
The Ins and Outs of Gradual Type Inference

Aseem Rastogi
Stony Brook University

arastogi@cs.stonybrook.edu

Avik Chaudhuri Basil Hosmer
Advanced Technology Labs, Adobe Systems

{achaudhu,bhosmer}@adobe.com

Abstract
Gradual typing lets programmers evolve their dynamically typed
programs by gradually adding explicit type annotations, which con-
fer benefits like improved performance and fewer run-time failures.
However, we argue that such evolution often requires a giant

leap, and that type inference can offer a crucial missing step. If
omitted type annotations are interpreted as unknown types, rather
than the dynamic type, then static types can often be inferred,
thereby removing unnecessary assumptions of the dynamic type.
The remaining assumptions of the dynamic type may then be re-
moved by either reasoning outside the static type system, or re-
structuring the code.
We present a type inference algorithm that can improve the per-

formance of existing gradually typed programs without introducing
any new run-time failures. To account for dynamic typing, types
that flow in to an unknown type are treated in a fundamentally dif-
ferent manner than types that flow out. Furthermore, in the interests
of backward-compatibility, an escape analysis is conducted to de-
cide which types are safe to infer. We have implemented our algo-
rithm for ActionScript, and evaluated it on the SunSpider and V8
benchmark suites. We demonstrate that our algorithm can improve
the performance of unannotated programs as well as recover most
of the type annotations in annotated programs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization; F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis; F.3.3 [Logics andMeaning of Programs]: Studies of Pro-
gram Constructs—Type structure

General Terms Algorithms, Languages, Performance, Theory

Keywords Gradual typing, Type inference, ActionScript

1. Introduction
Gradual Typing and Evolutionary Programming Gradual typ-
ing [12, 17] aims to combine the benefits of static typing and dy-
namic typing in a language. In a gradually typed program, dynam-
ically typed code can be mixed with statically typed code. While
the dynamically typed fragments are not constrained to follow the
structure enforced by a static type system, the statically typed frag-
ments enjoy not only some static safety guarantees (“well-typed
programs cannot be blamed”—the blame theorem [24]) but also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

admit performance optimizations that the dynamically typed frag-
ments do not. Gradual typing envisions a style of programming
where dynamically typed programs can be evolved into statically
typed programs by gradually trading off liberties in code structure
for assurances of safety and performance.
Although there has been much recent progress on mastering

the recipe of gradual typing, a key ingredient has been largely
missing—type inference. The only previous work on type inference
for gradually typed languages is based on unification [18], which
is unsuitable for use in object-oriented languages with subtyping.
Unfortunately, as we argue below, the lack of type inference may
be the most significant obstacle towards adopting the style of evo-
lutionary programming envisioned by gradual typing.

The Key Missing Ingredient: Type Inference In a gradually
typed language, a program may be partially annotated with types.
Any missing types are uniformly assumed to be the dynamic type.
This means that the fragments of the program that have missing
type annotations do not enjoy any of the benefits of static typing.
In particular, their performance is hindered by dynamic casts, even
if they implicitly satisfy the constraints of static typing (i.e., even if
the dynamic casts never fail). To improve performance, the missing
types have to be declared.
However, in our experience with a mainstream gradually typed

language, ActionScript [13], the task of evolving dynamically
typed programs to statically typed programs by declaring missing
types can be quite onerous. The annotation burden is often intimi-
dating: in the limit, types must be declared for every variable in the
evolving fragment, and the programmer may need to juggle several
annotations to satisfy the constraints of the static type system.
Furthermore, the programmer may eventually be forced to de-

clare dynamic types for some variables: it may not be possible to
satisfy the constraints of the static type system without restructur-
ing the code. This is because the programmer may be relying on an
invariant that cannot be expressed via static types in the language,
i.e., the proof of safety may rely on a form of reasoning (typically,
path-sensitive) that is outside the scope of the static type system.
Unfortunately, due to these difficulties, gradually typed pro-

grams often continue to miss out on important benefits of static
typing, such as performance optimizations. Consequently, evolu-
tionary programming remains a fantasy.
The crux of the problem is that a missing type is misinterpreted

as the dynamic type, whereas the intended interpretation is that of
an unknown type. Often, an unknown type can be inferred to be a
static type. In contrast, the dynamic type is a “fallback” to encode
imprecision: a variable must be of the dynamic type when the set
of values that the variable may denote cannot be expressed as a
static type in the language, thereby forcing imprecision in the type
abstraction.
Therefore, we envision an iterative process for evolution of dy-

namically typed programs to statically typed programs, that alter-
nates between two states. In one state, type inference removes un-

481

infer types

annotate / restructure

Figure 1. Iterative Evolution of Scripts to Programs

necessary assumptions of the dynamic type, so that elimination of
any remaining dynamic types in the code requires either reason-
ing outside the static type system, or restructuring the code. In the
other state, the programmer either introduces further type annota-
tions or restructures parts of the program to conform to the static
type discipline. Furthermore, at any state, the programmer may de-
cide to pause the evolution process, deploy the program, and take
advantage of the improved precision of static types that have al-
ready replaced dynamic types in the program. At a later point, the
programmer should be free to resume the evolution process. This
process is depicted in Figure 1.
Since the programmer may choose to evolve an existing, de-

ployed program, type inference must ensure that the program re-
mains backward-compatible: it should have exactly the same run-
time behavior after type inference as it would have before type in-
ference. In particular, if the program was safe (did not fail at run
time) then it should continue to be safe, and any other programs
that ran safely with the program should continue to run safely.

Retrofitting Type Inference on Gradually Typed Programs In
this paper we study the problem of retrofitting type inference in
an existing gradually typed language. The practical motivation for
our work is to improve the performance of existing ActionScript
programs “under the hood.” Our aim is to let existing programs reap
the benefits of type-directed performance optimizations as much as
possible, while remaining backward-compatible.
On the other hand, our aim is not to eliminate run-time failures

in existing programs: indeed, any run-time failures need to be pre-
served as well. Thus, the static types we infer may not satisfy some
static safety guarantees, such as the blame theorem [24]. Neverthe-
less, the static types we infer can improve performance, since they
soundly approximate precise sets of run-time values. Thus, we pre-
fer to infer static types where possible rather than falling back on
the (imprecise) dynamic type. Of course, it remains possible to re-
cover static safety guarantees by forgoing some opportunities for
optimization—we can fall back on the dynamic type whenever the
inferred static type may be cast to an incompatible type.

Design Challenges The aim of our type inference algorithm is to
reduce the imprecision associated with dynamic types, so that pro-
grams with missing type annotations can benefit from various per-
formance optimizations. We try to infer, for each variable, a precise
type abstraction of the set of values that flow into it. The setting
of a gradually typed language and the requirement of backward-
compatibility present several unique challenges, as outlined next.
In a purely static type system, the definitions of a variable

determine a lower bound on its type, since the type must admit
every value flowing into the variable; dually, the uses of a variable
determine an upper bound on its type, since the type must admit
only those values that are admitted by the type of every context to
which the variable flows out. Thus, for a type that satisfies both
sets of constraints, it is possible to prove statically that every use of
the variable is safe for every definition of that variable. In contrast,
in a gradual type system, every use of a variable need not be safe
for every definition of that variable: instead, run-time failures may
be avoided if each use is safe for some definition. Thus, the type
of a variable must be inferred by considering only its definitions,
deferring type checks on its uses until run time.

Furthermore, the type of a variable may only be inferred if it is
local, i.e., if all of its definitions are visible during compilation. In
the absence of this guarantee, we cannot exclude the possibility that
values of an unexpected type may flow into the variable at run time:
for example, consider a parameter of a global function, which can
be defined by arbitrary arguments through calls that are not visible
during compilation. In such cases, replacing the variable’s assumed
dynamic type with an inferred static type may break the program in
some unknown run-time environment.
Based on these observations, we infer types of only those vari-

ables for which we can infer the types of all values flowing in, i.e.,
their inflows; and we derive the solutions by computing the least
upper bounds of those types, without checking that the solutions
satisfy the greatest lower bounds of the types of the contexts to
which they flow out, i.e., their outflows.
Higher-order values, such as functions and objects, present

some interesting subtleties. There is an immediate problem if we
take the standard least upper bounds of their (higher-order) types,
since we will then be taking the greatest lower bounds of the “in-
put” (negative) parts of these types—which violates the princi-
ple we motivated above, giving us prescriptive “safe” types rather
than descriptive “precise” types for the input parts of the higher-
order solution. Another possibility might be to take the least upper
bounds of both “input” and “output” parts, following naı̈ve subtyp-
ing [24]1. However this also is not quite right, since we are still
neglecting to observe the types of the actual inputs, e.g., the types
of arguments in calls to a function; rather, as with standard subtyp-
ing, we are still considering the types of values that such a function
considers safe to input, i.e., the function’s parameter types. The key
insight is that if we are to obey the principle of solving based on
inflows alone, we must recursively deconstruct higher-order types
down to their first-order parts, solve for those based on inflows
(e.g., the inflow of arguments to the parameter of a function-typed
variable), and then reconstruct the higher-order parts in such a way
as to preserve the desired asymmetry.
We devise an elegant way of inferring such higher-order solu-

tions, via a notion of kinds; this requires us to treat higher-order
inflows in a fundamentally different manner than higher-order out-
flows (Section 2.3).
Another complication arises when local functions and objects

escape. In this case we cannot infer the parts of their types in nega-
tive (“input”) positions, since values may then flow into them from
some code that cannot be analyzed at compile time. Therefore, it
seems that we need some kind of escape analysis to figure out if
some local function or object escapes. Perhaps surprisingly, the es-
cape analysis we require is carried out “for free” by our algorithm:
it suffices to assume that in the enclosing program’s type, the parts
in negative positions are either explicitly annotated, or are the dy-
namic type (Section 2.5).

Guarantees Our main guarantee is that the type inference algo-
rithm is sound: if a program fails at run time with our inferred types,
it would have failed at exactly the same point with the dynamic
type. The soundness guarantee is compositional, in the sense that it
holds even when the program is placed in an arbitrary run-time en-
vironment. Furthermore, we show how to recover solutions from
our inferred types that satisfy the blame theorem [24]. We also
prove that the time complexity of our type inference algorithm is
quadratic in the size of the input program.

Implementation and Evaluation We have implemented our type-
inference algorithm for ActionScript, and evaluated it on the Sun-
Spider [20] and V8 [23] benchmark suites. Overall, we are able to

1 Naı̈ve subtyping is covariant in both negative and positive positions, unlike
standard subtyping (which is contravariant in negative positions).

482

achieve 1.6x performance improvement on average over partially
typed benchmarks (with type annotations only on required parts of
the interfaces), with a maximum performance improvement of 5.6x
(Section 5).

Contributions To summarize, we make the following main con-
tributions in this paper:

• We argue that the evolution of gradually typed programs is
essentially an iterative process, with type inference being a key
missing component.

• We design a type inference algorithm for gradually typed lan-
guages with the goal of improving the performance of programs
as much as possible, while preserving the run-time behaviors
of unannotated programs. Our design involves new ideas that
are specific to the setting of a gradual type system and the re-
quirement of backward-compatibility, such as the need to treat
definitions and uses asymmetrically, and the need for escape
analysis to decide what types are safe to infer.

• We formalize our type inference algorithm in a core calculus
of functions and objects, and prove soundness and complexity
theorems for the algorithm. Technical novelties in our algorithm
include a notion of kinds to compute precise higher-order solu-
tions, and the encoding of escape analysis as a syntactic condi-
tion on the program’s type.

• We implement our algorithm for ActionScript, a mainstream
gradually typed language, and evaluate its effectiveness, with
encouraging results.

Overall, we believe that the techniques and insights developed
in this paper will elucidate the intricacies of type inference for
gradually typed languages, and spur further research in this area.

2. Overview
2.1 Algorithm

While existing compilers for gradually typed languages such as Ac-
tionScript [13] consider missing type annotations to be the dynamic
type, our aim is to infer precise static types where possible, and fall
back on the dynamic type only where necessary.
As usual, our type inference algorithm begins by replacing

missing type annotations in the program with fresh type variables.
Then we compile the program, using type annotations to generate
coercions between types.
A coercion is of the form S � T , where S and T are types;

such a coercion witnesses the flow of a term of type S into a
context of type T . In particular, coercions involving type variables
are interpreted as flows for those type variables: for example, if X
is a type variable, then T �X is an inflow forX , whereasX�T—
where T is not a type variable—is an outflow forX .
Starting from the original set of coercions collected during com-

pilation, we now iterate, generating new coercions from existing
ones using carefully designed rules which treat the implications of
inflows and outflows differently. At each step, new coercions rep-
resent flows that are implied by, but are not directly expressed by,
extant coercions.
Iteration continues until our rules can produce no new coer-

cions, at which point we have a closure of the flows implied by
the type annotations in the program. For each type variable X , we
can now derive a solution, namely the least upper bound of all types
T that can flow into X—via inflows expressed by coercions of the
form T � X . A formal treatment of the algorithm is presented in
Section 3.
We now demonstrate the fine points of the algorithm, viz. the

computation of closures and the derivation of solutions, using

examples in ActionScript [13]; ActionScript is an extension of
JavaScript with a gradual type system, and is the programming
language underlying Flash applications.
We show type variables as part of programs below, although

they are not part of ActionScript. In actual programs, these type
variables are just missing annotations. We follow the convention
that type variables (in italics) have similar names as corresponding
unannotated variables, with the first letter capitalized. For example,
the type variable for an unannotated variable foo in the program is
written as Foo. If foo is an unannotated function, Foo? represents
the type variable for the parameter type of foo and Foo! represents
the type variable for the return type of foo. The dynamic type is
denoted by �. Number and Boolean are base types. We also use ⊥
to denote the bottom type, although it is not part of ActionScript.
For the purpose of our examples, operators are typed as follows:

+ : (Number, Number) -> Number
< : (Number, Number) -> Boolean

2.2 Local Variables having Base Types

We start with a simple example to show how our algorithm infers
primitive types for local variables in a function, and how it im-
proves performance.

1 function foo(n:Number):Foo! {

2 var index:Index = 0;

3 var sum:Sum = index;

4 while(index < n)

5 { index = index + 1; sum = sum + index }

6 return sum

7 }

In the absence of type inference, index and sum will be given
type �. Since the + operator has type (Number, Number) →
Number, evaluation of index + 1 and sum + index will cause
in run-time conversions � � Number for index and sum. To store
the results back to index and sum, further run-time conversions
Number � � will happen. As we show later in our experiments,
such run-time conversions can hurt the performance of programs.
We now show how our inference algorithm works. After adding

type variables for missing types, as shown, we compile the program
and collect coercions. The initializations of index and sum on lines
2 and 3 generate Number� Index and Index� Sum. The operations
index < n, index = index + 1, and sum = sum + index on
lines 4 and 5 generate Index � Number, Number � Index, Sum �
Number, Index � Number, and Number � Sum.
To solve these flows, we note that the only type flowing into

Index is Number. So, we infer Index = Number. Next, we see
that types flowing into Sum are Number and Index. Therefore,
the solution for Sum is the union of Number and Index, which is
Number. And finally, the only type flowing into Foo! is Sum. So,
Foo! = Number as well.
Annotating index and sum with Number rather than � improves

run-time performance by eliminating unnecessary run-time conver-
sions between Number and � in the loop body.
Note that we also generated Sum � Number and Index �

Number but did not use them for inference. A typical type checker
will check that the solutions of Sum and Index satisfy these out-
flows, but we skip this step. We say more about why we do so in
Section 2.6.

2.3 Local Variables having Function Types

2.3.1 Unions of Function Types are Problematic

When a base type (like Number or Boolean) flows into a type
variable, the solution of the type variable is simply that type; and
if several base types flow in, the solution is the union of those

483

base types. Unfortunately, the obvious ways of generalizing this
approach to higher-order types (like function types) do not work.
For example, consider the following program:

8 var x:X = function(a:*):Number { ... };

9 x(1)

On line 8, we generate �→ Number� X. Thus, we may infer the
solution of X to be the type flowing into it, �→ Number. However,
a more precise solution is Number→ Number, based on the fact that
the only values flowing into the parameter of the function stored in
x are of type Number (line 9).
Furthermore, when several function types flow into a type vari-

able, we cannot combine those inflows by taking the union of all
such types. Consider the following example:

10 var x:X;
11 if(b) { x = function(y:Number):Number { ... }; x(1) }

12 else { x = function(y:Boolean):Number { ... }; x(true) }

We generate Number→ Number� X from line 11 and Boolean→
Number � X from line 12. Since the union of two function types
is a type S → T where S is the intersection of their parameter
types and T is the union of their return types, we would infer X
to be ⊥ → Number using the standard approach. This would mean
that in the running program, any application of x to a Number or a
Boolean value would result in an error. This is clearly unsound as
the programmer applies x to a Number at line 11, and to a Boolean
at line 12, both of which are safe.

2.3.2 Kinds as Higher-Order Solutions

To deal with higher-order types, we introduce a notion of kinds. A
kind can be thought of as a “view” of a type variable: it describes
a structure, and introduces type variables for the types of parts
within that structure. Coercions between type variables and kinds
are generated during compilation and closure computation, in either
direction: a coercion from a type variable T to a kindK witnesses
the flow of T -typed values into a context whose higher-order type
is exemplified byK; conversely, a coercion fromK to T witnesses
the flow of higher-order values of kindK into a T -typed context.
For example, on line 9, the function call x(1) induces a view of

X as a function type. To realize this view, we generate the coercion
X � X? → X!, where X? → X! is a kind for X corresponding to
function types; this witnesses values of type X flowing to a context
in which they are used as functions. We also generate Number �
X?, which witnesses the flow of arguments of type Number into the
parameters of those functions.
Combining � → Number � X and X � X? → X!, we get � →

Number� X?→ X!. Deconstructing this flow using contravariance
for the parameter type and covariance for the return type, we get
X? � � and Number � X!. Intuitively, these coercions witness the
flows into and out of the concrete function value assigned to x on
line 8, resulting from the call to x on line 9.
Solving these flows, we obtain X? = Number, and X! = Number.

But what should X’s solution be?We claim it should be X’s function
kind, i.e. X?→ X!, which after substituting for X? and X!, becomes
Number → Number. Our closure rules introduce the necessary
intermediate step, the coercion X? → X! � X, as a consequence
of the assignment on line 8.
Thus, a kind not only gives a view of a type variable as a

higher-order type, but also encodes the corresponding higher-order
solution of the type variable.
In other programs, there may be no occasion to generate a

coercion from a type variable X to a kind at all, due to an absence
of contexts in which X-typed values are used in a syntactically
higher-order way, such as the function application term x(1) in
the previous example. Consider the following variation:

13 var x:X = function(a:*):Number { ... };

14 function f(y:Number -> Number):Number { y(1) }

15 f(x)

We generate � → Number � X and X � Number → Number on
lines 13 and 15 respectively. Here we don’t need the view of X as
a function type since x is not applied directly, but we still need to
represent the solution for X. This is accomplished by the coercions
introduced by our closure rules as a result of the assignment on line
13, namely �→ Number� X?→ X!, and X?→ X!� X. Combining
X? → X! � X and X � Number → Number gives us X? → X! �
Number → Number. Solving the flows gives us X? = Number and
X! = Number. As before, since only function types flow into X, its
solution is its function kind X? → X!, which after substituting for
X? and X! gives us Number→ Number.
Finally, decomposition using kinds enables us to take unions

of kinds, not types, giving us types inferred from inflows alone.
For example, the decomposition of X into X?→ X! lets us capture
the flow of argument types to X? in the calls to x on lines 11 and
12, yielding Number � X? and Boolean � X?, respectively. These
first-order flows may then be combined by taking the least upper
bound in the usual way, after which reconstruction of X proceeds
as described above.

2.4 Function Parameters

2.4.1 Functions Callable by Existing Code Are Problematic

Since we cannot assume that all existing ActionScript programs
will be available for our analysis, a key goal of our algorithm is
to ensure that our inferred types are backward-compatible—i.e.,
programs compiled using inferred types are able to interoperate
with programs compiled under the assumption that missing type
annotations are the dynamic type, without introducing any new run-
time failures.
We now show an example in which we try to extend our algo-

rithm to infer the parameter type of a function that can be called by
other programs that are not available for analysis.

16 function foo(x:Foo?):Foo!
17 { if(b) { return x + 1 } else { return 0 } }

18 foo(1)

The function call foo(1) on line 18 generates Number � Foo?.
Furthermore, as before we generate Foo?� Number and Number�
Foo! on line 17. Solving for type variables, we get Foo? = Number
and Foo! = Number. (As before, we do not use Foo? � Number for
inference.)
Suppose that the function foo is part of the interface of some

library, and clients of foo have been compiled under the assump-
tion that Foo? and Foo! are �. Then the solution for Foo! is sound,
because it can be used in any context of type �: in particular, it will
not throw an error unless it flows to a context whose type is incom-
patible with Number, in which case it would already throw an error
without type inference.
Unfortunately, the solution for Foo? is not sound. For exam-

ple, suppose a caller sets the global variable b = false and then
calls foo with x = true. In the absence of type inference, the
true argument will be successfully converted at run time from
type Boolean to type �—after which it will go unused, since b =
false, avoiding a run-time error. In contrast, if we add the annota-
tion x:Number after type inference, this will have the effect of re-
quiring a run-time conversion of the true argument from Boolean
to Number at the point of the call to foo, and this conversion will
always fail. Thus inferring Foo? = Number can break existing pro-
grams.
In general, we conclude that we cannot safely infer the param-

eter types of functions that are part of the interface of the program

484

with existing code, because our analysis cannot be guaranteed to
include every call to such functions.

2.4.2 Local Functions

On the other hand, it is safe to infer the parameter types of lo-
cal functions—i.e., functions defined within other functions and
objects—whenever all their calls are available for analysis.
Consider the local function foo in the following example:

19 function bar(y:Number):Bar! {

20 function foo(x:Foo?):Foo!
21 { if(b) { return x + 1 } else { return 0 } }

22 return foo(y)

23 }

As before, we get the solutions Foo? = Number and Foo! =
Number. (Here, we also get Bar! = Number.) Since foo is a local
function that does not escape bar, we know it cannot be called
from outside bar, meaning that all calls to foo are available for
analysis. In this case it is safe to infer Foo? = Number, even if the
function bar is callable by existing code.

2.4.3 Local Functions that Escape Are Problematic

However, if a local function escapes—e.g. by being returned as
a higher-order value from a function that is callable by existing
code—then it becomes available to callers in the wild. This again
makes it unsafe to infer the local function’s parameter type, since
not every call to the function is available for analysis.

24 function bar(y:Number):Bar! {

25 function foo(x:Foo?):Foo!
26 { if(b) { return x + 1 } else { return 0 } }

27 foo(y);

28 return foo

29 }

In this example, inferring Foo? = Number based on function call
foo(y) on line 27 would again be unsound, assuming the function
bar is callable by existing code. Since foo is returned by bar,
clients can set b = false and call foo with any x value. Thus, as
in Section 2.4.1, annotating x as Number could introduce run-time
errors in existing programs.

2.5 What Types are Safe To Infer?

To summarize, the examples above illustrate that while it may be
safe to infer the types of local variables in a function, the return
types of functions, and the parameter types of local functions that
do not escape, it is definitely not safe to infer parameter types of
functions that are callable by existing code, and those of local func-
tions that do escape. Furthermore, if values from such parameters
flow into other variables, then inferring the types of those variables
is clearly also unsafe.
So what is the principle that lets us decide which types are safe

to infer?

2.5.1 Seeing All Inflows is Necessary

We observe that in a gradually typed language, we must see the
types of all the values that may flow into a variable before we can
infer the variable’s type.
Suppose that at compile time we see only a proper subset of the

types of values that may flow into a variable x—i.e., some of the
types of values that may flow into x are unknown at compile time,
because they flow into x from a run-time environment that cannot
be analyzed during compilation.
Next, suppose that the compiled program is executed in such a

run-time environment. In the absence of type inference, x has type
�, which means that the run-time environment could write any type
of value into x.

Furthermore, the programmer could reason outside the type
system to ensure that once such a value reaches x, it is then used
correctly under appropriate conditions.
Thus, if the inferred type of x is based only on the subset of

types that are seen, then we could end up breaking the program in
this run-time environment, by causing a run-time error to be thrown
upon the write to x: not only would this error not have occurred
in the absence of type inference, but as described in the previous
paragraph, it is quite possible that no error would have occurred at
all.

2.5.2 Flows Encode Escape Analysis

For a function that is callable by existing code, we require the
programmer to explicitly annotate the parts of the function’s type
that have negative polarity (in particular, the parameter type), if
those parts have static types. In the absence of annotations, we
must assume they have the dynamic type. For a local function,
our ability to infer the parts of its type with negative polarity
depends on whether the function escapes into an unknown run-time
environment.
There are many ways a local function can escape: it can be

returned as a value, it can be assigned to a global variable, it
can be assigned to some object property and that object could be
returned, and so on. At first glance, it seems that either we need
a sophisticated escape analysis to figure out if a local function
escapes, or we need the programmer to annotate parameter types
for local functions as well.
Fortunately, we observe that the flows already encode an escape

analysis. If we require that types with negative polarities in the
interface of the program with existing code be explicitly annotated
if static—i.e., if we assume that they are the dynamic type when
unannotated—then our closure computation ensures that escape
information is properly propagated to all type variables.
Let us consider the example from Section 2.4.3 with different

possibilities for Bar!.
First, suppose that the programmer has annotated the return type

of bar as Number → Number. In this case, the programmer has
annotated the types with negative polarity in bar explicitly. Now,
it’s safe to infer Foo? = Number, since the programmer has told us
that foo will always be called with x as Number (otherwise there
will be a run-time error).
On the other hand, if the programmer had not explicitly anno-

tated the return type of bar, we would have assumed it to be some
type variable Bar!. As before, we generate Foo? → Foo! � Bar!
from return foo on line 28. We introduce function kind (Sec-
tion 2.3.2) for Bar! and add Foo? → Foo! � Bar!? → Bar!! and
Bar!? → Bar!! � Bar!. Now, we observe that Bar!? has negative
polarity. Since the function bar is callable by existing code, we
assign Bar!? = �. Thus, we have Foo? → Foo! � � → Bar!!. De-
constructing the flow, we get � � Foo?. And finally, we infer Foo?
= �, which is always safe.
In this way, escape analysis is manifested through our closure

computation. Thus, we require explicit type annotations only for
types that have negative polarities in the interface of the program
with existing code; all the remaining types we can infer.

2.6 Outflows

So far we have maintained that we are looking at inflows, of the
form T � X , to solve for type variable X . But we have not said
anything about outflows, of the formX � T , where T is not a type
variable. Such outflows correspond to dynamic consistency checks.

2.6.1 Outflows Need Not Contribute to Solutions

We observe that outflows, of the form X � T , need not contribute
to the solution for X—although in general, such outflows do play

485

a role in propagating flows between parts of higher-order types, as
we have seen in Section 2.3.2. If we can analyze all writes to X ,
we know precisely the types of all values that X will need to hold
at run time and so, by just looking at inflows, of the form T � X ,
we can infer a more precise solution forX .

2.6.2 Outflows Need Not be Validated Statically

We also do not need to validate the outflows at compile time, as
the runtime does it anyway. As we show in the following example,
if we try to validate outflows statically, we could end up being too
conservative and infer less precise types than we could.

30 function foo(f:Foo?):Number {

31 if(b) { return f(true) } else { return 0 }

32 }

33 if(b) { foo(function (x:Boolean):Number { ... }) }

34 else { foo(function (x:Number):Number { ... }) }

First we note that this program is safe if Foo? = �, which is the
case when there is no type inference. When b is false, foo doesn’t
use its argument and returns 0.
In our inference algorithm, we generate the flows: Boolean

→ Number � Foo?? → Foo?! (line 33), Number → Number �
Foo?? → Foo?! (line 34), and Boolean � Foo?? (from function
call g(true) on line 31). Deconstructing the first two flows gives
us Foo?? � Boolean, Foo?? � Number, and Number � Foo?!.
Therefore, we infer Foo?? = Boolean and Foo?! = Number, and
our solution is Foo? = Boolean → Number. With these inferred
types, the program is still safe. There is no change in the run-time
semantics of the program.
But note that our solution Foo?? = Boolean turns the outflow

Foo?? � Number to the dynamic consistency check Boolean �
Number, which will fail, if executed at run time. So, if we were to
validate outflows statically, we would have promoted Foo?? to �,
which means we would have inferred a less precise type that we
could.
In this example, the programmer encodes path sensitive reason-

ing about correctness of his program and ensures that the dynamic
consistency check Boolean � Number never happens at run time
(when the function in line 34 is passed to foo, foo doesn’t invoke
it). Since it is not possible to statically determine whether dynamic
consistency checks will fire at run time, we do not validate out-
flows. But, we maintain that our inference doesn’t introduce any
new run-time errors. Our soundness theorem proves that if a pro-
gram fails at run time with our inferred types, it would have failed
even if those types were �, and vice versa.

2.6.3 Validating Outflows for Blame Guarantees

Traditionally, type inference algorithms in statically typed lan-
guages ensure that the solution of X is a subtype of the greatest
lower bound of all the types T that flow out ofX . This implies that
all dynamic consistency checks always succeed.
In our system we do not validate outflows because this may un-

necessarily constrain our inferred types, as we saw in the previous
example. But this comes with a trade-off. Type inference for stati-
cally typed languages guarantees that inferred types will not gener-
ate any run-time type errors. While we clearly cannot hope for such
guarantees, gradually typed languages often provide weaker blame
guarantees [24]—the statically typed parts of a program cannot be
blamed for any run-time type errors. On the other hand, by default,
we do not give any such guarantee: dynamic consistency checks
may throw errors at run time. Instead, our inferred types can be
thought of as directives to a runtime to optimize memory, run-time
conversions, property lookups, and so on; we only guarantee that
they do not introduce any new run-time errors in the program.
If, on the other hand, the programmer wants some blame guar-

antees from our system, we can run an additional step wherein we

validate outflows. If some outflow may cause an error, we either
promote the type variable that may cause the error to the � type,
or if there is no type variable involved, fail the compilation. In the
example of previous section, once we find that inferring Foo?? =
Boolean will fail the consistency check Foo?? � Number, we can
promote the type variable Foo?? = �, and recover blame guarantees
for our system.

2.7 Objects

The treatment of objects in our system follows that of functions,
in that we use polarities to model object properties with various
access controls. For example, private properties of objects have
no polarity, so we infer types of private properties. Read-only
properties, like public functions, have positive polarity and so, we
infer positive parts of the types of those functions and we require
programmers to annotate the negative parts. On the other hand,
public variables in an object are read-write, so they have both
negative and positive polarities, and we require programmers to
annotate the types of public variables. As before, we do not need
escape analysis to figure out if some private function escapes the
scope of an object, or if a private object escapes the scope of a
function. Escape analysis is manifested in the closure computation.
We show an example in ActionScript where object templates are
defined using classes.

35 class A {

36 private var b:B = true;

37 private function foo(var x:Foo?):Foo!
38 { if(b) { return x + 1; } else { return 0; } }

39 public function bar():Bar! { return foo; }

40 }

In this example, our solution will be: B = Boolean, Foo? = �, Foo!
= Number, Bar! = � →Number. Note that as before, we infer Foo?
= � because it is returned from a public function bar.

Summary Our key observations can be summarized as follows.

1. Unlike type inference in statically typed languages, we treat in-
flows, which represent definitions, in a fundamentally different
manner than outflows, which represent uses. The inflows for
a type variable determine its solution. The outflows for a type
variable represent dynamic consistency checks that happen at
the runtime.

2. When the inflows for a type variable involve higher-order types,
its solution is encoded by a kind, which deconstructs the the
type variable into parts, recursively solves for those parts, and
reconstructs the solutions to determine the solution of the type
variable. In particular, the negative parts of such a solution are
determined by the negative parts of higher-order types in the
outflows for the type variable.

3. We need to see all the types of all values flowing into a variable
before we can infer its type. This means that we can only infer
positive parts of the type that serves as the program’s interface
with existing code. The negative parts of that interface can be
defined by some unknown run-time environment, so we either
need the programmer to annotate those parts explicitly, or we
assume them to be the dynamic type.

4. We do not need a separate escape analysis to find which types
escape their scope. Once we have put sufficient type annotations
in the interface of the program with existing code, our flows
encode the escape analysis.

5. Our framework extends naturally to objects (and classes). We
use polarities to model object properties with various access
controls: private, read-only, write-only, and public.

486

compilation co

computation
of closure

derivation
of solutions

blame recovery ry type inference

of closure

Figure 2. Overall Architecture for Type Inference

3. Formal Development
In this section, we formally develop our type inference algorithm
for a core gradually typed calculus of functions and objects.
Unknown types are modeled as type variables in the language.

We formalize the static semantics of the language by a compila-
tion judgment that translates a program annotated with types to a
program with coercions (Section 3.2). We then describe a type in-
ference algorithm that analyzes the coercions to compute a flow re-
lation over types, and derives a solution map for the type variables
based on this flow relation (Section 3.3). We also describe how the
solution map may be “weakened” to recover standard blame guar-
antees (Section 3.4). Figure 2 depicts the overall architecture for
type inference.
We prove complexity theorems for the type inference algorithm

(Section 3.5). Next, we formalize the dynamic semantics of the lan-
guage by an evaluation judgment that, under a solution map for the
type variables, reduces programs with coercions to values (Section
3.6). Based on this dynamic semantics, we prove soundness theo-
rems for the type inference algorithm, by comparing the behaviors
of programs under the solution map inferred by our algorithm with
those under the “default” solution map that interprets every type
variable as the dynamic type (Section 3.7).

3.1 Syntax

The syntax of the language is shown below. We model function
parameters and object properties as variables x. In contrast to stan-
dard object calculi, we distinguish readability and writability of ob-
ject properties: we model access capabilities κ for object properties
as subsets of {+,−}, where + denotes readability and − denotes
writability. We express objects and their types as indexed collec-
tions of object properties and their types; for any non-negative in-
tegerm the notation [m] means the set of indices {1, . . . ,m}, and
for any syntactic entity φ the notation {φi}i∈[m] means the collec-
tion {φ1, . . . , φm} indexed by [m].

term t ::= null
| fun (x :T) t :T ′ | {xκi

i :Ti = ti}i∈[m]

| x | x = t
| t(t′) | t.x | t.x = t′

| 〈T � T ′〉 t | if t then t′ else t′′

type variable X ::= α | X? | X! | X.x
type T ::= ⊥

| T → T ′ | {xκi
i : Ti}i∈[m]

| � | X

Terms include functions (of the form fun (x : T) t : T ′),
objects (of the form {xκi

i : Ti = ti}i∈[m]), and the null value
(null), as well as applications of functions (of the form t(t′)),
reads and writes of object properties (of the form t.x and t.x =
t′), and null checks (of the form if t then t′ else t′′). They also

include reads and writes of variables (of the form x and x = t).
Furthermore, they include coercions between types (of the form
T � T ′). Coercions may be interpreted syntactically as flows, and
semantically as representation-conversion operations. We assume
that in source code, there are no coercions.
Types include function types (of the form T → T ′), objects

types (of the form {xκi
i : Ti}i∈[m]), the null type (⊥), and the

dynamic type (�). Furthermore, they include type variables X .
Some type variables may be derived by others: X.x denotes the
type of the property x of objects of type X , while X? and X!
denote the type of the input and output of functions of type X .
We assume that in source code, type variables are distinct and are
of the form α.
Recursive functions, self references, and loops can be read-

ily encoded in the language; so can blocks with “local” variables.
Thus, we do not include those constructs in the language. Further-
more, we do not model classes: their treatment is similar to that of
objects, and we discuss them further in Section 4.

3.2 Compilation

We now describe the compilation semantics of our language. The
goal of compilation is to compute types and embed coercions
in source programs, thereby preparing them for type inference
(Section 3.3) and evaluation (Section 3.6).
Compilation proceeds under a type environment. A type envi-

ronment Γ is a finite map from variables to types. Compilation
judgments are of the form Γ � t ↪→ t′ :: T , meaning that t com-
piles to t′ of type T under Γ. Figure 3 lists the rules for deriving
compilation judgments.
The compilation rules are fairly straightforward: the type of a

term is computed in a syntax-directed manner, and whenever a
term of type T appears in a context that is annotated with type
T ′, the coercion T �T ′ is attached to the term. We elaborate on the
rules for deconstructing functions and objects, namely (C-APP) for
function applications and (C-PROPR) and (C-PROPW) for object
property accesses: they rely on a partial relation� between types,
defined below. Intuitively, this relation captures the condition under
which a term of a certain type can be deconstructed, by viewing the
type either as the type of a function that can be applied or as the
type of an object for which a property can be read or written.

Definition 3.1 (View). A type T can be viewed as a type T ′ if
T � T ′ can be derived by any of the following rules.

• X � X? → X!
• � � � → �
• T → T ′ � T → T ′

• X � {xκ : X.x} for κ = {+} or κ = {−}
• � � {xκ : �} for κ = {+} or κ = {−}
• {xκi

i : Ti}i∈[m] � {xκ
j : Tj} such that j ∈ [m] and κ ⊆ κj ,

for κ = {+} or κ = {−}

Compilation may fail due to the partiality of the view relation:
essentially, whenever a term of some type is deconstructed in a
context that is annotated with an “incompatible” type. In particular,
a function cannot be viewed as an object, an object cannot be
viewed as a function, and an object without a particular access
capability for a property cannot be viewed as an object with that
access capability for that property.
Further restrictions can be imposed statically. In particular, a

standard gradual type system would detect other “unsafe” coer-
cions, by interpreting all type variables as the dynamic type �
and ensuring that coercions are between statically consistent types
(cf. consistency and consistent-subtyping [16, 17]). Static consis-
tency is defined in Section 3.4, where we discuss how to carry over
“blame” guarantees offered by such systems to our setting. How-

487

Compilation judgment Γ � t ↪→ t′ :: T

(C-NULL)

Γ � null ↪→ null :: ⊥
(C-FUN)

Γ[x 	→ T1] � t2 ↪→ t′2 :: T ′
2 t′′2 = 〈T ′

2 � T2〉 t′2
Γ � fun (x :T1) t2 :T2 ↪→ fun (x :T1) (t

′′
2) :T2 :: T1 → T2

(C-OBJ)

Γ′ = Γ[x1 	→ T1, . . . , xm 	→ Tm]
∀i ∈ [m]. Γ′ � ti ↪→ t′i :: T

′
i t′′i = 〈T ′

i � Ti〉 t′i
Γ � {xκi

i :Ti = ti}i∈[m] ↪→ {xκi
i :Ti = t′′i }i∈[m] :: {xκi

i :Ti}i∈[m]

(C-PROPR)

Γ � t ↪→ t′ :: T T � {x{+}
j : Tj}

Γ � t.xj ↪→ (〈T � {x{+}
j : Tj}〉 t′).xj :: Tj

(C-PROPW)

Γ � t ↪→ t′ :: T T � {x{−}
j : Tj}

Γ � tj ↪→ t′j :: T ′
j t′′j = 〈T ′

j � Tj〉 t′j
Γ � t.xj = tj ↪→ (〈T � {x{−}

j : Tj}〉 t′).xj = t′′j :: Tj

(C-APP)

Γ � t ↪→ t′ :: T T � T1 → T2

Γ � t1 ↪→ t′1 :: T ′
1 t′′1 = 〈T ′

1 � T1〉 t′1
Γ � t (t1) ↪→ (〈T � T1 → T2〉 t′) (t′′1) :: T2

(C-VARR)
Γ(x) = T

Γ � x ↪→ x :: T

(C-VARW)

Γ(x) = T Γ � t ↪→ t′ :: T ′

Γ � x = t ↪→ x = 〈T ′ � T 〉 t′ :: T
(C-IF)

Γ � t ↪→ t′ :: T
α fresh ∀i ∈ {1, 2}. Γ � ti ↪→ t′i :: Ti t′′i = 〈Ti � α〉 t′i

Γ � if t then t1 else t2 ↪→ if t′ then t′′1 else t′′2 :: α

Figure 3. Compilation

ever, we emphasize that we do not require those restrictions for our
soundness theorem: we can tolerate existing run-time failures as
long as we do not introduce any new run-time failures.

3.3 Type Inference

Following compilation, the coercions embedded in a program say
what types of terms appear in what types of contexts. Other co-
ercions are implicit in the type of the compiled program, which
serves as the interface with existing code: these are coercions be-
tween the dynamic type and type variables in the type of the com-
piled program (which continue to be interpreted as the dynamic
type by existing code). Based on this set of coercions, we conduct
type inference as follows:

1. We apply some carefully designed closure rules on this set of
coercions, to compute a flow relation between types (Section
3.3.1). The flow relation overapproximates the set of all possi-
ble flows of terms to contexts at run time.

2. We then derive a solution map for type variables based on that
flow relation (Section 3.3.2). In particular, if some context is

Flow judgment T � T ′ �
(F-BASE)

T � T ′ is a coercion in the compiled program

T � T ′ �
(F-COMP)

T is the type of the compiled program
C ∈ {X � � |X is positive in T} ∪ {��X |X is negative in T}

C �
(F-PULL)

K
X �X � X � Y �

K
X � Y �

(F-FACTOR)

T �X � ‖T‖X = K
X C ∈ {T �K

X ,KX �X}
C �

(F-TRAN)

K
X �X � X � T � K

X � T

K
X � T �

(F-EXPFUNL)
�� T1 → T2 �

� → �� T1 → T2 �
(F-EXPOBJL)

�� {xκi
i : Ti}i∈[m] �

{xκi
i : �}i∈[m] � {xκi

i : Ti}i∈[m] �
(F-EXPFUNR)

T1 → T2 � � �
T1 → T2 � � → � �

(F-EXPOBJR)

{xκi
i : Ti}i∈[m] � � �

{xκi
i : Ti}i∈[m] � {xκi

i : �}i∈[m] �
(F-SPLITFUN)

T1 → T2 � T ′
1 → T ′

2 � C ∈ {T ′
1 � T1, T2 � T ′

2}
C �

(F-SPLITOBJ)

{xκi
i : Ti}i∈[m] � {xκ′

i
i : T ′

i}i∈[n] �
n ≤ m ∀i ∈ [n] : κ′

i ⊆ κi

j ∈ [n] C ∈ {Tj � T ′
j | + ∈ κ′

j} ∪ {T ′
j � Tj | − ∈ κ′

j}
C �

Figure 4. Computation of Closure

annotated by a type variable, the solution for that type variable
is an overapproximation of the types of terms that may flow to
that context at run time.

3.3.1 Computation of Closure

Given a compiled program and its type, we compute a flow relation
between types by initializing and growing a set of coercions until
fixpoint. Flow judgments are of the form T � T ′ �, meaning
that “flows” from type T to type T ′ are possible, i.e., terms of
type T may flow to contexts annotated with type T ′ at run time.
Figure 4 lists the rules for deriving flow judgments. Those rules are
explained below.

488

Unlike usual flow relations for statically typed languages with
subtyping, our flow relation is not merely a transitive closure of
the coercions in a compiled program, interpreted as subtyping con-
straints. Instead, it is designed carefully to account for gradual typ-
ing, and is tuned for efficiency.
Rules (F-BASE) and (F-COMP) generate the initial facts. In

particular, (F-COMP) relies on a standard notion of polarity for
type variables, defined below, to ensure that any type variable that
appears in the type of the compiled program is (or becomes, by
other rules) “tainted” with the dynamic type in the contravariant
parts.

Definition 3.2 (Polarity of a type variable in a type). The set of
positive variables and the set of negative variables in a type T are
P
+(T) and P

−(T), respectively, defined as follows. Let s range
over {+,−}; let s be − when s is +, and + when s is −.
• P

+(X) = {X}, P−(X) = {}
• P

s(�) = P
s(⊥) = {}

• P
s(T1 → T2) = P

s(T1) ∪ P
s(T2)

• P
s({xκi

i : Ti}i∈[m]) =
⋃
{Ps(Ti) | i ∈ [m],− ∈ κi} ∪⋃

{Ps(Ti) | i ∈ [m],+ ∈ κi}
For example, if the interface of the compiled program with

existing code is X1 → X2, then (F-COMP) reflects the following
assumptions:

• We assume that there is a flow from � toX1.

• We also assume that there is a flow fromX2 to �, so that if (say)
there is a local function that escapes throughX2, then (by other
rules) we can derive a flow from � to the parameter type of the
escaping function.

Similar considerations apply if the interface is an object type: if a
writable property is annotated with a type variable, there is a flow
from � to that type variable, and if a readable property is annotated
with a type variable, there is a flow from that type variable to �. (If
a property is both, we assume both flows; if a property is neither,
we assume neither.)
Other rules, namely (F-PULL), (F-FACTOR), and (F-TRAN),

rely on a notion of kinding for type variables, defined below. Intu-
itively, a type variable has, for every type constructor that may form
a solution for the type variable, a kind that encodes that solution.

Definition 3.3 (Kinds for a type variable). Kinds for a type variable
X , ranged over by K

X , are types of the form ⊥, X? → X!,
{xκi

i : X.xi}i∈[m], or �.

Eventually, the solution of a type variable is derived by the kinds
that flow into it, either directly or indirectly through other type
variables. Thus, the rule (F-PULL) “pulls” any kind on the left of a
type variable to any other type variable on its right.
The rule (F-FACTOR) factors a coercion from a type to a type

variable into intermediate coercions through a corresponding kind
for that type variable, computed as shown below. This factoring
ensures that flows from types to a type variable are appropriately
captured in solutions for that type variable.

Definition 3.4 (Kind of a type for a type variable). The kind ‖T‖X
of a type T , where T is not a type variable, for a type variable X
is defined as follows:

• ‖⊥‖X = ⊥
• ‖ � ‖X = �
• ‖T1 → T2‖X = X? → X!
• ‖{xκi

i : Ti}i∈[m]‖X = {xκi
i : X.xi}i∈[m]

The rule (F-TRAN) limits transitive flows through a type vari-
able in two ways: it only considers a kind on the left, and it only

considers a type on the right such that the kind on the left is dynam-
ically consistent with the type on its right. Dynamic consistency �
is a partial relation between types that are not type variables, de-
fined as follows; it models coercions that never fail at run time.

Definition 3.5 (Dynamic Consistency). A type T is dynamically
consistent with another type T ′ if T and T ′ are not type variables,
and T � T ′ can be derived by any of the following rules.

• ⊥ � T
• T � �, � � T
• T1 → T2 � T ′

1 → T ′
2

• {xκi
i : Ti}i∈[m] � {xκ′

i
i : T ′

i}i∈[n] if n ≤ m, and for all
i ∈ [n], we have κ′

i ⊆ κi

In combination with (F-FACTOR), the rule (F-TRAN) ensures
that flows from types on the left of a type variable to types on the
right of the type variable are taken into account, without computing
a standard transitive closure. (In Section 4, we discuss why comput-
ing a standard transitive closure is undesirable.)
The remaining rules are fairly straightforward. (F-EXPFUNL),

(F-EXPFUNR), (F-EXPOBJL), and (F-EXPOBJR) expand � on
the left or right of a higher-order type to the appropriate shape.
Finally, (F-SPLITFUN) and (F-SPLITOBJ) split flows between
higher-order types into flows between their parts, respecting co-
variance and contravariance. Note that since we distinguish access
capabilities for reading and writing object properties, the types of
object properties are not necessarily invariant: they may be covari-
ant (read-only), contravariant (write-only), invariant (read-write),
or even abstract (no access).

3.3.2 Derivation of Solutions

Based on the flow judgment, we derive a solution map I that
associates each type variable X to a type without type variables.
We also extend I to a function Î from types to types without type
variables, such that Î(T) is the type obtained by substituting each
type variableX in type T by I(X).
To solve for X , let T+(X) be the set of types T such that T

is not a type variable, and T � X �; we compute the least upper
bound of the kinds of types forX in T+(X), as defined below.

Definition 3.6 (Least upper bound of kinds). The least upper
bound K

X
1 � K

X
2 of two kinds KX

1 and K
X
2 for X is defined as

follows:

• ⊥ �K
X = K

X , KX � ⊥ = K
X

• � �K
X = �, KX � � = �

• (X? → X!) � (X? → X!) = X? → X!
• {xκi

i : X.xi}i∈[m] � {yκj

j : X.yj}j∈[n] = {zκk
k : X.zk}k∈[p],

where {zk}k∈[p] = {xi}i∈[m] ∩ {yj}j∈[n] and for all i ∈ [m],
j ∈ [n], and k ∈ [p], if xi = yj = zk then κk = κi ∩ κj .

• (X? → X!) � {xκi
i : X.xi}i∈[m] = �

• {xκi
i : X.xi}i∈[m] � (X? → X!) = �

The solution I(X) forX is then defined as Î(�T∈T+(X)‖T‖X).
Such solutions are always well-founded, since kinds do not have
cyclic dependencies.

3.4 Blame Recovery

Standard gradual type systems enforce that the coercions in a com-
piled program satisfy static consistency, which is a partial relation
between types that are not type variables, defined as follows:

Definition 3.7 (Static Consistency). A type T is statically consis-
tent with another type T ′ if T and T ′ are not type variables, and
T � T ′ can be derived by any of the following rules.

489

• ⊥ � T
• T � �, � � T
• T1 → T2 � T ′

1 → T ′
2 if T

′
1 � T1 and T2 � T ′

2

• {xκi
i : Ti}i∈[m] � {xκ′

i
i : T ′

i}i∈[n] if n ≤ m, and for all
i ∈ [n], we have κ′

i ⊆ κi, and if + ∈ κ′
i then Ti � T ′

i , if
− ∈ κ′

i then T
′
i � Ti.

This static consistency relation extends similar relations defined
separately for a gradually typed language of functions and for a
gradually typed language of objects. We conjecture that programs
in our language satisfy the blame theorem whenever they compile
to programs whose coercions satisfy the static consistency relation,
following similar type-safety results for existing languages.
However, the solution map I derived above does not guaran-

tee static consistency. This means that blame guarantees offered
by standard gradual type systems do not carry over with type in-
ference. Fortunately, it is possible to “weaken” I to recover those
blame guarantees, as follows. For any type variable X , let T−(X)
be the set of types T such that T is not a type variable andX�T �.
If there is any T ∈ T

−(X) such that I(X) �� T , then I(X) is re-
defined to be �. We can then prove the following theorem.

Theorem 3.8 (Blame recovery). Suppose that for every coercion
T �T ′ in the compiled program, we have ∗̂(T) � ∗̂(T ′), where ∗̂
is the solution map that associates every type variable with �. Then
for every flow judgment T � T ′ �, we have Î(T) � Î(T ′).

3.5 Algorithmic Complexity

Although computation of closure may be performed by applying
the flow rules in arbitrary order until fixpoint, an effective algorithm
would apply them systematically, as described below; we can then
reason about its efficiency.

Definition 3.9 (Flow computation). The computation of flow judg-
ments proceeds in the following steps until fixpoint:

(1) Initially, rules (F-BASE) and (F-COMP) are applied until sat-
uration.

(2) Next, rules (F-PULL) and (F-FACTOR) are applied until satu-
ration.

(3) Next, rules (F-TRAN), (F-EXPFUNL), (F-EXPOBJL), (F-
EXPFUNR), (F-EXPOBJR) are applied until saturation.

(4) Next, rule (F-SPLITFUN) and (F-SPLITOBJ) is applied until
saturation.

(5) Finally, control returns to step (2), where if no new flow judg-
ments are derived, the algorithm terminates.

We prove that our algorithm terminates and is efficient.

Theorem 3.10 (Termination). Flow computation terminates.

Proof. Recall that all type variables in the system are distinct, so
they have unique depths. Let d be the maximum depth of types in
the system after step (1).
Steps (2) and (3) introduce types of depth ≤ d in the system.

Step (4) introduces types of depth ≤ d − 1. Finally, in step (5),
types of depth d and type variables of depth 1 can be thrown away.
This means that maximum depth of types in the system after step
(5) is d− 1.
Thus, flow computation must terminate in ≤ d iterations.

Theorem 3.11 (Time Complexity). The time complexity of flow
computation is quadratic in the size of the program.

Proof. Let k be the number of type variables, n be the number of
types other than type variables, and d be the maximum depth of
types after step (1).

Step (2) takes O(k2) time. Step (3) takes O(kn) time, and
increases the number of types by some factor w that denotes the
maximum width of types. Step (4) takesO(n2) time, and increases
the number of types by the same factor w.
Thus, before step (5), the total time taken is O((k + n)2), and

after step (5), we have wk variables and wn types other than type
variables.
Since the algorithm terminates in ≤ d iterations, the total time

complexity is O(w2d(k + n)2). Typically, w and d are small
constants, so the time complexity is almost quadratic in the number
of types k + n. In general, if the size of the program is N , then
wd(k+n) = O(N). Thus the total time complexity isO(N2).

3.6 Evaluation

We now describe the evaluation semantics of our language, which
enables us to prove that our type inference algorithm is sound.
Let � range over locations. A stack S is a sequence of locations.
The syntax of values is as follows.

value v ::= 〈⊥� · · ·� T 〉 null
| 〈T1 → T2 � · · ·� T 〉 λSx. t

| 〈{xκi
i : Ti}i∈[m] � · · ·� T 〉 �

A value of the form 〈T � T 〉 u is abbreviated as u :: T .
Furthermore, we use the notation 〈T ′� · · ·�T ′′〉 〈T � · · ·�T ′〉 u
to denote 〈T � · · · � T ′ � · · · � T ′′〉 u. Unlike previous work
that focuses on space-efficient implementations of gradually typed
languages [19], our dynamic semantics admits unbounded chains
of coercions to simplify the specification and proof of soundness:
essentially, we keep coercions in symbolic form and check that they
normalize “along the way.”
A record is a map from variables to values. A heap H is a map

from locations to records.
We rely on the following operations for querying/updating vari-

ables on the stack through the heap.

H[x �⇒ v]S,� =

{
H[� 	→ H(�)[x 	→ v]] if x ∈ dom(H(�))
H[x �⇒ v]S if x /∈ dom(H(�))

H[x]S,� =

{
H(�)(x) if x ∈ dom(H(�))
H[x]S if x /∈ dom(H(�))

The evaluation judgment is S � (H, t) ⇓σ (H ′, v), where σ is a
solution map, which associates type variables to types without type
variables. Figure 5 lists the rules for deriving evaluation judgments.
The rules are fairly standard, except that the coercions on val-

ues are symbolic: the type variables in those coercions are not sub-
stituted by their solutions, but instead the solutions are looked up
when normalizing the coercions. This is convenient for our sound-
ness proof. Normalization is defined as follows.

Definition 3.12 (Normalization). The chain of coercions T0�· · ·�
Tn+1 normalizes under σ if for all j ∈ [n+ 1], σ(T0) � σ(Tj).

Furthermore, a value v normalizes under σ, written v ⇓σ , if it
is of the form 〈T0�· · ·�Tn+1〉 u and 〈T0�· · ·�Tn+1〉 normalizes
under σ.

The deconstruction rules for functions and objects, namely (E-
APP), (E-PROPR), and (E-PROPW), rely on the following stan-
dard splitting rules for higher-order coercions.

∀i ∈ [n+ 1]. Ti � {x{+}
j : T ′

i}
〈T0 . . . Tn+1 � {x{+}

j : Uj}〉 −• {x{+}
j : 〈T ′

0 . . . T
′
n+1〉}

∀i ∈ [n+ 1]. Ti � {x{−}
j : T ′

i}
〈T0 . . . Tn+1 � {x{−}

j : Uj}〉 −• {x{−}
j : 〈T ′

n+1 . . . T
′
0〉}

490

Evaluation judgment S � (H, t) ⇓σ (H ′, v)

(E-NULL)

S � (H, null) ⇓σ (H, null :: ⊥)

(E-FUN)

S � (H, fun (x :T1) t2 :T2) ⇓σ (H,λSx. t2 :: T1 → T2)

(E-OBJ)

� is fresh H1 = H[� 	→ [x1 	→ null, . . . , xn 	→ null]]
∀i ∈ [m]. S, � � (Hi, ti) ⇓σ (H ′

i, vi) H ′
i[xi �⇒ vi]S,� = Hi+1

S � (H, {xκi
i :Ti = ti}i∈[m]) ⇓σ (Hm+1, � :: {xκi

i :Ti}i∈[m])

(E-PROPR)

S � (H, t) ⇓σ (H ′, 〈C〉 �) C −• {x{+}
j : 〈Cj〉}

H ′(�) = R vj = R(xj) 〈Cj〉 vj ⇓σ

S � (H, t.xj) ⇓σ (H ′, 〈Cj〉 vj)
(E-PROPW)

S � (H, t) ⇓σ (H ′, 〈C〉 �) C −• {x{−}
j : 〈Cj〉}

S � (H ′, tj) ⇓σ (Hj , vj) 〈Cj〉 vj ⇓σ

Hj(�) = R H ′′ = Hj [� 	→ R[xj 	→ 〈Cj〉 vj]]
S � (H, t.xj = tj) ⇓σ (H ′′, 〈Cj〉 vj)

(E-APP)

S � (H, t) ⇓σ (H ′, 〈C〉 λS′
x.t2) C −• C1 → C2

S � (H ′, t1) ⇓σ (H1, v1) 〈C1〉 v1 ⇓σ

� is fresh H ′′ = H1[� 	→ [x 	→ 〈C1〉 v1]]
S′, � � (H ′′, t2) ⇓σ (H2, v2) 〈C2〉 v2 ⇓σ

S � (H, t (t1)) ⇓σ (H2, 〈C2〉 v2)
(E-VARR)

H[x]S = v

S � (H,x) ⇓σ (H, v)

(E-VARW)

S � (H, t) ⇓σ (H ′, v) H ′[x �⇒ v]S = H ′′

S � (H,x = t) ⇓σ (H ′′, v)

(E-CAST)

S � (H, t1) ⇓σ (H ′, v1) 〈T1 � T2〉 v1 ⇓σ

S � (H, 〈T1 � T2〉 t1) ⇓σ (H ′, 〈T1 � T2〉 v1)
(E-IF)

S � (H, t) ⇓σ (H ′, v)
v �= null ⇒ i = 1 v = null ⇒ i = 2

S � (H ′, ti) ⇓σ (H ′′, v′)

S � (H, if t then t1 else t2) ⇓σ (H ′′, v′)

Figure 5. Evaluation

∀i ∈ [n+ 1]. Ti � T ′
i → T ′′

i

〈T0 . . . Tn+1 � U1 → U2〉 −• 〈T ′
n+1 . . . T

′
0〉 → 〈T ′′

0 . . . T ′′
n+1〉

3.7 Soundness

Since we infer more precise types where there were less precise
types (�), the interesting direction for soundness is to establish, as
above, that we do not introduce any run-time errors. The other di-
rection is trivial, and can be established by reasoning about positive
and negative blames [24] (see Section 6).
We prove the following soundness theorem for our type infer-

ence algorithm, which says that if a compiled program evaluates to
a value with dynamic types for type variables, then it evaluates to

the same value with inferred types for type variables. (Recall that
the dynamic semantics is symbolic in type variables, but ensures
that any coercions in values normalize.)

Theorem 3.13 (Soundness). Let ∅ � t ↪→ t′ :: T . Let I be the
inferred solution map for t′ :: T , and let ∗ be the solution map that
associates every type variable with �. If ∅ � (∅, t′) ⇓∗ (H ′, v),
then ∅ � (∅, t′) ⇓I (H

′, v).

Soundness follows as a corollary of our main lemma, Term
Correspondence (Lemma 3.16, see below), which states not only (i)
there a correspondence between reductions in the original program
and reductions in the program with inferred types, but also (ii) any
coercions that may be generated at run time have already been
generated at compile time (via closure computation). Of course, (ii)
is a crucial invariant to show (i), since it means that the solutions
we compute at compile time behave as expected at run time.

Definition 3.14 (Knowledge of coercions). The chain of coercions
T0 � · · ·� Tn+1 is known if for all j ∈ [n+ 1], Tj−1 � Tj �.
Definition 3.15 (Compatibility of type environment with stack and
heap). The type environmentΓ is compatible with the stack S under
heap H , written Γ ∼H S, if whenever Γ(x) = Tn+1, we have
H[x]S = 〈T0 � · · ·� Tn+1〉 v and 〈T0 � · · ·� Tn+1〉 is known.
Lemma 3.16 (Term Correspondence). Let Γ � t ↪→ t′ :: T and
Γ ∼H S. If S � (H, t′) ⇓∗ (H ′, 〈T0 � · · ·� Tn+1〉 v) then:

• S � (H, t′) ⇓I (H
′, 〈T0 � · · ·� Tn+1〉 v

• 〈T0 � · · ·� Tn+1〉 is known

The proof of Term Correspondence requires Value Correspon-
dence (Lemma 3.17, see below), and two other lemmas on knowl-
edge of coercions, Function Flow and Object Flow, which are used
in the cases of function application and object property access.

Lemma 3.17 (Value Correspondence). If T0�· · ·�Tn+1 is known
and normalizes under ∗, then it normalizes under I.
Lemma 3.18 (Function Flow). If T0 → T ′

0 � T ′′
1 � · · ·� T ′′

n+1 is
known and T ′′

i � Ti → T ′
i for all i ∈ [n+1], then Tn . . . T1�T0

is known and T ′
0 � T ′

1 . . . T
′
n is known.

Lemma 3.19 (Object Flow). If {xκi−1

i−1 : Ti−1}i∈[m]�T ′′
1 � · · ·�

T ′′
n+1 is known and T ′′

i � {xκ′
0

0 : Ti} for all i ∈ [n + 1], then
Tn . . . T1 �T0 is known if κ′

0 = {−} and T ′
0 �T ′

1 . . . T
′
n is known

if κ′
0 = {+}.
The proofs of these lemmas in turn require the closure rules, and

the following two basic lemmas on dynamic consistency.

Lemma 3.20 (Kind Ordering). If �T∈T T = T ′ then for all
T ∈ T , we have T � T ′.

Lemma 3.21 (Monotonicity). IfX � Y � then I(X) � I(Y).

Furthermore, we can prove the following soundness theorem
that says that our type inference is compositional.

Theorem 3.22 (Compositional Soundness). Suppose that ∅ �
t1 ↪→ t′1 :: T1. Let I be the inferred solution map for t′1 :: T1,
and ∗ be the solution map that associates every type variable
with �. Let t be a program without type variables, such that ∅ �
t ↪→ t′ :: ∗̂(T1) → T2. Let t′′1 = 〈T1 � ∗̂(T1)〉 t′1. Then
∅ � (∅, t′ (t′′1)) ⇓∗ (H, v2) implies ∅ � (∅, t′ (t′′1)) ⇓I (H, v2).

Proof. The new coercion is T1 � ∗̂(T1). However, by (F-COMP)
we already know coercions of the form X � � for positive type
variablesX and ��X ′ for negative type variablesX ′ in T1. So by
Term Correspondence, the composition is sound.

491

Finally, in Section 4.4 we discuss the adequacy of our inferred
types, and conjecture that our algorithm is relatively complete (i.e.,
the solution maps it infers are optimal in a restricted family of
possible solution maps). Unfortunately, we cannot compete with
manual reasoning: we are working in a setting that admits reasoning
outside the static type system via �.

4. Discussion
4.1 Feature Extensions

Base Types Base types in our language can be modeled as kinds.
Kinds correspond to type constructors, and the base types are type
constructors of arity 0. By Definition 3.3, any base type is a kind
for any X , and by Definition 3.4 the kind of a base type for a type
variable as that base type itself. Finally, in Definition 3.6 the least
upper bounds over base types takes into account partial subtyping
relations between base types in the obvious manner.

Classes and Nominal Subtyping We do not model classes in
our formal language, but could do so by closely following the
treatment of objects. In particular, instance methods are modeled as
read-only properties and instance fields are modeled as read-write
properties; private properties are also modeled. Our algorithm and
its guarantees carry over to a language with nominal subtyping,
if the compiler ensures that nominal subtyping implies structural
subtyping. For example, in ActionScript, nominal subtyping of
objects is available via subclassing. The ActionScript compiler
ensures that when class B is a subclass of class A, the structural
type of B-objects is a subtype of the structural type of A-objects, by
checking that the properties in A that are overridden in B are related
by subtyping, taking into account read/write polarities.

4.2 Limited Transitivity

Previous type inference algorithms for object-oriented languages
with subtyping [14, 15] involve taking full transitive closure of sub-
typing constraints, which makes them O(n3), where n is the size
of the program. In contrast, we have designed our closure rules for
flows so that transitivity is limited, which not only makes our al-
gorithm O(n2), but also allows for more precise type inference.
For example, consider this sequence of flows: Number � X � Y �
Boolean. Our core algorithm infers X = Number and Y = Number.
Now, if we want our solutions to satisfy the blame theorem, we fall
back to Y = �, since Y = Number is inconsistent with Y � Boolean.
However, we do not need to fall back to X = �. In contrast, full tran-
sitivity would have lost the information that there is no immediate
dynamic consistency check between X and Boolean.

4.3 Performance Optimizations

As we will see in our experiments, adding more precise types
improves run-time performance in most cases. But more precise
types can also degrade run-time performance by introducing new
run-time conversions. It does not matter whether these precise types
are added by type inference or manually—the effect is the same.
For example, consider the following program:

41 function foo(x:*):Number { return x + 1 }

42 function bar(max:Number):Number {

43 var sum:Number = 0;

44 var y = 1;

45 while(sum < max) { sum = sum + foo(y) }

46 return sum

47 }

The function foo could be part of some external library which we
cannot modify. Without any type annotation, variable y in bar will
be assigned � type. So, the function call foo(y) will not involve

any run-time conversions for y, since the parameter type for foo
is also �. But if we annotate y with Number, either using our type
inference algorithm or manually, function call foo(y) will result
in a run-time conversion from Number to � for y.
We observe that the fix for this problem lies in the runtime rather

than our inference algorithm. Our type inference algorithm tries
to infer more precise types for unannotated variables. The runtime
should use these precise types to optimize the program. In partic-
ular, it can do type specialization [10] for foo: i.e., it can create a
copy of foo which takes a Number argument, and patch the func-
tion call foo(y) in bar to this new copy. (Type specialization al-
ready happens in ActionScript for numeric operations.) The result-
ing program will be more optimized than the unannotated version.

4.4 Adequacy of Inferred Types

We now analyze how precise our inferred types are. Our closure
algorithm ensures that if there exists some flow from a concrete
type T to a type variableX via other type variables, we consider T
when computing the solution for X . We do this to make sure that
we do not introduce any new run-time errors by missing out some
types that could flow into X . We promote the solution for X to �
when two different kinds flow intoX or � flows intoX explicitly.
One could give more precise types than our algorithm by rea-

soning outside the type system. For example, consider the follow-
ing program:

48 var x:X, y:Y;
49 if(b) { x = 1 } else { x = false };

50 if(b) { y = x } else { y = 1 }

We generate Number � X and Boolean � X on line 49, and X � Y
and Number� Y on line 50. When we do closure, we add Boolean
� Y also, and we infer X = � and Y = �. Whereas, with path-sensitive
reasoning (outside the type system), the programmer can argue that
Y need not be �, it can be Number.
Blame recovery may also reduce the precision of our solutions.

For example, if the generated flows are Number � X, X � Y, and
Y � Boolean, we infer X = Number and Y = Number. When we
do blame recovery, we see that the coercion Y � Boolean is not
satisfied, and so we promote Y to �. Whereas, the programmer
could get away by annotating Y as Number and making sure that Y
� Boolean does not happen at run time, again by reasoning outside
the type system.
However, we expect that if reasoning outside the type system

is banned, then our algorithm indeed infers optimal solutions. For-
mally, we can define a subset of the static consistency relation that
forces the use of purely static reasoning (standard subtyping) for
inflows. We then conjecture that there are no other solutions that
are naı̈ve subtypes of the solutions we infer upon blame recovery,
and that satisfy the above relation.

5. Experiments
We have implemented our type inference algorithm for Action-
Script. Our implementation takes an existing ActionScript program
as input, and returns the same program with inferred types added
to the source as output. The output program can then be compiled
and run using the compiler and VM, and compared with the input
program.

5.1 Methodology

We use the SunSpider [20] and V8 [23] benchmarks to evaluate
our type inference algorithm. These are standard benchmarks used
to measure the performance of JavaScript implementations; we use
the ActionScript version of these benchmarks, which are part of the
test suite of the ActionScript VM.

492

Figure 6. Comparison of our algorithm with partially typed code

In their original form, these benchmarks are fully typed, i.e.
their source code has complete type information. We remove all
type annotations, except in those parts of the interface that are
required by our algorithm to be explicitly annotated. We then run
our algorithm on these partially typed benchmarks.
With performance of the fully typed benchmarks as the base-

line, we compare the performance of partially typed benchmarks,
with and without types added by our inference algorithm. We also
compare the results of our algorithm on partially typed benchmarks
with the results of Chang et al. [7], who have recently implemented
a much simpler type inference algorithm (that only infers types for
a subset of local variables) along with several other high-level op-
timizations for ActionScript at bytecode level, and report perfor-
mance increases due to the added type information.

5.2 Results

5.2.1 Comparison with Partially Typed Code

Figure 6 compares the performance of partially typed benchmarks,
with and without types added by our inference algorithm. Overall,
our algorithm gives an average 1.6x performance improvement
over partially typed benchmarks, with a maximum improvement
of 5.6x.
We are able to recover ∼100% performance (i.e. the perfor-

mance of fully typed benchmarks) in 13 out of the 17 benchmarks.
For v8\richards, our performance is higher than the fully typed
version. There are some private class variables in the benchmark
which are typed as � in the fully typed version, whereas our algo-
rithm is able to infer more precise types for them, resulting in an
increased performance.
In the fully typed version of sunspider\math-cordic, an ob-

ject is retrieved from an array and implicitly cast to an integer via
an explicit int annotation. Since arrays are untyped in Action-
Script, our inference algorithm infers the type of retrieved object
as �. This one annotation is the reason that we could reach only
∼50% performance as compared to the fully typed benchmark.
Similar explicit type annotations for properties accessed from the
type Object, which are also untyped in ActionScript, hurt our
performance in v8\raytrace. For sunspider\access-nsieve
and sunspider\access-fankkuch, we infer some variables as
Number, whereas in the fully typed benchmarks, they are typed

Figure 7. Comparison of our algorithm with Chang et al.

as int. In ActionScript, int represents 32 bit integers whereas
Number has size 64 bits and can represent integers, unsigned in-
tegers, and floating-point numbers. At run time, operations involv-
ing int are much faster than those involving Number. Since we
do not implement a range analysis, we conservatively infer all nu-
meric types to be Number. This hurts the performance in the above
benchmarks. Our algorithm can be augmented with a simple range
analysis to mitigate this problem.

5.2.2 Comparison with Chang et al. [7]

Figure 7 compares the performance of partially typed benchmarks,
with types added by our inference algorithm and with types added
by inference algorithm of Chang et al. In 11 out of the 17 bench-
marks, our numbers are better than them. In 5 out of the 17, the
numbers are almost equal. For bitops-bits-in-byte, they re-
port that the higher performance is because of a different inter-
mediate code representation they implement in the ActionScript
JIT compiler. This effect is independent of the type inference al-
gorithm.

5.2.3 Performance Degradation after Type Inference

In Figure 6, we see that for crypto-sha1, the performance de-
grades after adding precise type information to the partially typed
code. This general issue was also found by [7] (where the effect is
even worse), and is already discussed in Section 4.3.

6. Related Work
Gradual Type Inference The only previous work on gradual type
inference is the unification-based technique of [18], which is not
suitable for an object-oriented language with subtyping.

Soft Typing Overall, our goal is the same as that of soft typing
[6]: to improve run-time performance by eliminating run-time type
checks where ever possible. However, to our knowledge, all the soft
type inference systems proposed to date [2, 25] are based on unifi-
cation, which is unsuitable for object-oriented languages with sub-
typing. Since we do not aim to infer polymorphic types in Action-
Script, we are interested in algorithms with polynomial complexity.
Furthermore, treating uses and definitions asymmetrically enables
us to infer more precise types than soft type inference. Finally, ex-
isting soft type inference systems have not considered problems of

493

soundness in the presence of partial compilation, whereas our al-
gorithm retrofits type inference on existing programs under the as-
sumption that complete source code may not be available for anal-
ysis. This restriction of preserving semantics of code outside the
compilation unit implies that we must infer types for only those
parts of the program that we can see all the writes to, i.e., those
parts of the program that do not “escape” the compilation unit.

Blame Our algorithm seems to share deep connections with the
blame calculus [19, 24] and other coercion calculi [11]; exploring
these connections should be interesting future work. In particular,
the blame calculus defines three new subtyping relations: <:+

(positive subtyping), <:− (negative subtyping), and <:n (naı̈ve
subtyping), such that S <:n T denotes that S is more precise than
T , and holds if and only if S <:+ T and T <:− S. In particular,
we have S <:+ � and � <:− T . The main result in [24] is that if
S <:+ T then a run-time cast error from S to T cannot be blamed
on the term to which the cast is attached, and if S <:− T then a
run-time cast error from S to T cannot be blamed on the context in
which the cast appears.
The solutions of our algorithm are related to the default types

by <:n, so we can say that our solutions are more precise than
the default types. In a context that previously expected the default
type, we now effectively introduce a cast from a more precise type;
this means that any blame for a run-time cast error must lie with
the context, so there is nothing to prove about the program. On the
other hand, wherever we infer a more precise type for a context,
we effectively introduce a cast from the default type; this means
that any blame for a run-time cast error must lie with the pro-
gram, i.e., we must prove that a program that executed successfully
before type inference continues to execute successfully after type
inference—as we do in this paper.

Combining Static Typing and Dynamic Typing There has been
a lot of interest in exploring ways to mix typed and untyped code,
e.g., via occurrence typing [22], gradual typing [16, 17], hybrid
typing [8], and like typing [26]. In these systems, types are supplied
by the user. In contrast, our work focuses on type inference, which
is complementary.

Static Type Inference Static type inference has been explored
for dynamic languages, including Self [1], Ruby [9], Python [4],
JavaScript [5, 21], and Scheme [25]. There is also a long history of
work on type inference for languages with subtyping [14, 15].

Dynamic Type Inference Our type system gradually infers some
static types, but is still bound by the limitations of static analysis on
programs that use dynamic types. As such, we believe that dynamic
type inference would be useful to improve the precision of those
dynamic types which we cannot eliminate in a program. Recent
work has explored dynamic techniques for type inference and type
specialization [3, 10] for dynamic languages. As future work, we
plan to explore such combinations in the just-in-time (JIT) compiler
underlying the ActionScript VM.

7. Conclusion
In this paper, we design a type inference algorithm that can improve
the performance of existing gradually typed programs, without in-
troducing any new run-time failures. The distinguishing features
of the algorithm lie in its asymmetric treatment of inflows and out-
flows, and its encoding of an escape analysis to preserve backward-
compatibility. We prove that our algorithm is sound and efficient,
and demonstrate its applicability on a mainstream gradually typed
language, ActionScript.

Acknowledgments Wewould like to thank BerndMathiske, Dim-
itrios Vytiniotis, and several anonymous reviewers for their helpful

comments and suggestions. This work was done while the first au-
thor was an intern at Advanced Technology Labs, Adobe Systems.

References
[1] O. Agesen, J. Palsberg, and M.I. Schwartzbach. Type Inference of

SELF. ECOOP, 1993.

[2] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft Typing with
Conditional Types. In POPL, pages 163–173, 1994.

[3] J. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic Inference
of Static Types for Ruby. In POPL, pages 459–472. ACM, 2011.

[4] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: Rec-
onciling Dynamically and Statically Typed OO Languages. In DLS.
ACM, 2007.

[5] C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type Infer-
ence for JavaScript. In ECOOP, 2005.

[6] R. Cartwright and M. Fagan. Soft typing. In PLDI, pages 278–292,
1991.

[7] M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal, M. Bebenita,
C. Wimmer, and M. Franz. The Impact of Optional Type Information
on JIT Compilation of Dynamically Typed Languages. In DLS. ACM,
2011.

[8] C. Flanagan. Hybrid Type Checking. In POPL, pages 245–256. ACM,
2006.

[9] M. Furr, J. D. An, J. S. Foster, and M. Hicks. Profile-Guided Static
Typing for Dynamic Scripting Languages. In OOPSLA, 2009.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In PLDI, pages 465–478. ACM, 2009.

[11] F. Henglein. Dynamic Typing: Syntax and Proof Theory. Science of
Computer Programming, 22(3):197 – 230, 1994.

[12] D. Herman, A. Tomb, and C. Flanagan. Space-Efficient Gradual
Typing. Trends in Functional Programming, 2007.

[13] C. Moock. Essential ActionScript 3.0. O’Reilly, 2007.

[14] J. Palsberg. Efficient Inference of Object Types. In LICS, pages 186–
195. IEEE, 1994.

[15] F. Pottier. A Framework for Type Inference with Subtyping. In ICFP,
pages 228–238. ACM, 1998.

[16] J. Siek and W. Taha. Gradual Typing for Objects. In ECOOP, pages
2–27. Springer-Verlag, 2007.

[17] J. G. Siek and W. Taha. Gradual Typing for Functional Languages. In
Scheme and Functional Programming Workshop, 2006.

[18] J. G. Siek and M. Vachharajani. Gradual Typing with Unification-
Based Inference. In DLS, pages 1–12. ACM, 2008.

[19] J. G. Siek and P. Wadler. Threesomes, With and Without blame. In
POPL, pages 365–376. ACM, 2010.

[20] SunSpider Benchmarks, 2010. http://www.webkit.org/perf/
sunspider/sunspider.html.

[21] P. Thiemann. Towards a Type System for Analyzing JavaScript Pro-
grams. In ESOP, 2005.

[22] S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation
of Typed Scheme. In POPL, 2008.

[23] V8 Benchmarks, 2011. http://code.google.com/apis/v8/
benchmarks.html.

[24] P. Wadler and R. B. Findler. Well-Typed Programs Can’t Be Blamed.
In ESOP, pages 1–16. Springer-Verlag, 2009.

[25] A. K. Wright and R. Cartwright. A Practical Soft Type System for
Scheme. ACM TOPLAS, 19(1), 1997.

[26] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek.
Integrating Typed and Untyped Code in a Scripting Language. In
POPL, pages 377–388. ACM, 2010.

494

