
Regression Testing
• Developed first version of software
• Adequately tested the first version
• Modified the software; version 2 now 

needs to be tested
• How to test version 2?
• Approaches

– Retest entire software from scratch
– Only test the changed parts, ignoring 



Regression Testing
• “Software maintenance task 
performed on a modified program to 
instill confidence that changes are 
correct and have not adversely 
affected unchanged portions of the 
program.”



Regression Testing vs. 
Development Testing

• During regression testing, an 
established test set may be 
available for reuse

• Approaches
– Retest all
– Selective retest (selective regression 
testing) ←←←← Main focus of research



Formal Definition
• Given a program P, 
• its modified version P’, and 
• a test set T

– used previously to test P
• find a way, making use of T to gain 
sufficient confidence in the 
correctness of P’



Regression Testing Steps
1. Identify the modifications that were 

made to P
– Either assume availability of a list of 

modifications, or
– Mapping of code segments of P to their 

corresponding segments in P’
2. Select T’ ⊆⊆⊆⊆ T, the set of tests to re-

execute on P’
– May need results of step 1 above
– May need test history information, i.e., the 

input, output





Selective Retesting

• Tests to rerun
– Select those tests that will produce 

different output















1 1 1

1

1

1
1



2 2 2

2

2

2

2



3

3 3



3

3 3



Cost of Regression Testing

Retest All
Selective Retest

Analysis



Selective-retest Approaches
• Coverage-based approaches

– Rerun tests that could produce 
different output than the original 
program. Use some coverage criterion 
as a guide

• Minimization approaches
– Minimal set of tests that must be run 
to meet some structural coverage 
criterion
• E.g., every program statement added to or 

modified for P’ be executed (if possible) by 
at least one test in T



Selective-retest Approaches
• Safe approaches

– Select every test that may cause the 
modified program to produce different output 
than the original program

• E.g., every test that when executed on P, executed at 
least one statement that has been deleted from P, at 
least one statement that is new in or modified for P’

• Data-flow coverage-based approaches
– Select tests that exercise data interactions 

that have been affected by modifications
• E.g., select every test in T, that when executed on P, 

executed at least one def-use pair that has been 
deleted from P’, or at least one def-use pair that has 
been modified for P’



Selective-retest Approaches
• Ad-hoc/random approaches

– Time constraints
–



Factors to consider







Modeling Cost
• Did not have implementations of all 
techniques
– Had to simulate them

• Experi0 Twras run on severall 185, -10lt cases) –ll 

• – –





Modeling Fault-detection
• Per-test basis

– Given a program P and 
– Its modified version P’
– Identify those tests that are in T and 
reveal a fault in P’, but that are not 
in T’

– Normalize above quantity by the 
number of fault-revealing tests in T

• Problem
–







Test Suites and Versions
• Given a test pool for each program

– Black-box test cases
• Category-partition method

– Additional white-box test cases
• Created by hand
• Each (executable) statement, edge, and def-

use pair in the base program was exercised 
by at least 30 test cases 

• Nature of modifications
– Most cases single modification
– Some cases, 2-5 modifications



Versions and Test Suites
• Two sets of test suites fodach (•)Tf
01.0815 0 TD
0.06
0 Tc
0 Twprogrames–(•)Tj
/TT2 1 Tf
0457 0 Tc
-0.0408 Tc
0.18
0 TwEdge-coverage basedes



Another look at the subjects
•

1



-
0

 
n

o
n

-
c

o
v

e
r

a
g

e
 

b
a

s
e

d
 

t
e

s
t

 
t

h
i

t
e

s
:





Variables
• The subject program

– 6 programs, each with a variety of 
modifications

• The test selection technique
– Safe, data-flow, minimization, 
random(25), random(50), random(75), 
retest-all

• Test suite composition
– Edge-coverage adequate
– random





Dependent variables
• Average reduction in test suite size
•



Number of runs
• For each subject programw9r0o1Ae (•)Tf
01 0.85 0 T
-0.0204 Tc
0.0715 T[(testch ite unive)5(rse)]TJTj
/TT4 1 Tf
02704.92704.90 360.7.525995.28 T199 0.19999 rg
0 Tc
0 Tw–(•)Tj
/TT2 1 Tf
006927 0 T
-0.0004 TD
-0.0515 T[(Selbjeed 100 edg)-5.3(e)1.5(-coverage adequate)]TJTj
/TT4 1 T-f
0069201 4464 0 T

0 Tc
0 Tw–(•)Tj
/TT2 1 Tf
006927 0 T
-0.106 Tc
0.015 T[(A)2.8(n)f
0(d 100 ra)3(ndr0o1estch)2.8(u)-2.6(ites)]TJTj
/TT4 1 Tf
0 -32.04 32.04 275.452 695.28 Tm
0.199 0.602 0.199 rg
0 Tc
0 Tw
(•)Tj
/TT2 1 Tf
0.8427 0 TD
-0.0204 Tc
0.1115 Tw
(For eactestch itens)Tj
/TT4 1 Tf
02704.92704.90 233.88525995.28 T199 0.19999 rg
0 Tc
0 Tw–(•)Tj
/TT2 1 Tf
006927 0 T
-0.0704 Tc
0.02
0 TwApplied r eactestchelbjeion methodns•



Percentage of test suites in which
T’ does not reveal a fault in P’

Fault-detection Effectiveness





How to read the graphs
Entire structure 

represents a 
data distribution



How to read the graphs



How to read the graphs
Entire structure 

represents a 
data distribution



How to read the graphs



How to read the graphs
Entire structure 

represents a 



How to read the graphs











Conclusions
• Minimization produces the smallest and 

the least effective test suites
• Random selection of slightly larger test 

suites yielded equally good test suites as 
far as fault-detection is concerned

• Safe and data-flow nearly equivalent 
average behavior and analysis costs
– Data-flow may be useful for other aspects 

of regression testing
•




