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Regression testing is the process of validating modified software to detect whether new errors
have been introduced into previously tested code and to provide confidence that modifications
are correct. Since regression testing is an expensive process, researchers have proposed
regression test selection techniques as a way to reduce some of this expense. These techniques
attempt to reduce costs by selecting and running only a subset of the test cases in a program’s
existing test suite. Although there have been some analytical and empirical evaluations of
individual techniques, to our knowledge only one comparative study, focusing on one aspect of
two of these techniques, has been reported in the literature. We conducted an experiment to
examine the relative costs and benefits of several regression test selection techniques. The
experiment examined five techniques for reusing test cases, focusing on their relative abilities
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to reduce regression testing effort and uncover faults in modified programs. Our results
highlight several differences between the techniques, and expose essential trade-offs that
should be considered when choosing a technique for practical application.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debug-
ging—Testing tools (e.g., data generators, coverage testing); Debugging aids

Additional Key Words and Phrases: Regression testing, selective retest, empirical study

1. INTRODUCTION

As developers maintain a software system, they periodically regression test
it, hoping to find errors caused by their changes and provide confidence
that their modifications are correct. To support this process, developers
often create an initial test suite, and then reuse it for regression testing.

The simplest regression testing strategy, retest all, reruns every test case
in the initial test suite. This approach, however, can be prohibitively
expensive—rerunning all test cases in the test suite may require an
unacceptable amount of time. An alternative approach, regression test
selection, reruns only a subset of the initial test suite. Of course, this
approach is imperfect as well—regression test selection techniques can
have substantial costs, and can discard test cases that could reveal faults,
possibly reducing fault detection effectiveness.

This trade-off between the time required to select and run test cases and
the fault detection ability of the test cases that are run is central to
regression test selection. Because there are many ways in which to ap-
proach this trade-off, a variety of test selection techniques have been
proposed (e.g., Agrawal et al. [1993], Chen et al. [1994], Harrold and Soffa
[1988], Hartmann and Robson [1990], Leung and White [1990], Ostrand
and Weyuker [1988], and Rothermel and Harrold [1997]). Although there
have been some analytical and empirical evaluations of individual tech-
niques [Chen et al. 1994; Rosenblum and Weyuker 1997b; Rothermel and
Harrold 1997; 1998], to our knowledge only one comparative study, focus-
ing on one aspect of two of these techniques, has been reported in the
literature [Rosenblum and Rothermel 1997].

We hypothesize that different regression test selection techniques create
different trade-offs between the costs of selecting and executing test cases,
and the need to achieve sufficient fault detection ability. Because there
have been few controlled experiments to quantify these trade-offs, we
conducted such a study. Our results indicate that the choice of regression
test selection algorithm significantly affects the cost-effectiveness of regres-
sion testing. Below we review the relevant literature, describe the test
selection techniques we examined, and present our experimental design,
analysis, and conclusions.
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2. REGRESSION TESTING SUMMARY AND LITERATURE REVIEW

2.1 Regression Testing

Let P be a procedure or program; let P9 be a modified version of P; and let
T be a test suite for P. A typical regression test proceeds as follows:

(1) Select T9 # T, a set of test cases to execute on P9.

(2) Test P9 with T9, establishing P9 ’s correctness with respect to T9.

(3) If necessary, create T99, a set of new functional or structural test cases
for P9.

(4) Test P9 with T99, establishing P9 ’s correctness with respect to T99.

(5) Create T999, a new test suite and test execution profile for P9, from T,
T9, and T99.

Each of these steps involves important problems. Step 1 involves the
regression test selection problem: the problem of selecting a subset T9 of T
with which to test P9. Step 3 addresses the coverage identification problem:
the problem of identifying portions of P9 or its specification that require
additional testing. Steps 2 and 4 address the test suite execution problem:
the problem of efficiently executing test suites and checking test results for
correctness. Step 5 addresses the test suite maintenance problem: the
problem of updating and storing test information. Although each of these
problems is significant, we restrict our attention to the regression test
selection problem.

Note that regression test selection is applicable both in cases where the
specifications have not changed, and where they have changed. In the
latter case, it is necessary to identify the test cases in T that are obsolete
for P9 prior to performing test case selection. (Test case t is obsolete for
program P9 if and only if t specifies an input to P9 that is invalid for P9, or
t specifies an invalid input-output relation for P9.) Having identified these
test cases and removed them from T, regression test selection can be
performed on the remaining test cases. Note further that the identification
of obsolete test cases is necessary if any test case reuse is desired (whether
by test selection or retest-all), because if we cannot effectively determine
test case obsolescence, we cannot effectively judge test case correctness.

2.2 Regression Test Selection Techniques

A variety of regression test selection techniques have been described in the
research literature. A survey by Rothermel and Harrold [1996] describes
several families of techniques; we consider three such families, along with
two additional approaches often used in practice. Here we describe these
families and approaches, and provide a representative example of each;
Rothermel and Harrold [1996] and the references for the cited techniques
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themselves provide additional details. Later, in Section 3.2.3, we provide
details on the specific techniques that we use in our experiments.

2.2.1 Minimization Techniques. Minimization-based regression test se-
lection techniques (e.g., Fischer et al. [1981] and Hartmann and Robson
[1990]), hereafter referred to as minimization techniques, attempt to select
minimal sets of test cases from T that yield coverage of modified or affected
portions of P.

For example, the technique of Fischer et al. [1981] uses systems of linear
equations to express relationships between test cases and basic blocks
(single-entry, single-exit sequences of statements in a procedure). The
technique uses a 0-1 integer programming algorithm to identify a subset T9
of T that ensures that every segment that is statically reachable from a
modified segment is exercised by at least one test case in T9 that also
exercises the modified segment.

2.2.2 Dataflow Techniques. Dataflow-coverage-based regression test se-
lection techniques (e.g., Harrold and Soffa [1988], Ostrand and Weyuker
[1988], and Taha et al. [1989]), hereafter referred to as dataflow techniques,
select test cases that exercise data interactions that have been affected by
modifications.

For example, the technique of Harrold and Soffa [1988] requires that
every definition-use pair that is deleted from P, new in P9, or modified for
P9 be tested. The technique selects every test case in T that, when executed
on P, exercised deleted or modified definition-use pairs, or executed a
statement containing a modified predicate.

2.2.3 Safe Techniques. Most regression test selection techniques—min-
imization and dataflow techniques among them—are not designed to be
safe. Techniques that are not safe can fail to select a test case that would
have revealed a fault in the modified program. In contrast, when an explicit
set of safety conditions can be satisfied, safe regression test selection
techniques guarantee that the selected subset, T9, contains all test cases in
the original test suite T that can reveal faults in P9 (see Section 3.2.3).

Several safe regression test selection techniques have been proposed
(e.g., Chen et al. [1994], Laski and Szermer [1992], Rothermel and Harrold
[1997], and Vokolos and Frankl [1997]); the theory behind safe test selec-
tion and the set of conditions required for safety have been detailed in
Rothermel and Harrold [1996]. For example, the technique of Rothermel
and Harrold [1997] uses control-flow-graph representations of P and P9,
and test execution profiles gathered on P, to select every test case in T
that, when executed on P, exercised at least one statement that has been
deleted from P, or that, when executed on P9, will exercise at least one
statement that is new or modified in P9 (when P is executed, a statement
that does not exist in P cannot be exercised).
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2.2.4 Ad Hoc/Random Techniques. When time constraints prohibit the
use of a retest-all approach, but no test selection tool is available, develop-
ers often select test cases based on “hunches,” or loose associations of test
cases with functionality. Another simple approach is to randomly select a
predetermined number of test cases from T.

2.2.5 Retest-All Technique. The retest-all technique simply reuses all
existing test cases. To test P9, the technique effectively “selects” all test
cases in T.

2.3 Previous Empirical Work

Unless test selection, program execution with the selected test cases, and
validation of the results take less time than rerunning all test cases, test
selection will be impractical. Therefore, cost-effectiveness is one of the first
questions researchers in this area have studied.

Rosenblum and Weyuker [1997a; 1997b] and Rothermel and Harrold
[1997; 1998] have conducted empirical studies to investigate whether
certain regression test selection techniques are cost-effective relative to
retest-all.

Rosenblum and Weyuker applied their regression test selection algo-
rithm, implemented in a tool called TestTube , to 31 versions of the
KornShell and its associated test suites. For 80% of the versions, their
algorithm required 100% of the test cases. The authors note, however, that
the test suite for KornShell contained a relatively small number (16) of test
cases, many of which caused all components of the system to be exercised.

In contrast, Rothermel and Harrold applied their regression test selec-
tion algorithm, implemented in a tool called DejaVu , to a variety of
programs. For a set of 100–500 line programs DejaVu was able to discard
an average of 45% of the test cases, while for a larger software system
(50,000 lines) it was able to discard an average of 95%.

Thus, although our understanding of the issue is incomplete, there is
some evidence to suggest that test selection can provide savings. Therefore,
further empirical investigation of test selection is warranted.

The only comparative study of regression test selection techniques
[Rosenblum and Rothermel 1997] that we are aware of in the literature to
date was performed by Rosenblum and Rothermel and compared the test
selection results of TestTube and DejaVu . Their study showed that
TestTube was frequently competitive with DejaVu in terms of its ability to
reduce the number of test cases selected, but that DejaVu sometimes
substantially outperformed TestTube . The study did not consider relative
fault detection abilities, or compare techniques other than safe techniques.

2.4 Open Questions

Since nonsafe techniques can discard fault-revealing test cases while safe
techniques do not, the trade-offs between test selection and fault detection
should be explored. This raises the following questions:
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—How do techniques differ in terms of their ability to reduce regression
testing costs?

—How do techniques differ in terms of their ability to detect faults?

—What trade-offs exist between test suite size reduction and fault detec-
tion ability?

—When is one technique more cost-effective than another?

—How do factors such as program design, location and type of modifica-
tions, and test suite design affect the efficiency and effectiveness of test
selection techniques?

3. THE EXPERIMENT

3.1 Operational Model

To answer our questions we needed to measure the costs and benefits of
each regression test selection technique. To do this we constructed two
models: one for calculating the cost of using a regression test selection
technique, and another for calculating the fault detection effectiveness of
the resulting test suite. We here restrict our attention to the costs and
benefits defined by these models, but there are many other costs and
benefits these models do not capture. Some possible additions to the models
are mentioned in Section 5.

3.1.1 Modeling Cost. Leung and White [1991] present a cost model for
regression test selection techniques. Their model considers both test selec-
tion and identification of inadequately tested components; we adapt it to
consider just the cost of a regression test selection technique relative to
that of the retest-all approach.

In our model, the cost of regression test selection is A 1 E~T9!, where A
is the cost of the analysis required to select test cases, and E~T9! is the cost
of executing and validating the selected test cases. The cost of the retest-all
technique is E~T !, where E~T ! is the cost of executing and validating all
test cases.

Our model makes several simplifying assumptions. It assumes that the
cost of executing test cases is the same under regression test selection and
the retest-all approach, and that test cases have uniform costs [Leung and
White 1991]. It also assumes that all subcosts can be expressed in equiva-
lent units, whereas, in practice, they are often a mixture of CPU time,
human effort, and equipment costs [Rosenblum and Weyuker 1997b].

Given our model, we needed to measure two things: the reduction in the
cost of executing and validating test cases, and the average analysis cost.
Given our assumptions, the former can be measured in terms of test suite
size reduction, as (?T9? / ?T?). For several reasons, however, we did not
measure analysis costs directly. Most importantly, we did not possess
implementations of all techniques, and instead were required to simulate
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techniques for which we had no implementations. Furthermore, because
the experimental design required us to run over 264,400 test suites, we
used several machines. We did not believe that the performance metrics
taken from different machines were comparable. Instead we try to estimate
how large analysis costs can be before they outweigh reductions in test
suite size (see Section 4.3).

3.1.2 Modeling Fault Detection Effectiveness. Test selection techniques
attempt to lower costs by selecting a subset of an existing test suite, but
this approach may allow some fault-revealing test cases to be discarded.
Because an important benefit of testing is that it detects faults, it is
important to understand whether, and to what extent, test selection
reduces fault detection. We considered two methods for calculating reduc-
tions in fault detection effectiveness.

On a Per-Test-Case Basis. One way to measure a reduction in the fault
detection effectiveness of a regression test selection technique, given pro-
gram P and faulty version P9, is to identify those test cases that are in T
and reveal at least one fault in P9, but that are not in T9. This quantity can
then be normalized by the number of fault-revealing test cases in T. One
problem with this approach is that multiple test cases may reveal a given
fault. In this case some test cases could be discarded without reducing fault
detection effectiveness; however, this measure penalizes such a decision.

On a Per-Test-Suite Basis. Another approach is to classify the results of
test selection into one of three outcomes: (1) no test case in T is fault-
revealing, and, thus, no test case in T9 is fault-revealing; (2) some test case
in both T and T9 is fault-revealing; or (3) some test case in T is fault-
revealing, but no test case in T9 is fault-revealing. Outcome 1 denotes
situations in which the test suite is inadequate. Outcome 2 indicates test
selection that does not reduce fault detection, and outcome 3 captures those
cases in which test selection compromises fault detection.

We selected the second method for use in our analysis. Under this
approach, for each program, our measure of fault detection effectiveness is:
one minus the percentage of cases in which T9 contains no fault-revealing
test cases (i.e., outcome 3 occurs).

It is important to note that both of these approaches measure a test
suite’s ability to detect at least one fault. They do not measure the exact
number of faults detected. As we shall discuss further below, this distinc-
tion is unimportant for all but one of our subject programs, as they have
versions that each contain exactly one fault.

3.2 Experimental Instrumentation

3.2.1 Programs. For our study, we used nine C programs, with a
number of modified versions and test suites for each program. The subjects
come from three sources:
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—a group of seven C programs collected and constructed initially by
Hutchins et al. [1994] for use in experiments with dataflow- and control-
flow-based test adequacy criteria,

—an interpreter for an array definition language, used within a large
aerospace application, space , and

—one large subsystem, player , from the Internet game Empire .

We slightly modified some of the programs and versions in order to use
them with our tools. Table I describes these subjects, showing the number
of functions, lines of (noncomment) code, distinct versions, test pool size,
and the size of the average test suite. We describe these and other data in
the following paragraphs.

3.2.1.1 The Siemens Programs. Seven of our subject programs origi-
nated with a previous experiment performed by Hutchins et al. [1994].
These programs are written in C, and range in size from 7 to 21 functions,
and from 138 to 516 lines of code.

For each of these programs, Hutchins et al. constructed a test pool of
black-box test cases [Hutchins et al. 1994] using the category partition
method and Siemens Test Specification Language tool [Balcer et al. 1989;
Ostrand and Balcer 1988]. They then added additional white-box test cases
to ensure that each exercisable statement, edge, and definition-use pair in
the base program or its control-flow graph was exercised by at least 30 test
cases.

Hutchins et al. also created faulty versions of each program (between 7
and 41 versions) by modifying code in the base version; in most cases they
modified a single line of code, and in a few cases they modified between 2
and 5 lines of code. Next, they discarded modifications that they considered
either too easy to find (found by more than 350 test cases) or too difficult to
find (found by fewer than three) with their previously developed test cases.

3.2.1.2 Space. Space has been used as a subject for several empirical
studies of testing [Vokolos and Frankl 1997; 1998; Wong et al. 1997]. As
Table I indicates, it contains 136 C functions and 6218 lines of (noncomment)

Table I. Subjects

Program Name
Number of
Functions Lines of Code

Number of
Versions Test Pool Size

Average Test
Suite Size

replace 21 516 32 5542 398
print_tokens 18 402 7 4130 318
print_tokens2 19 483 10 4115 389
schedule2 16 297 10 2710 234
schedule 18 299 9 2650 225
totinfo 7 346 23 1054 199
tcas 9 138 41 1608 83
space 136 6218 33 13585 4361
player 766 49316 5 1033 154
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code. The program functions as an interpreter for an array definition
language (ADL): it reads a file that contains several ADL statements and
checks the contents of the file for adherence to the ADL grammar and to
specific consistency rules. If the ADL file is correct, space outputs a data
file containing a list of array elements, positions, and excitations; otherwise
the program outputs error messages.

Space has 33 versions, each containing a single fault that was discovered
during the program’s development or later by the authors of this paper.

The test pool for space was constructed in two stages. First we obtained
a pool of 10,000 test cases from Vokolos and Frankl, who had constructed
the pool for another study by randomly generating test cases [Vokolos and
Frankl 1998]. We then added new test cases until each executable edge in
the control-flow graph was exercised by at least 30 test cases.1 This process
yielded a test pool of 13,585 test cases.

3.2.1.3 Player. Player is the largest subsystem of the Internet game
Empire . As Table I indicates, it contains 766 functions (all written in C)
and 49,316 lines of (noncomment) code. Player is essentially a transaction
manager that operates as a server. Its main routine consists of initializa-
tion code followed by a five-statement event loop in which execution pauses
and waits for receipt of a user command. Users communicate with the
server by running a small client program that takes user input and passes
it as commands to player . When player receives a command it processes
the command—usually by invoking one or more subroutines—and then
waits for another command. While processing commands, player may
return data to the user’s client program for display on the user’s terminal,
or write data to a local database (a directory of ASCII and binary files) that
keeps track of game state. The event loop and the program terminate when
a user issues a “quit” command.

Since its creation in 1986, the Empire code has been enhanced and
corrected many times, with most changes involving the player subsystem.
For this experiment we located a “base” version of player with five distinct
modified versions (see Table II). Each version had been created by merging
multiple, often unrelated, changes made by one or more independent
coders. These versions, therefore, do not form a sequence of modifications of
the base program; rather, each is a unique modified version of the base
version.

1We treated 17 edges exercisable only on malloc failures as nonexecutable.

Table II. Modified Versions of player

Version Functions Modified Lines of Code Changed

1 3 114
2 2 55
3 11 726
4 11 62
5 42 221
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Player is an interesting subject for several reasons. First, the program is
part of an existing software system that has a long history of maintenance
at the hands of numerous coders, and in this respect, the system is similar
to many existing commercial software systems. Second, as a transaction
manager, player is representative of a large class of software systems that
receive and process interactive user commands, such as database manage-
ment systems, operating systems, menu-driven systems, and computer-
aided drafting systems. Third, we were able to locate real modified versions
of one base version of player . Finally, although not huge, the program is
not trivial.

There were no test cases available for player . Therefore, we created our
own test cases using the Empire information files as an informal specifica-
tion. These files describe the 154 player commands and describe the
parameters and special effects associated with each.

The test cases we constructed exercise each parameter, special effect, and
erroneous condition described in the information files. Because the com-
plexity, parameters, and effects of commands vary widely, we had to create
between one and 30 test cases for each, ultimately producing a test pool of
1033 test cases. To avoid a possible source of bias, we constructed this test
pool prior to examining the code of the modified versions.

Each test case is a sequence of between one and 28 lines of ASCII text
representing potential user commands. To use these test cases, however,
some additional scaffolding was needed. Therefore we created a testing
script and several accompanying tools.

Note, that unlike the Siemens programs and space , the modified ver-
sions of player do involve specification changes. In our test case creation,
however, we ensured that no test cases in the test pool were obsolete for
any of the player versions. (Section 2.1 describes the necessity of this.)
Thus, regression test selection can be applied to all of these test cases, on
each of the versions.

3.2.2 Tests, Test Pools, Versions, and Original Test Suites. We used the
test pools for the Siemens programs and space to create two types of test
suites for each of those programs: edge-coverage-adequate and random. To
obtain edge-coverage-adequate test suites, we used the test pools for the
base programs, and test coverage information that we gathered for the test
cases, to generate 1000 edge-coverage-adequate test suites for each pro-
gram. More precisely, to generate a test suite T for base program P from
test pool Tp, we considered each edge in the control-flow graph G for P. For
each such edge E, we obtained a list of test cases Tp~E! # Tp that had
exercised that edge. We then used the C pseudorandom-number generator
“rand,” seeded initially with the output of the C “time” system call, to
obtain an integer which we treated as an index i into Tp~E! (modulo
?Tp~E!?). We added test case i from Tp~E! to T if it was not already present
in T. For each program we generated 1000 such test suites; Table I lists the
average sizes of the test suites generated.
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To create test suites for player we used a different approach. We viewed
each player command as a unit of functionality, and created function-
coverage-adequate test suites by selecting, from the set of test cases for
each command, one test case. We generated 100 such test suites, each
containing 154 test cases.

For each of the nine programs we also generated a set of random test
suites, one for each coverage-based suite generated for the program. To
generate the kth random test suite T for base program P ~1 # k #

1000!, we determined n, the number of test cases in the kth coverage-
based test suite, and then chose test cases randomly from the test pool for
P and added them to T until T contained n test cases. This process yielded
random test suites of the same size as the coverage-based suites.

These test cases differ in their ability to detect faults. Figure 1 uses
boxplots2 to depict the distribution of the proportion of fault-revealing test
cases per test suite used in our studies over all programs. We see that the
effectiveness of these test suites differs substantially across different
programs.

Test cases for the Siemens programs find known faults with probability
between 0.06% and 19.77%, while those for space find faults with proba-
bility between 0.04% and 94.35%. While the range is wide for space , the
percentage of fault detecting test cases range from 0.77% to 4.55% for
player . Over all versions, the median percentage of test cases detecting a
fault is less than 7%.

2In a boxplot, a box represents a data distribution. The box’s height spans the central 50% of
the data, and its upper and lower ends mark the upper and lower quartiles. The bold dot
within the box denotes the median. The T-shaped whiskers indicate the 10% and 90%
quantiles, respectively. All other detached points are “outliers.” For comparing the averages of
data, the median is more appropriate than the mean, since it is less influenced by outliers.
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Fig. 1. Percentage of fault-revealing test cases per test suite across all program versions.
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3.2.3 Regression Test Selection Techniques. To perform the experi-
ments, we required implementations or simulations of several regression
test selection techniques. Note, that in all cases in which simulation was
necessary, our simulations were designed to ensure that we could obtain
exact results with respect to test cases selected, allowing exact test suite
size reduction measures, and exact fault detection effectiveness measures.

3.2.3.1 Minimization Technique. We created a simulator tool as a min-
imization technique that selects a minimal test suite T9, such that T9 is
edge-coverage-adequate for a set of edges, in the control-flow graphs for P
or P9, that are associated with code modifications. In this context, we
considered an edge to be associated with a code modification if its sink is a
node corresponding to a statement that has been deleted or modified for P9,
or added to P9.

To perform this process on the Siemens programs and space , we used
Rothermel and Harrold’s regression test selection tool DejaVu (described
below in reference to our safe technique), which selects exactly the desired
edges in cases (such as these) where programs do not contain multiple
modifications. We then used test case execution information obtained
through profiling to determine the test cases associated with each edge,
and we selected one test case through each such edge.

On player we required a different approach due to its inclusion of
multiple modifications. We hand-instrumented the code of player , at the
entry to each modification point (at each location corresponding to an edge
entering that point), to report the set of test cases that reached that point.
We then selected one test case through each point for inclusion in T9, and
when all selection was complete we eliminated duplicate test cases.

3.2.3.2 Dataflow Technique. As a dataflow technique, we simulated a
tool by manually inspecting program modifications, and generating a list of
tuples that represent the definition-use pairs that are affected by the
modifications. In this context, we considered a definition-use pair to be
affected by a modification if it had been deleted from P in obtaining P9, or if
it involved a definition or use contained in a statement or predicate that
had been modified in creating P9.

We used a dataflow testing tool [Harrold et al. 1997] to identify the test
cases in the test suite for each program that satisfied the affected defini-
tion-use pairs for each version of that program. For each version, we
created a set of selected test cases T9 that contained all such test cases.

The first step of this simulation process was human-labor-intensive, and
it was not feasible to perform this process on the space and player
programs; thus, we were able to apply this technique only to the Siemens
programs.

3.2.3.3 Safe Technique. We used an implementation of Rothermel and
Harrold’s regression test selection algorithm as a safe technique, imple-
mented as a tool called DejaVu , and integrated with the Aristotle
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program analysis system.3 We provide a brief overview of the approach
here; Rothermel and Harrold [1997] present the underlying test selection
algorithm and tool in detail, with cost analyses and examples of its use.

DejaVu constructs control-flow graph representations of the procedures
in two program versions P and P9, in which individual nodes are labeled by
their corresponding statements. The approach assumes that a test history is
available that records, for each test case t in T and each edge e in the
control-flow graph for P, whether t traversed e. This test history is
gathered by instrumentation code that is inserted into the source code of
the system under test.

DejaVu performs a simultaneous depth-first graph walk on a pair of
control-flow graphs for each procedure and its modified version in P and P9,
keeping pointers to the current node reached in each graph. During this
walk, the algorithm examines the statements associated with the nodes in
the two graphs, and the edges (representing control flow) leaving those
nodes. When these are identical, the algorithm continues its walk at the
successor nodes; when these are nonidentical, the algorithm places the
edge it just followed into a set of “dangerous edges” and returns to the
source of that edge, ending that trail of recursion. After the algorithm has
determined all the dangerous edges that it can reach by crossing nondan-
gerous edges, it terminates. At this point, any test case t [ T is selected
for retesting P9 if the execution trace for t—a listing of the edges, in the
control-flow graph for P, that were traversed by t when it was executed
previously on P—contains a dangerous edge.

DejaVu guarantees safety as long as equivalent execution traces on P
and P9 for identical inputs imply that P and P9 will produce equivalent
behaviors. As long as the three assumptions discussed in Rothermel and
Harrold [1997] hold, this condition is met, and thus DejaVu is safe,
necessarily selecting at least all test cases in T that could, if executed on
P9, reveal faults in P9. (In brief, the three necessary assumptions are that
(1) the test cases in T produced correct results when executed on P, (2) any
test cases in T that are obsolete for P9 (no longer represent specified
input-output relations for P9) have been removed from T, and (3) the
testing environment can be controlled such that P and P9 execute deter-
ministically on T.) For the programs and test suites that we studied, these
conditions were met.

3.2.3.4 Random Technique. As a random technique we created a tool
that, given a selection percentage n and a test suite T, randomly selects
n% of the test cases from T, outputting T9, a reduced test suite containing
only the selected test cases.

3Our experiments used the original tool on the Siemens programs and space ; on player , it
was necessary to simulate a portion of the tool’s operations; however, the use of this
simulation affects only tool analysis time, not test selection, and thus does not impact our
results.
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3.2.3.5 Retest-All Technique. The retest-all technique required no im-
plementation.

3.3 Experimental Design

3.3.1 Variables. The experiment manipulated three independent vari-
ables:

(1) the subject program (9 programs, each with many modified versions);

(2) the test selection technique (safe, dataflow, minimization, random(25),
random(50), random(75), retest-all); and

(3) the criteria used to create the test suite (edge-coverage-adequate or
randomly selected).

On each run, with program P, version P9, technique M, and test suite T,
we measured

(1) the ratio of the number of test cases in the selected test suite T9 to the
number of test cases in the original test suite T and

(2) whether one or more test cases in T9 reveals at least one fault in P9.

For each combination of program, version, technique,4 and test suite
composition type we used 100 of the associated test suites. From these 100
data points we computed two dependent variables:

(1) average reduction in test suite size and

(2) fault detection effectiveness (1 minus the percentage of test suites in
which T would have revealed at least one fault in P9, but T9 did not).

3.3.2 Design. This experiment uses a full-factorial design with 100
repeated measures. That is, for each subject program, we selected 100
coverage-based and 100 random test suites from the test-suite universe.
Then, for each program version, we applied each applicable test selection
technique to each of the 200 test suites. Finally, we evaluated the fault
detection effectiveness of the resulting test suites.

3.3.3 Threats to Internal Validity. Threats to internal validity are influ-
ences that can affect the dependent variables without the researcher’s
knowledge. Our greatest concern is instrumentation effects that can bias
our results.

Instrumentation effects are caused by differences in the test process
inputs: the code to be tested, the locality of the program change, or the
composition of the test suite. In this study, we use two different criteria for
composing test suites: one in which test suites are randomly selected from
the test pool, and one in which the test suite must provide coverage.

4Actually, for each applicable technique. Recall from Section 3.2.3 that we did not apply the
dataflow technique to space or to player .
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However, at this time we do not control for the structure of the subject
programs, nor for the locality of program changes. To limit problems
related to this, we run each test selection algorithm on each test suite and
each subject program.

3.3.4 Threats to External Validity. Threats to external validity are
conditions that limit our ability to generalize the results of our experiment
to industrial practice. We considered two sources of such threats: (1)
artifact representativeness, and (2) process representativeness.

Artifact representativeness is a threat when the subject programs are not
representative of programs found in industrial practice. There are several
such threats in this experiment. First, most of the subject programs (the
Siemens programs) are of small size. As discussed earlier, there is some
evidence to suggest that larger programs allow greater test suite size
reduction, although at higher cost, than smaller programs do. Thus, larger
programs may be subject to different cost-benefit trade-offs. We have begun
to address this problem by studying the larger space and player pro-
grams. As we collect other large programs with versions and test cases, we
will be able to further limit, but not eliminate, these problems. Also, in
most of the programs (Siemens and space ) there is exactly one fault in
each subject program. Industrial programs have much more complex fault
patterns. Again, we will have to obtain further experimental subjects and
improve our measurement infrastructure in order to capture exactly which
of several faults are discovered by a test suite. We have begun to explore
such improved measurement techniques in our research [Kim et al. 2000].

Threats regarding process representativeness arise when the testing
process we use is not representative of the industrial one. This may also
endanger our results because our test suites may be more or less compre-
hensive than those created in practice. Also, our experiment mimics a
corrective maintenance process, but there are many other times in which
regression testing might be used.

3.3.5 Threats to Construct Validity. Threats to construct validity arise
when measurement instruments do not adequately capture the concepts
they are supposed to measure. For example, in this experiment our mea-
sures of cost and effectiveness are very coarse. For instance, they treat all
faults as equally severe. Another problem is that our measure of fault
detection effectiveness captures the ability of a test suite to identify at least
one fault. Ideally, this measure should, instead, capture a test suites’
ability to detect all faults in a system. For the Siemens programs and
space , which have exactly one fault in each version, these definitions are
equivalent. For player , our effectiveness measures may be inflated. As we
discussed earlier, we are currently experimenting with new approaches to
gathering this information.

3.3.6 Analysis Strategy. Our analysis strategy has three steps. First we
summarize the data. Then we compare the ability of the test selection
techniques to reduce test suite size, and we compare the fault detection
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effectiveness of the resulting test suites. Finally, we make several compar-
isons between program-analysis-based (i.e., minimization, safe, and data-
flow) and random techniques. For example, in one analysis we explore how
large analysis costs can become before the program-analysis-based tech-
niques become less cost-effective than random ones.

4. DATA AND ANALYSIS

Two sets of data are important for this study: the test selection and the
fault detection summaries. This information is captured for every test
suite, every subject program, and every test selection technique. The test
selection summary gives the size (in number of test cases) of T and T9.
From this information we calculate the percentage reduction in test suite
size. The fault detection summary shows whether T and T9 contain any
fault-revealing test cases. From this information we determine whether the
test selection technique compromised fault detection effectiveness.5

In addition to our use of boxplots to display data (as described in Section
3.2.2), we also use arrays of boxplots (a type of Trellis display [Chambers et
al. 1983]) to show data distributions that are conditioned on one or more
other variables (e.g., Figure 2). By conditioned, we mean that data are
partitioned into subsets, such that the data in each subset have the same
value for the conditioning variable. For example, Figure 3 depicts the fault
detection effectiveness for test suites created by different techniques,
conditioned on the program on which the test suite was run. That means
that the data are partitioned into nine subsets, one for each program. And
then we draw one boxplot for each subset.

4.1 Test Suite Size Reduction

Figure 2 depicts the ability of each technique to reduce test suite size,
conditioned on program. For these programs, we see that the random
techniques extract a constant percentage of the test cases (by construction)
and that minimization (by nature of the modifications made to the subjects)
almost always (in 84% of the cases, most of the exceptions occurring for
player ) selects only 1 test case. The safe and the dataflow techniques
behave similarly on the Siemens programs (median reduced test suite size
is 60% for coverage-based test suites and 54% for random). Interestingly,
the safe technique performs best on the two large programs: median
reduced suite size is roughly 5% for player and 20% for space .

4.2 Fault Detection

Figure 3 depicts the fault detection effectiveness of test suites selected with
each technique, conditioned on program. Overall, we found that minimiza-
tion had the lowest fault detection effectiveness. The effectiveness of the
random techniques increased with test suite size, but the rate of increase

5Readers who wish to examine the data or the experimental artifacts should contact Adam
Porter.
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Fig. 2. Test suite size reduction by selection technique, conditioned on program.
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Fig. 3. Fault detection effectiveness by selection technique, conditioned on program.
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diminished as size increased. Again the safe and dataflow techniques
exhibited similar median performances on the Siemens programs, but the
dataflow distribution has several outliers (e.g., for the schedule , sched-
ule2 , and print_tokens2 programs). This occurs because in some cases
the dataflow technique allows faults to go undetected, while the safe
technique does not.

One interesting observation is that the fault detection effectiveness of
test suites chosen by the minimization technique is particularly high for
player . One reason for this is that versions of player contain multiple
modifications. Thus, the average size of the selected test suite is larger for
player than for other programs, giving these test suites more chances to
identify faults.

4.3 Cost-Benefit Trade-Offs

Figure 4 depicts trade-offs between test suite size reduction versus fault
detection effectiveness of each selection technique. Each panel in Figure 4
is a scatterplot depicting the performances of one regression test selection
technique. Each scatterplot contains a number of points and one “X”
symbol. Each point represents the performance of the associated regression
test selection technique when applied to a program version and test suite
pair. Each point is plotted at position (x,y), where x is the reduced test suite
size, and y is the fault detection effectiveness of the reduced test suite. The
x-coordinate of the “X” symbol is equal to the median reduced test suite size
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for the observations depicted in the scatterplot. The y-coordinate is equal to
the median fault detection effectiveness.

For random techniques the selected test suite size is predetermined,
while its effectiveness is unknown in advance. Random techniques were
very effective in general (median 88% for random25). Overall, as the
selection ratio grows, effectiveness also tends to grow, but the rate of
growth diminishes.

The safe technique always had 100% effectiveness, but its reduced test
suite sizes vary widely (from 0% to 100%). Dataflow shows very similar
performance, but, since it is not safe, it can fail to select some fault
detecting test cases.

Minimization, on the other hand, chose very few test cases, while its
effectiveness varied widely (0% to 100%).

If we do not consider the analysis costs of nonrandom techniques, then
the decision to use a particular regression test selection technique will
depend on the penalty for missing faults in relation to the cost of running
more test cases. This will obviously depend on many context-specific
factors.

In this section we explore the effect of analysis costs for nonrandom
techniques on the relationships in Figure 4. To do this we examine how
each nonrandom technique compares to random techniques and to each
other. We assume that the analysis costs for nonrandom techniques can be
stated in terms of the cost to run a single test case (analysis costs for
random techniques are nearly 0), and then we characterize how many test
cases can be run (i.e., how long analysis can take) before the nonrandom
technique becomes less cost-effective than random ones.

We begin with minimization, the rule with the smallest test suites and
lowest fault detection effectiveness. We compare its detection rate to that of
a randomized rule calibrated to have the same total computational cost.
Our goal is to find an upper bound, k, on the analysis cost of minimization.
That is, if the analysis costs are greater than the cost of running k test
cases, then there exists a random technique that is less expensive and has
the same fault detection effectiveness.

We then perform similar analyses comparing the safe technique to other
randomized rules and to retest-all. Conceivably, we could perform a similar
analysis comparing the dataflow technique to other randomized rules as
well. In our experiment, however, the safe and dataflow techniques be-
haved similarly on the Siemens programs: their fault detection effective-
ness results were nearly identical, and for many versions they chose the
same average numbers of test cases per test suite. Moreover, we are not
able to apply the dataflow technique to space or player . Consequently, in
the next section we analyze only the safe technique.

After each comparison we discuss our interpretations and their limita-
tions.

4.3.1 Minimization versus Randomization. The test suites selected by
minimization were both the smallest and the least effective of all selected
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test suites. In 84% of the cases minimization chose exactly one test case,
and it never chose more than 12.6 On the median, test suites selected by
minimization found 16% of the faults that would have been found by
retest-all.

Techniques other than minimization typically selected test suites with on
the order of 100–200 test cases, and were much more effective than
minimization at detecting faults. Because minimization does choose very
few test cases, there may be situations in which its use is appropriate—
namely when test cases are very expensive to run as well as when missed
faults are not considered excessively costly. Therefore, further study is
warranted. In particular, we are also interested in knowing how much
analysis cost minimization can incur before a random technique would be
preferable.

In this analysis we assume that a technique’s analysis time is equivalent
to the cost of running k test cases. We then determine a critical value of k
for which there is a random reduction rule whose performance is as good as
or better than minimization’s. If analysis costs exceed this critical value,
then a random reduction rule may be more cost-effective.

Ideally we would like to compare minimization to a rule that chooses
100p% test cases at random, where this is equal to the average size of
minimization test suites. In our experiment we constructed random test
suites only with p [ $0.25, 0.5, 0.75, 1% (and, in effect, p 5 0). So we
simulate the long-run behavior of an arbitrarily sized random technique by
randomizing over values of p for which we have test suites. For instance, if
we want to simulate random(5), we use random(25) with probability 0.2,
and do no regression testing at all (random(0)) with probability 0.8 (our
experiments suggest that this approach underestimates the effectiveness of
the true random technique and, thus, overestimates the value of k that we
are looking for).7

For a fixed trial value of k, and program version, we computed the
average test suite size using minimization (call this x). We then used either
random(25) or random(0), with the distribution chosen to ensure that the
average size of these test suites was x 1 k. We then compared the
detection effectiveness of the two techniques. We continued to adjust k
until the detection effectiveness was equal.

For coverage-based test suites, we found, that for k 5 2.7, the random-
ized rule had higher detection rates in 85 program versions and minimiza-
tion had higher detection rates in 85 program versions. For random test
suites, we found, that for k 5 4.65, the randomized rule had higher

6Of course, this is to be expected, since most program versions contained exactly one change.
For programs with multiple changes, larger minimization suites would be selected, as with
player .
7Note that our simulation is not a practical selection rule because it assumes that we know a
priori how many test cases will be selected. Nevertheless, it does provide a measure of the
usefulness of test selection algorithms.
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detection rates in 84 program versions, and minimization had higher
detection rates in 86 program versions (see Table III).

These results suggest, that for the programs we studied, the analysis
costs for minimization must be very small (less than the cost of running
five test cases on the average) in order for minimization to be cost-effective.

4.3.2 Safe versus Randomization. The analysis here is similar to the
previous analyses, except that the safe technique always found the fault if
a fault-revealing test case existed. Therefore no random technique has the
same detection effectiveness as the safe technique. Instead, we look for
random techniques that found a fixed percentage ~100~1 2 p!%! of the
faults. Then, we again determine a value of k, such that there is a
randomized technique with the same total cost as the safe technique and
100~1 2 p!% of the detection effectiveness.

We found, that for coverage-based test suites, there exists a randomized
rule with the same average test suite size (i.e., k 5 0) as the safe technique
that finds faults 96.7% ~ p 5 0.033! as often in half the program versions
as the safe technique does. When k 5 0.1 there is a randomization rule as
costly as the safe technique that detects faults 99% as often in half the
program versions.

For random test suites p 5 0.11 when k 5 0: a random rule with the
same size test suites as safe finds 89% of the faults that safe did in half the
program versions. When p 5 0.05, k 5 10, and when p 5 0.01, k 5 25
(see Table IV).

These results suggest, that for the programs we studied, the analysis
costs that the safe technique can incur before becoming cost-ineffective
depend on the level of fault detection effectiveness we would accept from a
randomly selected test suite. The higher the effectiveness, the more analy-
sis costs we should be willing to incur.

4.3.3 Safe versus Retest-All. The safe technique always found all faults
that could be found given the test suites used. Therefore, a safe technique
is preferable to running all test cases in the test suite if and only if analysis
costs are less than the costs of running the unselected test cases. Figure 2

Table III. The Number of Program Versions for which the Modified Random and
Minimization Techniques Out-Performed Each Other

Coverage Suites ~k 5 2.7!
player print_tokens print_tokens2 replace schedule schedule2 space tcas tot_info

Random 0 4 1 12 7 9 3 36 13
Min 5 3 9 20 2 1 30 5 10

Random Suites ~k 5 4.65!
player print_tokens print_tokens2 replace schedule schedule2 space tcas tot_info

Random 0 4 1 12 4 8 10 31 14
Min 5 3 9 20 5 2 23 10 9
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contains data showing the sizes of test suites selected by the safe tech-
nique. It demonstrates that test suite reduction depends dramatically on
the program: selected test suites for schedule2 were typically 99% as large
as the original suites, while those for player are about 5% as large.

5. SUMMARY AND CONCLUSIONS

In this article we present initial results of an empirical study of regression
test selection techniques. This study examined some of the costs and
benefits of several regression test selection techniques. Our results, al-
though preliminary, highlight several differences among the techniques,
expose essential trade-offs, and provide an infrastructure for further re-
search by ourselves and others.

As we discussed earlier, this experiment, like any other, has several
limits to its validity. Keeping this in mind, we draw several observations
from this work.

—Minimization produced the smallest and the least effective test suites.
Although fault detection is obviously important, there are cases where
testing is very expensive. In these cases minimization may be cost-
effective. Nevertheless, for the programs and test suites we studied,
random selection of just slightly larger suites (less than five more test
cases) yielded fault detection results equivalent to those of minimization
(on average) with little analysis costs. One limitation here is that “on the
average” applies to long-run behavior. Half of the time the random
technique was as effective as minimization; half of the time it was not. If
greater confidence is required, then the random techniques will need to
select more than five additional test cases. One approach to understand-
ing this issue better would be to restructure the analyses of Section 4.3 to
include a desired confidence level.
Another limitation is that, in practice, we cannot know how many test
cases minimization (or any other regression test selection algorithm)
would pick without actually running it. One approach to tackling this
issue might be found in developing prediction models for regression test
selection techniques (e.g., as in Rosenblum and Weyuker [1997b]).

Table IV. The Number of Program Versions for which the Modified Random and Safe
Techniques Out-Performed Each Other

Coverage Suites ~k 5 0, p 5 0.033!
player print_tokens print_tokens2 replace schedule schedule2 space tcas tot_info

Random 0 5 6 13 5 9 15 10 22
Safe 5 2 4 19 4 1 18 31 1

Random Suites ~k 5 0, p 5 0.11!
player print_tokens print_tokens2 replace schedule schedule2 space tcas tot_info

Random 0 5 6 13 4 9 15 12 22
Safe 5 2 4 19 5 1 18 29 1
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—The safe and dataflow techniques had nearly equivalent average behav-
ior in terms of cost-effectiveness, typically detecting the same faults and
selecting the same size test suites. However, because dataflow techniques
require at least as much analysis as the two most efficient safe tech-
niques [Chen et al. 1994; Rothermel and Harrold 1997], we saw little
reason to recommend dataflow if test selection alone is the goal. How-
ever, dataflow techniques can be useful in other regression testing tasks,
such as in identification of portions of P9 that are not adequately tested
by T. In other words, our model does not capture all possible costs or
benefits of regression test selection techniques and thus, may be too
coarse for some situations.

—The safe technique found all faults for which we had fault-revealing test
cases while selecting 60% of the test cases on the median. However, we
saw, that for several programs, it could not reduce the test suites at all.
Also, we found, that on the average, only slightly larger random test
suites could be nearly as effective. Again, we have to remember that we
are making a probabilistic assessment. This raises an important mea-
surement question. That is, when should we analyze techniques like
these on a case-by-case basis, and when is an amortized analysis more
appropriate? We are currently exploring alternative analysis techniques
[Kim et al. 2000].

—We found that our results were sensitive not only to the regression test
selection techniques we used, but also to the programs, the characteris-
tics of the changes, and the composition of the test suites. We believe that
it is important to understand more precisely how these factors affect our
techniques. Without this information, we may mistake the effect of a
nonrepresentative workload for differences in techniques. This problem
is related to the problem of developing prediction models for regression
test selection techniques. It will also be important to examine a broader
range of subject programs.

We are continuing this family of experiments. In the future, we plan to
(1) improve our cost models to include factors such as testing overhead and
to better handle analysis costs, (2) extend our analysis to multiple types of
faults, (3) develop time-series-based models, capturing notions of amortized
analysis and nonconstant fault densities, and (4) rerun these experiments
using larger programs with more complex fault distributions.
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