Regression Testing

Developed first version of software
Adequately tested the first version

Modified the software:; version 2 now
needs to be tested

How to test version 27

Approaches
— Retest entire software from scratch
- Only test the changed parts, ignoring

Regression Testing

e “Software maintenance task
performed on a modified program to
Instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing Vs.

Development Testing
e During regression testing, an
established test set may be
available for reuse

e Approaches
- Retest all

- Selective retest (selective regression
testing) <« Main focus of research

Formal Definition

Given a program P,

Its modified version P’, and
a testset T

— used previously to test P

find a way, making use of T to gain
sufficient confidence In the
correctness of P’

Regression Testing Steps

1. ldentify the modifications that were
made to P

— EIther assume availability of a list of
modifications, or

- Mapping of code segments of P to their
corresponding segments in P’

2. Select T' ¢ T, the set of tests to re-
execute on P’
- May need results of step 1 above

- May need test history information, i.e., the
Input, output

Selective Retesting

e Tests to rerun

- Select those tests that will produce
different output

Cost of Regression Testing

| Analysis |

Retest All| >

| Selective Retest |

v

Selective-retest Approaches

e Coverage-based approaches

— Rerun tests that could produce
different output than the original
program. Use some coverage criterion
as a guide

 Minimization approaches

- Minimal set of tests that must be run
to meet some structural coverage
criterion

e E.g., every program statement added to or

modified for P’ be executed (if possible) by
at leastone testinT

Selective-retest Approaches

e« Safe approaches

- Select every test that may cause the
modified program to produce different output
than the original program

e E.g., every test that when executed on P, executed at
least one statement that has been deleted from P, at
least one statement that is new in or modified for P’

« Data-flow coverage-based approaches

— Select tests that exercise data interactions
that have been affected by modifications

 E.g., select every test in T, that when executed on P,
executed at least one def-use pair that has been
deleted from P’, or at least one def-use pair that has
been modified for P’

Selective-retest Approaches

« Ad-hoc/random approaches
- Time constraints

Factors to consider

Modeling Cost

 Did not have implementations of all
techniques

- Had to simulate them
e ExperiO Twras run on severall 185, -10It «

Modeling Fault-detection

e Per-test basis
- Glven a program P and
— Its modified version P’

- ldentify those tests that are in T and
reveal a fault in P’, but that are not
in T’

- Normalize above guantity by the
number of fault-revealing tests In T

e Problem

Test Suites and Versions

e Given a test pool for each program
- Black-box test cases
e Category-partition method

— Additional white-box test cases
e Created by hand

e Each (executable) statement, edge, and def-
use pair in the base program was exercised
by at least 30 test cases

e Nature of modifications
— Most cases single modification
- Some cases, 2-5 modifications

Versions and Test Suites

e Two sets of test suites fodach (3Tf01.0815 0 T

Another look at the subjects

l r),_-___ .] : r - T r : T — .
M T T e . e I"' -u-c;l’w-! LAY o ._—;;!—-'w.'-r.--:ﬂ-.:‘h“---. oe e, TRy T o M 4,3-‘--'“ ilis

o R Yo AR v S '__Hllh

Variables

e The subject program

- 6 programs, each with a variety of
modifications

e The test selection technique

- Safe, data-flow, minimization,
random(25), random(50), random(75),
retest-all

e Test suite composition
- Edge-coverage adequate
- random

Dependent variables

 Average reduction Iin test suite size

Number of runs
 For each subject programwOolAe (3TTO1

Fault-detection Effectiveness

Percentage of test suites Iin which
T’ does not reveal a fault in P’

How to read the graphs

Entlre structure T
represents a :
. data distribution :

How to read the graphs

cad the graphs

I
1
|
1

How to read the graphs

T
1
|
1

How to read the graphs

Entire structure rT-
represents a :
|

How to read the graphs

[

rT"I

o B

Conclusions

Minimization produces the smallest and
the least effective test suites

Random selection of slightly larger test
suites yielded equally good test suites as
far as fault-detection Is concerned

Safe and data-flow nearly equivalent
average behavior and analysis costs

- Data-flow may be useful for other aspects
of regression testing

