
Types and Access Controls for Cross-Domain
Security in Flash

Aseem Rastogi1
?
, Avik Chaudhuri2, and Rob Johnson3

1 University of Maryland, College Park and Adobe Systems Inc.
aseem@cs.umd.edu

2 Adobe Systems Inc.
avik.chaudhuri@adobe.com
3 Stony Brook University
rob@cs.stonybrook.edu

Abstract. The ubiquitous Flash platform enables programmers to build
sophisticated web application “mash-ups” that combine Flash executa-
bles loaded from multiple trust domains with complex, asymmetric trust
relationships. Flash provides APIs and run-time checks to help program-
mers declare and enforce trust relationships between different domains,
but there is currently no formal security model for Flash.
This paper presents the first formal security model for the Flash platform.
Our formal model instantly reveals that the run-time checks performed
by the Flash runtime are not sufficient to enforce data integrity – we
present simple example programs that are vulnerable to attacks. We then
develop a static type system for Flash programs that lets programmers
specify fine-grained trust relationships, and we show that, combined with
the run-time checks already performed by the Flash runtime, well-typed
programs cannot violate data integrity at run-time.

Keywords: Flash Security, Security Model, Dynamic Access Control,
Type System

1 Introduction

Adobe Flash is a widely-used multimedia platform for building interactive In-
ternet applications. Flash is frequently used for video and audio applications,
advertisements, and games, making it nearly ubiquitous on the web. Flash ap-
plications can load additional Flash applications from the same or other web
domains, allowing developers to create mashups that combine functionality pro-
vided by several different domains.

Flash implements the “same origin policy” that is also used in JavaScript, but
Flash applications can explicitly grant access to some trusted domains, enabling
scripts running in the context of one domain to access data and functions of
scripts loaded in another domain. This enables Flash components from different
domains to communicate with each other in a controlled manner.
? Work performed while the author was at Stony Brook University

2 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

However, there is currently no formal specification of the Flash security
model. Without a formal specification, the guarantees of the model are unclear.
Programmers cannot reason about the security of their applications – e.g. they
cannot easily verify that a security-critical function in their application cannot
be called with an argument coming from an untrusted application.

To that end, we make the following contributions in this paper:

– We present a formal specification of the Flash security model. The specifi-
cation includes carefully modeled semantics for the dynamic access control
checks and the APIs for dynamically loading other Flash applications.

– We show that the run-time checks performed by the Flash runtime are not by
themselves sufficient to guarantee data integrity for Flash applications. We
formalize the data integrity property and give simple examples that violate
the property under the current semantics.

– We present a security extension to the Flash static type system that enables
programmers to express and enforce data integrity invariants. We give a
soundness theorem of our type system and prove that the runtime access
control checks are sufficient to maintain the data integrity invariants of the
well-typed Flash applications.

– We strengthen our threat model by allowing an attacker to by-pass the static
security checks and show how our type system, in conjunction with the
run-time checks, still guarantees that data integrity is maintained for a well-
typed victim application executing in the same environment as the attacker’s
application.

We mainly focus on the data integrity property in Flash applications. This
helps us prevent Cross Site Scripting attacks (and other injection attacks [1])
which are instances of data integrity violations (Section 3), and more impor-
tantly, one of the most common types of real world attacks on Flash applications
[2].

Our type system is based on the crucial observation that in the Flash security
model, if an application is compromised, only itself and other applications from
the domains it trusts, are to be blamed. Hence, it is possible to impose a static
discipline on the trusted programs, that combined with the existing run-time
checks, can prevent data integrity violations.

The type system adds labels D to the types in the language, where each label
is a set of some domains. The interpretation of the labels is that, a type with
label D must admit only those values that come from one of the domains in D.
We present a static consistency relation over types, that enforces the following
safety property for all the flows in the program: if a term with label D1 flows to
a context that expects a term with label D2, then D1 ⊆ D2 must hold.

Interestingly, we can afford to allow the attacker to by-pass the safety checks
mentioned above. We prove that as long as the victim makes the worst assump-
tions about the attacker’s code – a value coming from the attacker’s code could
have originated anywhere – while type checking its own code, the data integrity
property is maintained at run-time.

Types and Access Controls for Cross-Domain Security in Flash 3

We present an overview of the Flash security model in Section 2. We give
our threat model and some example data integrity violation attacks in Section 3.
We use these examples throughout the paper to exemplify the runtime semantics
(Section 4) and the type system (Section 5). We state the soundness theorem of
our type system in Section 5.1. We discuss related work in Section 6 and finally
conclude in Section 7.

2 Overview

Adobe Flash platform [3] is a complete application development stack. The pro-
grammer writes code in the ActionScript language and compiles it to a bytecode
representation, called the swf. The swfs are typically deployed over HTTP and
are included by their URL inside the HTML pages. When the HTML pages are
rendered by the web browser, the Flash Player plugin in the browser loads the
swfs from their URL and executes them.

Flash platform enables programmers to design and develop rich functionality
applications. In particular, the platform provides APIs to load and execute other
swfs, and possibly access their data and functions. A detailed account of the API
can be found in [1].

Domain Based Sandboxing The Flash Player partitions the execution envi-
ronment into multiple security contexts that are defined by the source domains
of the comprising swfs. For every source domain in the environment, there exists
a security context, in which all the swfs loaded from that source domain execute.

The Flash Player always allows a swf to access data and functions of any
other swf in the same security context. This is called the same origin policy,
wherein the swfs loaded from the same domain can freely script into each other.
However, by default, any attempt by a swf in one security context to access data
and functions of a swf in another security context, generates a runtime security
error.

Extension to the Same Origin Policy To handle the situations where cross-
domain scripting is sometimes desirable, the Flash platform allows for an ex-
tension to the same origin policy. A swf may express trust on some domain(s)
(other than its own source domain). The implication is that, any swf from the
trusted domain(s) is allowed to freely script into the trusting swf.

However, it only opens up a one way communication channel, from the
trusted domain swfs to the trusting swf. For the communication in the other
direction, the receiving swf has to explicitly express trust itself.

Content Loading and Import Loading When a swf loads another swf, the
loaded swf executes in the security context defined by its own source domain.
This regular loading mechanism is called Content Loading. The Flash platform
provides another loading mechanism, known as Import Loading, in which the
loaded swf is executed in the same security context as that of the loader swf.

4 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

Thus, the effect is as if the loaded swf comes from the same domain as the loader
swf.

However, the source domain of the loaded swf has to allow the loader domain
to import load – by placing on its webserver a crossdomain policy file having
an entry for the loader domain. Before import loading, the Flash Player checks
that the webserver of the loaded swf has a crossdomain policy file and that this
file contains an entry for the loader domain. On the other hand, the loader must
also be careful before import loading a swf from another domain, since import
loading grants the loaded swf all the privileges of the loader domain.

3 Threat Model and Examples

Threat Model We assume that the attacker owns some web domains, which
are not trusted by the victim. Furthermore, it creates some swfs using the Flash
platform tools and hosts them on its web domains. Thus, the attacker’s swfs
are capable of doing all that is allowed by the language. Moreover, we allow
the attacker’s programs to by-pass the static security checks of our type system.
Since the victim’s swfs and the attacker’s swfs can load one another, the Flash
runtime environment could contain the victim’s swfs and the attacker’s swfs
together. Our goal is to maintain the data integrity property at run-time. We
formalize the data integrity property in the next section.

Examples We now give some examples of possible data integrity violations in
the Flash programs. We use these examples throughout the rest of the paper
to show whether and how they are prevented by the runtime semantics and our
type system.

For the purpose of the examples, the functions are written as fun(x) { .. },
where x is the function parameter. The object literals are written as {f1 = t1,

f2 = t2, ...}, where f1, f2, ... are the property names and t1, t2, ...

are the terms. The object properties are evaluated left to right. The function
load(i) loads a swf i. We denote the attacker’s swf and domain by a and d

respectively, and the victim’s swf and domain by v and d’ respectively. A swf is
modeled like an object literal and written as Jf1 = t1, f2 = t2, ...K.

As mentioned above, we assume that the victim does not trust the attacker.
However, the attacker trusts the victim since it’s in the attacker’s interest to
allow the victim to interact with it as much as possible to create the opportunities
for exploiting the victim’s swf (as we see in the Example 2 below).

Example 1. Attacker’s swf directly scripts into the victim’s swf:

v = Js fn = fun(x) { /* transfer $100 to account x */; return 0 }K
a = Jv swf = load(v), f = v swf.s fn(a acc)K

The attacker’s swf loads the victim’s swf and directly calls the sensitive function
in that swf with an arbitrary argument. This attack is known as the Cross
Domain Scripting attack [1], and is prevented by the run-time checks in the
Flash Player.

Types and Access Controls for Cross-Domain Security in Flash 5

Example 2. Victim’s swf passes a sensitive function to the attacker’s swf

v = Js fn = /* as before */, a swf = load(a), f = a swf.f’(s fn)K
a = Jf’ = fun(g) { g(a acc) }K

The victim’s swf loads the attacker’s swf and ends up passing a sensitive func-
tion to the attacker. The attacker can then call that sensitive function with an
arbitrary argument. This example is a more general form of the Cross Domain
Scripting attack, but is not pointed out in the existing documentation on Flash
security [1]. Not surprisingly, this attack is not prevented by the Flash Player.
However, our type system catches this violation in the victim’s code at compile
time.

Example 3. Victim’s swf passes a non-sensitive function to the attacker’s swf

v = Jns fn = fun(x) {return x + 1}, a swf =.., f = a swf.f’(ns fn)K
a = Jf’ = fun(g) { g(a acc) }K

As before, the victim’s swf loads the attacker’s swf but this time, passes a non-
sensitive function to the attacker. Since it’s not a violation of data integrity, this
code is successfully type checked in our type system (and runs successfully too).

Example 4. Cross Site Scripting

Finally, the Cross Site Scripting attacks [1], which are one of the most com-
mon types of real world attacks on the Flash applications, are also instances of
data integrity violations. In such attacks, the victim uses the untrusted run-time
inputs, called FlashVars, as arguments to the function that navigates to a URL.
The attacker can then provide malicious JavaScript code in the FlashVars, and
that code ends up executing with the end-user privileges. Our type system can
flag Cross Site Scripting vulnerabilities in the victim’s swfs at compile time.

4 Evaluation Semantics

In this section we formalize the Flash security model.

Language Syntax The language syntax is shown in Figure 1. The set of web
domains is denoted by D. We assume that every swf has a unique identifier com-
ing from a set I. The identifiers are used as arguments to the loading functions.

The basic types consists of the base type (⊥), the function type (σ1 → σ2),
the object type ({xκi

i : σi}i∈[m]), and the type for the top level swf term (Jxκi
i :

σiKi∈[m]). We model the top level swf terms like the objects. The properties in the
object and the swf type have read-write capability κ, which is a subset of {r,w}.
In particular, a property can be read (resp. written) if it has read (resp. write)
capability r (resp. w). Types in the language are the basic types augmented with
the integrity labels, D. Each label is a set of some domains coming from D. The
interpretation of the labels is that a type with label D should admit only those
values at run-time that come from one of the domains in D.

6 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

Domain d ∈ D
Identifier a, b, c ∈ I
Capability κ ⊆ {r,w}
Label D ⊆ D
Basic Type τ ::= ⊥ | σ1 → σ2 | {xκi

i : σi}i∈[m] | Jxκi
i : σiKi∈[m]

Type σ ::= τD
Term t ::= null | fun (x : σ) t : σ′ | t(t′)

| {xκi
i : σi = ti}i∈[m] | t.x | t.x = t′

| Jxκi
i : σi = tiKi∈[m] | x | x = t

| if t then t′ else t′′ | ld(a) | i ld(a)

Fig. 1. Language Syntax

Although ActionScript is a gradually typed language [4], we do not model the
dynamic type here. In our previous work [5], we have designed a type inference
algorithm that can be used to evolve a gradually typed program to a statically
typed program. In the current setting, we assume that the programmer has
already removed all the dynamic types from his code and start from a statically
typed language, focusing mainly on the security aspects of the platform.

The terms in the language include (read from left to right and top to bottom
in Figure 1): the base value, function definitions, function applications, object
literals, property reads and writes (from both objects and top level swfs), top
level swf, variables reads and writes, and null checks. There are two special
variables in the language xparent and xself . xparent is used to access the swf that
loads the current swf and xself is used to access the current swf. For the first swf
loaded in the runtime, xparent and xself evaluate to the same value.

Finally, the terms ld(a) and i ld(a) represent the content loading and import
loading, respectively, of the swf a. We note that the term Jxκi

i : σi = tiKi∈[m]

cannot be a subterm of any swf. A swf does not contain the code for another
swf, it just loads or import loads another swf at run-time.

Evaluation Semantics The evaluation judgments are shown in Figure 2 and
Figure 3. The syntax of the values is as follows:

Value v ::= nulld | `d | Ld | λS,dxσ. tσ
′ | abort

The d annotation in the values represents the run-time domain of the swf
where the corresponding value originates. The value nulld represents the value of
the base type, `d denotes a location, and Ld denotes the top level swf location
for a swf executing in domain d.

S represents a stack: a sequence of locations. The value λS,dx
σ. tσ

′
denotes

a function definition with the closure S. The type annotations σ and σ′ are the
static type annotations on the function parameter and the return type.

The d annotations in nulld, `d, and the σ and σ′ annotations in λS,dx
σ. tσ

′

(all the superscripts in the values), are not carried and used by the actual Flash

Types and Access Controls for Cross-Domain Security in Flash 7

Evaluation judgment S `dρ (H, t) ⇓ (H ′, v)

(E-Null)

S `dρ (H, null) ⇓ (H, nulld)

(E-VarR)
H[x]S = v

S `dρ (H,x) ⇓ (H, v)

(E-VarW)

S `dρ (H, t) ⇓ (H ′, v) H ′[x Z⇒ v]S = H ′′

S `dρ (H,x = t) ⇓ (H ′′, v)

(E-Fun)

S `dρ (H, fun (x : σ) t : σ′) ⇓ (H,λS,dx
σ. tσ

′
)

(E-Obj)

`d is fresh

H1 = H[`d 7→ [xκ1,σ1
1 7→ null, . . . , xκm,σm

m 7→ null]]

∀i ∈ [m]. S :: `d `dρ (Hi, ti) ⇓ (H ′
i, vi) H ′

i[xi Z⇒ vi]S::`d = Hi+1

S `dρ (H, {xκi
i :σi = ti}i∈[m]) ⇓ (Hm+1, `

d)

(E-PropR)

S `dρ (H, t) ⇓ (H ′, `d
′
) vj = H ′(`d

′
)(x

κj ,σj
j)

S `dρ (H, t.xj) ⇓ (H ′, vj)

(E-PropW)

S `dρ (H, t) ⇓ (H ′, `d
′
)

S `dρ (H ′, tj) ⇓ (Hj , vj) H ′′ = Hj [`
d′ 7→ Hj(`

d′)[x
κj ,σj
j 7→ vj]]

S `dρ (H, t.xj = tj) ⇓ (H ′′, vj)

(E-App)

S `dρ (H, t) ⇓ (H ′, (λS′,d′x
σ. t2

σ2) S `dρ (H ′, t1) ⇓ (H1, v1)

`d
′

is fresh H ′′ = H1[`d
′
7→ [x{r,w},σ 7→ v1]]

S′ :: `d
′
`d

′
ρ (H ′′, t2) ⇓ (H2, v2)

S `dρ (H, t (t1)) ⇓ (H2, v2)

(E-If)

S `dρ (H, t) ⇓ (H ′, v)

v 6= null⇒ i = 1 v = null⇒ i = 2 S `dρ (H ′, ti) ⇓ (H ′′, v′)

S `dρ (H, if t then t1 else t2) ⇓ (H ′′, v′)

Fig. 2. Evaluation Judgments

8 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

Evaluation judgment S `dρ (H, t) ⇓ (H ′, v)

(E-SwfR)

S `dρ (H, t) ⇓ (H ′,Ld′) d ∈ ρ(d′) vj = H ′(Ld′)(x
κj ,σj
j)

S `dρ (H, t.xj) ⇓ (H ′, vj)

(E-SwfW)

S `dρ (H, t) ⇓ (H ′,Ld′)
d ∈ ρ(d′) S `dρ (H ′, tj) ⇓ (Hj , vj) H ′′ = Hj [Ld′ 7→ Hj(Ld′)[x

κj ,σj
j 7→ vj]]

S `dρ (H, t.xj = tj) ⇓ (H ′′, vj)

(E-Swf)

Ld′ = H[xself]S Ld is fresh
H1 = H[Ld 7→ [xparent 7→ Ld′ , xself 7→ Ld, xκ1,σ1

1 7→ null, . . . , xκm,σm
m 7→ null]]

∀i ∈ [m]. Ld `dρ (Hi, ti) ⇓ (H ′
i, vi) H ′

i[xi Z⇒ vi]Ld = Hi+1

S `dρ (H, Jxκi
i : σi = tiKi∈[m]) ⇓ (Hm+1,Ld)

(E-Load)

d′ is domain of a

δld(a) = Jxκi
i : σi = tiKi∈[m] S `d

′
ρ (H, Jxκi

i : σi = tiKi∈[m]) ⇓ (H ′,Ld′)
S `dρ (H, ld(a)) ⇓ (H ′,Ld′)

(E-ImportLoad)

verify that there is an entry for d in the crossdomain policy file on a’s webserver

δld(a) = Jxκi
i : σi = tiKi∈[m] S `dρ (H, Jxκi

i : σi = tiKi∈[m]) ⇓ (H ′,Ld)
S `dρ (H, i ld(a)) ⇓ (H ′,Ld)

Fig. 3. Evaluation Judgments - SWF Loading and Cross-Scripting

runtime semantics. We keep them around for formalization purposes. The rules
in Figure 2 and Figure 3 do not depend on these.

The special value abort denotes a failed run-time access control check, termi-
nating the Flash Player execution.

A record is a map from variables to values. As with the superscripts in the
values, we carry around the capability κ and the static type annotation σ, with
the variables. A heap H is a map from locations to records.

When a swf tries to query or update the heap, under a stack S, the following
rules apply:

H[x Z⇒ v]S::`d =

{
H[`d 7→ H(`d)[xκ,σ 7→ v]] if xκ,σ ∈ dom(H(`d))
H[x Z⇒ v]S otherwise

H[x]S::`d =

{
H(`d)(xκ,σ) if xκ,σ ∈ dom(H(`d))
H[x]S otherwise

We say H[x]S resolves to xκ,σ whenever the query operation above finds a
xκ,σ in the scope.

Types and Access Controls for Cross-Domain Security in Flash 9

We model trust assumptions by ρ : D→ 2D, where ρ(d) is the set of domains
that d trusts. In the actual Flash API, ρ is a function of swf identifiers I rather
than D. However, since same domain swfs can freely script into each other, it is
advisable to host swfs with different trust assumptions on different domains [1].
Also, the actual Flash API builds up the trust relationship dynamically. We, on
the other hand, assume ρ to be fixed. We believe this is a reasonable assumption
for security critical swfs.

The evaluation judgments are of the form S `dρ (H, t) ⇓ (H ′, v), where d is
the domain under which t is evaluating.

The rules (E-VarR) and (E-VarW) use the heap query and update op-
erations defined above. The rule (E-Fun) records the stack S and the current
domain d with the function value. A function, upon application, evaluates in
the context of the domain where it originates. In the rule (E-App), the function
body evaluation takes place in the context of d′, even if the application term
t (t′) is executing in d. Thus, irrespective of whether d′ trusts d or not, if a swf
from domain d can get access to a function defined in d′, it can execute the
function on arbitrary arguments with the privileges of d′.

The rule (E-Obj) evaluates each property in the object. In the rules (E-
PropR), and (E-PropW), there are no access checks (just like (E-App)). As
long as a swf from domain d can get access to a location `d

′
, it can read or write

to it freely, irrespective of whether d′ trusts d or not.
The rules for the swf loading and the top level swf accesses are given in

Figure 3. When a swf from domain d tries to script directly into another swf
from d′ through the top level location Ld′ , the semantics of (E-SwfR) and (E-
SwfW) verify that d′ must trust d, i.e. d ∈ ρ(d′). If these checks do not succeed,
the execution terminates and results in the value abort (we do not show the rules
for abort for space limitation).

The rule (E-Swf) evaluates the top level swf term. It also sets up the variable
xparent for the new swf as the value of xself in current stack, which is the top level
swf location of the loading swf. For the rule (E-Load), δld(a) denotes the run-
time operation of loading the swf a over the network. The loading operation
results in a term of the form Jxκi

i : σi = tiKi∈[m]. The term is then evaluated
under a’s own domain.

For import loading, as mentioned in Section 2, the Flash Player verifies that
crossdomain policy file on a’s webserver contains an entry for d. The swf a is
then evaluated in the context of d.

We now revisit the examples introduced earlier to see their behavior under
the runtime semantics.

Example 1 During the execution of the attacker’s swf a, the victim’s swf v is
loaded and evaluated using the (E-Load) rule. The rule results in a location
Ld’ s.t. in the heap, the variable s fn in H(Ld’) is mapped to the sensitive
function. The variable v swf, during the evaluation of the property f in the
attacker’s swf, evaluates to Ld’. But the read of s fn fails in the rule (E-
SwfR), because d 6∈ ρ(d’), as the victim does not trust the attacker. This way,
the attack is prevented by the runtime semantics.

10 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

Example 2 In the victim’s swf v, the property a swf evaluates to a location
Ld. During the evaluation of f in the victim’s swf, the access of f’ in the at-
tacker’s swf succeeds, since d’ ∈ ρ(d). Thus, the code in attacker’s swf, g(a acc),
executes in the attacker’s context, as per the rule (E-App). The variable g evalu-
ates to the victim’s sensitive function which then executes in the victim’s context
with the attacker provided argument a acc. Thus, the runtime semantics fails
to prevent this attack.

Example 3 As with Example 2, the victim’s (and the attacker’s) swf executes
successfully in this case too.

Cross Site Scripting Since the semantics does not reason about data integrity,
it fails to prevent the Cross Site Scripting attacks also.

4.1 Formal Definition of Data Integrity

We first define an origin function on the values as follows:

Definition 1 (Value Origin). The origin function for the values is defined as:
origin(nulld) = d, origin(`d) = d, origin(Ld) = d, origin(λS,dx

σ. tσ
′
) = d

We define a location as trusted if for all the variables in the location, the
contained value has an origin consistent with the static type of the variable.

Definition 2 (Trusted Location and Trusted Heap). A location `d in
heap H is trusted if ∀xκ,σ ∈ dom(H(`d)), whenever H(`d)(xκ,σ) = v, we have
origin(v) ∈ D s.t. σ = τD for some τ . A heap H is trusted, written as H

√
, if

∀`d ∈ dom(H), `d is trusted.

The data integrity property is now defined as:

Definition 3 (Data Integrity for a Code Execution). Let S `dρ (H, t) ⇓
(H ′, v) be an execution. Suppose H

√
. Then, either v = abort or H ′√.

In Example 2 above, since s fn is expected to be called with a trusted argu-
ment, its parameter type has the integrity label {d’}. However, at run time, the
value a acc which has label {d}, since it originates in the attacker’s swf, is able
to flow into the s fun parameter. Thus, the data integrity property is violated.

5 Type System

In this section we present a type system that, in conjunction with the Flash
run-time checks, enforces the data integrity property.

We first define a static consistency relation, �, over the basic types τ , and
the types σ. As with the usual subtyping relation, the interpretation of σ1 � σ2
is that it is safe for a term of type σ1 to flow to a context that expects a term of
type σ2. The static consistency relation verifies that the types obey the comes

Types and Access Controls for Cross-Domain Security in Flash 11

from invariants at each level, by checking that the sub-parts in the types also
satisfy the relation.

The judgments for � are shown in Figure 4. The rule (S-Type) checks that
τ1 � τ2 and D1 ⊆ D2. The label check ensures that if the context expects a value
originating in one of the domains from D2, then σ1 should satisfy this invariant.
The rules (S-Fun) and (S-Obj) are standard, and (S-Obj) also admits the
usual record subtyping. As a minor technical convenience, we do not allow record
depth subtyping in the rule (S-Swf).

Type Checking The typing judgments are shown in Figure 4. These judgments
are of the form Γ `dρ t :: σ, where d is the expected run-time domain of the
swf. The type environment Γ has two components: (Γs, Γv). Γs contains the
type assumptions about the parent swf that would load the current swf at run-
time, and about the swfs that the current swf might load itself. Γv contains the
standard type bindings for the free variables in t.

The rule (C-Null) assigns the type ⊥{d} to the value null, which denotes
that this base value comes from the domain d. Similarly the rules (C-Fun) and
(C-Obj) assign the integrity label {d} to the final type. The rules (C-Parent),
(C-Load), and (C-ImportLoad) look up the top level swf type from Γs. (C-
ImportLoad) also ensures the swf a comes from a trusted domain.

The rules for objects and functions are standard and use the static consis-
tency relation, �, in place of the subtyping relation. The rules (E-SwfR) and
(E-SwfW) additionally verify that the swf access is allowed per the trust as-
sumptions, i.e. d ∈ ρ(d′), where d is the current domain and d′ is the domain of
the swf being accessed. The rule (C-Swf) type checks the top level swf term.

The rules (C-SwfR’) and (C-SwfW’) are interesting. As a first step towards
strengthening the attacker capabilities, we allow the attacker to evade the trust
assumptions, ρ, when type checking its own code. If the attacker’s code tries to
script into a swf, which does not trust the attacker’s domain, we do not raise a
type error. Since the Flash Player runtime already has dynamic access control
checks, we can allow for these relaxed static rules. We define a lowering operation
on the types that changes all the labels in a type to D, unless it’s a top level swf
type.

Definition 4 (Lowering Type). The lowering operation, σ ↓, is defined as:

– ⊥D ↓ = ⊥D, (σ1 → σ2)D ↓ = (σ1 ↓ → σ2 ↓)D
– {xκi

i : σi}i∈[m]
D ↓ = {xκi

i : σi ↓}i∈[m]
D , Jxκi

i : σiK
i∈[m]
{d} ↓ = Jxκi

i : σiK
i∈[m]
{d}

We use this lowering operation in the rules (C-SwfR’) and (C-SwfW’) to
assign the final type as σj ↓, where xj is the property that the attacker’s code
accesses. This choice gives the attacker maximum flexibility in type checking its
code.

Note that a top level swf type remains unchanged across lowering. It can be
easily seen that this does not reduce the attacker’s capability.

12 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

Static Consistency τ1 � τ2 σ1 � σ2

(S-Type)

σ1 = (τ1)D1 σ2 = (τ2)D2

τ1 � τ2 D1 ⊆ D2

σ1 � σ2

(S-Base)

⊥ � ⊥

(S-Swf)

n ≤ m
Jxκi
i : σiKi∈[m]

{d} � Jxκi
i : σiKi∈[n]

{d}

(S-Fun)

σ3 � σ1 σ2 � σ4

σ1 → σ2 � σ3 → σ4

(S-Obj)

n ≤ m
∀i ∈ [n]. κ′

i ⊆ κi σi � σ′
i when r ∈ κ′

i σ′
i � σi when w ∈ κ′

i

{xκi
i : σi}i∈[m] � {xκ

′
i
i : σ′

i}i∈[n]

Typing Judgment Γ `dρ t :: σ

(C-Null)

Γ `dρ null :: ⊥{d}

(C-Parent)

Γ `dρ xparent :: Γs(xparent)

(C-VarR)

Γ `dρ x :: Γv(x)

(C-Load)

Γ `dρ ld(a) :: Γs(a)

(C-VarW)

Γv(x) = σ Γ `dρ t :: σ′ σ′ � σ
Γ `dρ x = t :: σ

(C-Fun)

Γ [x 7→ σ1] `dρ t2 :: σ′
2 σ′

2 � σ2

Γ `dρ fun (x :σ1) t2 :σ2 :: (σ1 → σ2){d}

(C-ImportLoad)

d′ is a’s domain d′ ∈ ρ(d)

Γ `dρ i ld(a) :: Γs(a)

(C-Obj)

Γ ′ = Γ [x1 7→ σ1, . . . , xm 7→ σm]

∀i ∈ [m]. Γ ′ `dρ ti :: σ′
i σ′

i � σi
Γ `dρ {xκi

i :σi = ti}i∈[m] :: {xκi
i :σi}i∈[m]

{d}

(C-PropR)

Γ `dρ t :: {xκi
i : σi}i∈[m]

D j ∈ [m] r ∈ κj
Γ `dρ t.xj :: σj

(C-PropW)

Γ `dρ t :: {xκi
i : σi}i∈[m]

D j ∈ [m] w ∈ κj
Γ `dρ tj :: σ′

j σ′
j � σj

Γ `dρ t.xj = tj :: σj

(C-App)

Γ `dρ t :: (σ1 → σ2)D Γ `dρ t1 :: σ′
1 σ′

1 � σ1

Γ `dρ t (t1) :: σ2

(C-If)

Γ `dρ t :: σ

Γ `dρ t1 :: (τ)D1 Γ `dρ t2 :: (τ)D2

Γ `dρ if t then t1 else t2 :: (τ)D1∪D2

(C-SwfR)

Γ `dρ t :: Jxκi
i : σiKi∈[m]

{d′}
d ∈ ρ(d′) j ∈ [m] r ∈ κj

Γ `dρ t.xj :: σj

(C-SwfW)

Γ `dρ t :: Jxκi
i : σiKi∈[m]

{d′}
d ∈ ρ(d′) j ∈ [m] w ∈ κj Γ `dρ tj :: σ′

j σ′
j � σj

Γ `dρ t.xj = tj :: σj

(C-SwfR’)

Γ `dρ t :: Jxκi
i : σiKi∈[m]

{d′}
d /∈ ρ(d′) j ∈ [m] r ∈ κj

Γ `dρ t.xj :: σj ↓

(C-SwfW’)

Γ `dρ t :: Jxκi
i : σiKi∈[m]

{d′}
d /∈ ρ(d′) j ∈ [m] w ∈ κj Γ `dρ tj :: σ′

j σ′
j � σj ↓

Γ `dρ t.xj = tj :: σj ↓

(C-Swf)

Γ ′ = Γ [x1 7→ σ1, . . . , xm 7→ σm] ∀i ∈ [m]. Γ ′ `dρ ti :: σ′
i σ′

i � σi
Γ `dρ Jxκi

i :σi = tiKi∈[m] :: Jxκi
i :σiKi∈[m]

{d}

Fig. 4. Type Checking Rules

Types and Access Controls for Cross-Domain Security in Flash 13

Value Typing `H v :: σ

(V-Null)

`H nulld :: ⊥{d}

(V-Loc)

xκi,σii ∈ dom(H(`d))

`H `d :: {xκi
i : σi}i{d}

(V-Fun)

σ1 = (σ → σ′){d}

`H λS,dx
σ. tσ

′
:: σ1

(V-SwfLoc)

xκi,σi
i ∈ dom(H(Ld))
`H Ld :: Jxκi

i : σiKi{d}

Fig. 5. Value Typing

5.1 Soundness

We now describe the soundness properties of our type system. We first define
the typing for values, written as `H v :: σ. The judgments for this relation are
shown in Figure 5. We also define consistency of the type environment with the
runtime environment as follows:

Definition 5 (Consistency of Type Environment with Loading Func-
tion). Γs is said to be consistent with the swf loading function δld, Γs ∼ δld,
if whenever δld(a) = Jxκi

i : σi = tiKi∈[m] and a is loaded under domain d, then

(Γs, φ) `dρ Jxκi
i : σi = tiKi∈[m] :: Jxκi

i : σiK
i∈[m]
{d} and Jxκi

i : σiK
i∈[m]
{d} � Γs(a).

Definition 6 (Consistency of Type Environment with Stack and Heap).
Γ ∼ρ,H S if whenever Γv(x) = σ and H[x]S resolves to xκ,σ

′
, we have σ′ � σ.

Also, if H[xparent]S = Ld, `H Ld :: σ′′, then σ′′ � Γs(xparent).

Our type system supports a stronger notion of trusted locations that sub-
sumes Definition 2.

Definition 7 (Stronger Definition of Trusted Location). In a heap H, a
location `d is trusted if ∀xκ,σ ∈ dom(H(`d)), if v = H(`d)(xκ,σ) then `H v :: σ′

s.t. σ′ � σ.

The definitions of trusted heap and data integrity under code execution re-
main same except for the use of the new definition of trusted locations.

Our main soundness theorem says that for an execution of a well-typed term,
starting from a trusted heap, either the execution results in an error or in a new
heap that is also trusted. Moreover, the type of the value is statically consistent
with the type of the term.

Theorem 1 (Soundness of Type System). If Γ `dρ t :: σ, S `dρ (H, t) ⇓
(H ′, v), Γs ∼ δld, Γ ∼ρ,H S, and H

√
, then either v = abort or `H′ v :: σ′ s.t.

σ′ � σ and H ′√.

A More Powerful Attacker The interesting property of our type system is
that it allows an attacker to by-pass the integrity labels type checking completely.
We place only two restrictions on the attacker’s code: (a) it must be structurally

14 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

well-typed, and (b) it must use the other top level swf types correctly. The re-
striction (b) does not limit the attacker’s capability since it can always type
check the other swfs’ properties accesses via (C-SwfR’) and (C-SwfW’).

When type checking its own swf, the victim must make the worst possible
assumptions about the type labels in such an attacker’s code. In particular, it
must assume that all the values that come from such an attacker’s swf could
have originated anywhere, and therefore it must use the integrity label D in the
type assumptions about the attacker’s code. However, it need not change the
labels inside the top level swf types used in the attacker’s swf. We define Γs ↓ as:

Γs ↓ (a) = Γs(a) if a is a victim’s swf, or Jxκi
i : σi ↓Ki∈[m]

{d} if a is an attacker’s swf

s.t. Γs(a) = Jxκi
i : σiK

i∈[m]
{d} . The victim should use Γs ↓ to type check its code.

However, the type soundness theorem requires the Γs to be consistent with
the loading function. We prove that if an attacker’s swf follows the above re-
strictions (a) and (b) only, then it can be labeled to be well-typed under Γs ↓.

Let us define a typing judgment Γ `′dρ t :: σ which is same as Figure 4,
except that the rule (S-Type) does not perform the D1 ⊆ D2 check. Note that,
however, the rule (S-Swf) still forces the attacker to use the top level swf types
consistently. We define t ↓ and Γv ↓ as the obvious extensions of σ ↓. Then:

Theorem 2 (Attacker SWF Typing). Let t = Jxκi
i : σi = tiKi∈[m] be an

attacker swf code s.t. (Γs ↓, φ) `′dρ t :: Jxκi
i : σiK

i∈[m]
{d} . Then, (Γs ↓, φ) `dρ Jxκi

i :

σi ↓= ti ↓Ki∈[m] :: Jxκi
i : σi ↓Ki∈[m]

{d} .

This theorem is a direct corollary of the following lemma:

Lemma 1 (Attacker Term Typing). Let t be a subterm in the attacker’s
code s.t. (Γs ↓, Γv) `′dρ t :: σ. Then, (Γs ↓, Γv ↓) `dρ t ↓:: σ′ s.t. σ′ � σ ↓.

So now, Γs ↓ is consistent with δld for the victim’s swfs as well as for any
attacker’s swf that is structurally well-typed but is not subjected to the static
integrity labels checking. Hence Γs ↓∼ δld. The type soundness theorem now
ensures that the data integrity property is maintained at run time for the swfs
typed under Γs ↓. Thus, the victim can enforce data integrity all by itself.

We now see how the type system works for our running examples.

Example 2 When type checking its code, the victim would use the following
type for the attacker’s swf:

Γ (a) = {f’ : ((intD → intD)D → intD)D }{d}
The sensitive function has the type:

s fn : (int{d′} → int{d′}){d′}
As expected, the victim’s code fails to type check under these assumptions.

For the function call a swf.f’(s fn), the type checker checks that the type of
s fn is statically consistent with the argument type of a swf.f’, which fails as
shown in the following derivation:

Types and Access Controls for Cross-Domain Security in Flash 15

int � int D ⊆ {d′}

intD � int{d′} int{d′} � intD

int{d′} → int{d′} � intD → intD {d′} ⊆ D
(int{d′} → int{d′}){d′} � (intD → intD)D

Since D 6⊆ {d′}, the typing derivation fails, and thus, the data integrity
violation is prevented at compile time at the victim’s end.

Example 3 In this case the non-sensitive function has the type:
ns fn : (intD → intD){d′}
and we can now see that the victim’s code will successfully typecheck.

Cross Site Scripting Our type system can also prevent Cross Site Scripting
attacks. FlashVars can be annotated with the integrity label D and the parameter
of the URL navigation function can be assigned the label {d′}, where d′ is the
victim’s domain. Once this is done, the type checker ensures that the FlashVars
cannot be passed as arguments to the URL navigation function.

6 Related Work

Flash Security Model Unlike JavaScript’s binary trust model, where it’s ei-
ther no trust or full trust between the principals, Flash allows controlled commu-
nication among otherwise isolated clients. The existing model when combined
with our type system, provides stronger data integrity guarantees to the pro-
grammers. Thus, it could be worthwhile to explore Flash as the platform for
client mashups investigated in [6].

Flash Security Analysis DeVries et. al. [7] developed an inline reference moni-
toring system for enforcing security policies in malicious ActionScript code. They
first inject runtime security guards in untrusted swf bytecode and then verify
that it obeys the desired security policies.

However, they do not present a formal study of the Flash security model, as
we do here. Moreover, their problem statement is fundamentally different from
ours. They seek to sanitize untrusted swfs according to certain security policies
whereas the goal of our type system is to help the victim ensure that its code
maintains data integrity invariants, even in the presence of untrusted swfs.

Jang et. al. [8] study the server based aspect of Flash security – the crossdo-
main policy files. They present an empirical study of crossdomain policy files for
Alexa top 50,000 websites. In this paper, we have mainly focused on the client
side aspect of Flash security.

Security Type Systems A characteristic feature of our system is the combi-
nation of static and dynamic checks to enforce data integrity. In that sense, our
system is similar to hybrid type checking [9]. Chaudhuri et. al. [10] present a

16 Aseem Rastogi, Avik Chaudhuri, and Rob Johnson

similar type system, that in conjunction with the dynamic checks, enforces data
integrity in Windows Vista.

Our type system maintains comes from invariants, where the static type
of a term is an over-approximation of the origin of the run-time value that the
term evaluates to. There is a long history of security type systems that guarantee
various properties for well-typed programs ([11–13]). Sabelfeld et. al. [14] present
a detailed survey of language based information flow security.

7 Conclusion

In this paper, we have presented the first formal model of the security features
in the Flash platform. We find that in its current form, the model is vulnerable
to attacks violating data integrity property in victim’s programs when they
execute alongside untrusted programs. We presented a static type system, that
in conjunction with existing runtime checks, prevents such attacks. We stated
the soundness theorem of our type system and proved that a well-typed program
maintains its data integrity invariants, even when co-executing with untrusted
programs.

References

1. Adobe: Creating more secure SWF web applications , http://www.adobe.com/

devnet/flashplayer/articles/secure_swf_apps.html.
2. OWASP: Example Vulnerabilities, https://www.owasp.org/index.php/

Category:OWASP_Flash_Security_Project#Example_Vulnerabilities.
3. Adobe: Adobe Flash Platform, http://www.adobe.com/flashplatform/.
4. Siek, J.G., Taha, W.: Gradual Typing for Functional Languages. In: Scheme and

Functional Programming Workshop. (2006)
5. Rastogi, A., Chaudhuri, A., Hosmer, B.: The ins and outs of gradual type inference.

In: POPL, ACM (2012)
6. Howell, J., Jackson, C., Wang, H.J., Fan, X.: Mashupos: operating system abstrac-

tions for client mashups. In: HotOS, USENIX Association (2007)
7. DeVries, B.W., Gupta, G., Hamlen, K.W., Moore, S., Sridhar, M.: Actionscript

bytecode verification with co-logic programming. In: PLAS, ACM (2009)
8. Jang, D., Venkataraman, A., Sawka, G.M., Shacham, H.: Analyzing the cross-

domain policies of flash applications. In: W2SP. (2011)
9. Flanagan, C.: Hybrid Type Checking. In: POPL, ACM (2006) 245–256

10. Chaudhuri, A., Naldurg, P., Rajamani, S.K.: A type system for data-flow integrity
on windows vista. In: PLAS, ACM (2008)

11. Heintze, N., Riecke, J.G.: The slam calculus: programming with secrecy and in-
tegrity. In: POPL, ACM (1998)

12. Myers, A.C.: Jflow: practical mostly-static information flow control. In: POPL,
ACM (1999)

13. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a java-like language. In: CSF, IEEE Computer Society (2002)

14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications (2003)

