 

overall selection ratio for DNAM is 1.96%. Again, this pattern is consistent with that seen in 

Experiment 1. There, the median selection ratio went from 0.4% for interval 1 to 2.0% for 

interval 10. In Experiment 2, the median selection ratio was 1.31% for interval Group-1, 

increasing to 3.27% for interval Group-3.  

Relative Effectiveness. Figure 7 shows the relative effectiveness of each interval setting 

conditioned on technique.  As the safe technique guarantees that all detectable MPs will be 

detected, the analysis concentrates on the random and minimization methods. 

Overall, the trends for each technique coincide with those of Experiment 1.  First, for random 

methods, the random(n) technique became more effective on the average as n increased. 

Moreover, their performance was not greatly affected by interval.  

The performance of minimization also displayed trends similar to those found in Experiment 1. 

Specifically, effectiveness increased substantially as the interval grew (median relative 

effectiveness of 42.77% for group-1, 47.66% for group-2, and 84.15% for group-3).   

5 COMPARING THE TWO STUDIES 

The results of two empirical studies of regression test application frequency have been presented. 



 

Some of the costs and benefits of several RTS techniques when the number of changes between 

the base and subsequent versions of a program increases have been investigated.  The results of 

this investigation highlight several differences among RTS techniques with respect to test 

application frequency. They also illustrate some tradeoffs and provide an infrastructure for 

further research. 

As discussed earlier, these studies, like any controlled experiments, have several limits to 

validity.  Particularly, several threats to external validity limit the ability to generalize results.  

These threats can be addressed only by extensive experiments with a wider variety of programs, 

test suites, series of versions, type of faults, and so forth.  Along these lines, however, it is 
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Figure 7: Test Suite Effectiveness by Change Interval 



 

revealing that the second study, conducted on a large-scale program, appears to support the 

results of the first study, which was performed on much smaller programs.  Keeping all this in 

mind,  the following conclusions can be drawn. 

The experimental results strongly support hypotheses H1 and H2: the size and fault detection 

effectiveness of test suites chosen by RTS techniques change as the frequency of regression 

testing changes.  

Safe techniques selected the same as or fewer test cases than retest-all while having the same 

effectiveness. Therefore, they are preferable to retest-all as long as their analysis costs are less 

than the cost of running the unselected test cases. However, as the testing interval grew, almost 

all test cases were selected for the Siemens/Space programs.  In this case, safe methods may not 

be preferable to retest-all.  This effect was less dramatic in the case of DNAM, but it could be 

seen when comparing smaller changes (1-3 MP’s) to larger changes (4 or more MP’s). 

Nevertheless, the analysis also showed, reflecting results of other studies [16], that the 

performance of safe techniques depended heavily on the structure of the program, the location of 

modifications, and the composition of the test suites.  For instance, test cases for the program 

schedule2 are constructed in such a way that each test case exercises large portions of the 

code. Consequently, changes, no matter how small, tend to involve all test cases in the test suite.  

Test cases that exercise independent portions of the system might not exhibit such behavior and 

thus might be more amenable to safe test selection.  For example, in DNAM, both the test cases 

and changes were concentrated in a number of libraries.  This appears to have limited test suite 

size. Research that successfully merges RTS techniques with test suite construction is likely to 

have a large effect on the use of safe techniques in practice. 

Random techniques are surprisingly cheap and effective.  Interestingly, as the testing interval 



 

increases their median effectiveness approaches that of retest-all with less variation between 

runs. That is: at small testing intervals effectiveness ranges from very high to very low. 

However, as the testing interval increases, this range gets much smaller.  Thus, a user of random 

techniques might be more confident of their effectiveness in the latter situation. 

The difference in performance between minimization at low testing intervals and minimization at 

high testing intervals was remarkable for all programs.  For the Siemens/Space programs, at low 

testing intervals, minimization selected one or two test cases and was only 16% as (relative) 

effective as retest-all. However, at a testing interval of 10 it selected only four or five test cases, 

while having about 60% of the (relative) effectiveness of retest-all. For DNAM, at low intervals, 

minimization selected 0.4% of the test cases and was 44.8% as effective as at high intervals.  Yet 

at the largest testing interval it selected only 3.27% of the test cases, but had an 84.15% relative 

effectiveness. Thus, although the minimization approach will miss some faults, from a cost-

benefit perspective it presents an interesting option. It is not clear why this effect is so 

pronounced, and continued investigation is needed.  Also, in this study minimization picks 

exactly one test case through a change. It would be interesting to investigate what would happen 

if it instead picked two, three or more. 

As testing intervals increase, complex fault interactions can make it harder to detect some faults 

if the code is monolithic. This is somewhat obvious.  More to the point, however, is that as the 

testing interval increases, information about a base program P and test suite T will become less 

predictive of the state of P′. For example, a test suite that was edge-coverage-adequate on 

program P might have very different coverage of program P′.  

6 CONCLUSIONS AND FUTURE WORK 

Making progress in understanding regression test selection techniques depends, not on a single 



 

empirical study, but on entire families of studies, including both controlled experiments and case 

studies.  By replicating the earlier study of application frequency on a larger, more complex 

program, this work has begun to construct such a family.  The experimental designs utilized can 

also be followed by other researchers seeking to address the open questions in this area. 

Work is ongoing to continue this family of experiments.  Goals include (1) improving cost 

models to include factors such as testing overhead and to better handle analysis cost, (2) 

extending the experiment to larger programs with a wider variety of naturally-occurring faults, 

and (3) exploring techniques that incorporate previous testing history. 

ACKNOWLEDGEMENTS 

This work was supported in part by the following grants from the National Science Foundation 

CCR-9501354, CCR-9707792, CCR-0205265 and CCR-0098158. Siemens Laboratories 

supplied several subject programs. Alberto Pasquini, Phyllis Frankl, and Filip Vokolos provided 

the Space program and many of its test cases. Chengyun Chu assisted with further preparation of 

Space program and its test cases.  Will Gillett at Washington University, Saint Louis provided 

the DNAM program and its test cases.  

REFERENCES 

1. H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental regression testing. In 

Proceedings of the Conference on Software Maintenance, pages 348-357, Sept. 1993. 

2. Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for selective regression testing. In 

Proceedings of the 16th International Conference on Software Engineering, pages 211-222, 

May 1994. 

3. K. Fischer, F. Raji, and A. Chruscicki. A methodology for retesting modified software. In 

Proceedings of the National Telecommunications Conference B-6-3, pages 1-6, Nov. 1981. 



 

4. T.L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg Rothermel, An 

empirical study of regression test selection techniques. ACM Transactions on Software 

Engineering and Methodology, 10(2): pp. 184-208 (2001). 

5. M.J. Harrold and M.L. Soffa. An incremental approach to unit testing during maintenance. In 

Proceedings of the Conference on Software Maintenance, pages 362-367, Oct. 1988. 

6. J. Hartmann and D. Robson. Techniques for selective revalidation. IEEE Software, 16(1):31-

38, Jan. 1990. 

7. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of 

dataflow- and controlflow-based test adequacy criteria. In Proceedings of the 16th 

International Conference on Software Engineering, pages191-200, May 1994. 

8. H.K.N. Leung and L.J. White. A cost model to compare regression test strategies. In 

Proceedings of International Conference on Software Maintenance, pages 201-208. Oct. 1991. 

9. T. Ostrand and M. Balcer. The category-partition method for specifying and generating 

functional tests. Communications of the ACM, 31(6), June 1988. 

10. T. Ostrand and E. Weyuker. Using dataflow analysis for regression testing. In Sixth Annual 

Pacific Northwest Software   Conference, pages 233-247, Sept. 1988. 

11.  J. Bible, G. Rothermel, and D. Rosenblum, A comparative study of coarse- and fine-grained 

safe regression test selection.  ACM Transactions on Software Engineering and Methodology, 

V. 10, no. 2, April, 2001, pages 149-183. 

12. D. Rosenblum and E. J. Weyuker. Lessons learned from a regression testing case study. 

Empirical Software Engineering Journal, 2(2), 1997. 

13. G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE 

Transactions on Software Engineering, 22(8):529-551, Aug. 1996. 



 

14. G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM 

Transactions on Software Engineering and Methodology, 6(2):173-210, Apr. 1997. 

15. G. Rothermel and M. J. Harrold. Aristotle: A system for research and development of 

program analysis based tools. Technical Report OSU-CISRC-3/97-TR17, Ohio State 

University, Mar. 1997. 

16. G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test selection 

technique. IEEE Transactions on Software Engineering, 25(6), pages 401-419, June 1998. 

17. F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual differencing regression 

testing technique. In Proceedings of the International Conference on Software Maintenance, 

pages 44-53, Nov. 1998. 

18. G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia, The impact of test 

suite granularity on the cost-effectiveness of regression testing. In Proceedings of the 

International Conference Software Engineering, May, 2002, pages 230 – 240. 

19. J. M. Voas, PIE: A dynamic failure-based technique, IEEE Transactions on Software 

Engineering, August 1992, 18(8), pp. 717-727. 

20. J.-M. Kim, A. Porter, G. Rothermel, An empirical study of regression test application 

frequency. In Proceedings of the 22nd International Conference on Software Engineering, 

Limerick, Ireland, June 2000, pages 126-135. 

21. A. Malishevsky, S. Elbaum, G. Rothermel, Modeling the cost-benefits tradeoffs for 

regression testing techniques. In Proceedings of the International Conference on Software 

Maintenance, Oct. 2002, pages 204-213. 

22. S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, and S. Kanduri, Understanding 

the effects of changes on the cost-effectiveness of regression testing techniques. Journal of  



 

Software Testing, Verification, and Reliability., V. 13, no. 2, June, 2003, pages 65-83. 


