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x := x + 2; y := 2;

x := x + 2;

x := y + 2;



All DU-paths criterion
• A set P of execution paths satisfies 
the all-DU paths criterion iff 
– for all definitions of a variable x and 
all paths q through which that 
definition reaches a use of x,

– there is at least one path p in P such 
that 
• q is a subpath of p and q is cycle-free



An Applicable Family of Data 
Flow Testing Criteria

• Assumptions about the program
– No 

• goto statements
• with
• variant records
• Functions having ‘var’ parameters

– By reference
• Procedural or functional parameters
• Conformant arrays

– Every boolean expression that determines the 
flow of control has at least one occurrence 
of a variable or a call to the function ‘eof’ or 
‘eoln’



Program Structure
• Program consists of ‘blocks’
•



Classifying each 
variable occurrence

• Definition
– Value is stored in a memory location

• Use
– Value is fetched from a memory location

• Undefinition
– Value and location becomes unbound

• C-use
– Use in a computation or output statement
– Associated with each node

• P-use
– Use in a predicate
– Associated with each edge
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Conditional Statements





Arrays
• Arr variableys



Pointers
• Impossible to determine statically the 
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Restricted Programs Class
• Satisfying the following properties

– NSUP
• No-syntactic-undefined-p-use Property

– For every p-use of a variable x on aunedge (i,j), iun
P, there is some path from the start node to edge 
(i,j), which contains a global definition of x

– NSL
• Non-straight-line property

– P has at least one conditional or repetitiven
statement

» At least one node iunP’s flow-graph has moren
thaunone successor

» At least one variable has a p-use in P



Def-use graph
• Obtained from the flow graph
• Associate with each node the sets

– C-use(i)



Definitions for def-use graph















All-DU-paths criterion
• If variable x has a global definition 
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Other DF testing criteria
• All-p-uses
• All-c-uses
• All-p-uses/some-c-uses
• All-c-uses/some-p-uses



Definitions of DF criteria



“includes”
•



Includes relationship



Applicability
• It may be the case that no test set for 





Recall Definition
•





Equivalently
• fdcu(x,i) =

– {j ∈∈∈∈ dcu(x,i) | the association (i,j,k) is 
executable}

• fdpu(x,i) =
– {(j,k) ∈∈∈∈ dpu(x,i) | the association 
(i,(j,k),x) is executable}

• Intuitively
• new criterion C* for each DF criterion C
• By selecting the required associations from 

fdcu(x,i) and fdpu(x,i) instead of from 
dcu(x,i) and dpu(x,i)



Feasible Data-flow Criteria 
(FDF)



Includes Relationships



Why the different relationships

Example



The Program’s DU-paths



Why the different relationships
Let x = X (any integer)
And y = Y < 0

Path executed is
{1,2,3,4,3,4,
3,5,6,7,9,10}

Are all DU-paths 
shown earlier covered?
YES

But the associations (2, (6,8), y) and (2,8,x) 
are not!
And they are executable by a test case that causes the 
execution of {1,2,3,4,3,4,3,5,6,8,9,10}
Hence (all-du-paths)* 



Interprocedural DF Testing
• Most DF testing methodologies deal with 

dependencies that exist within a 
procedure (i.e., intraprocedural)

• Data dependencies also exist among 
procedures

• Requires analysis of the flow of data 
across procedure boundaries

• Calls and Returns 
• Direct dependencies (single call/return)
• Indirect dependencies (multiple 

calls/returns)





Recursive procedureRecursive procedure



First element of array



last element of arraylast element of array



Returns the largest 
element in array

Returns the largest 
element in array



Global variableGlobal variable
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reference parameters 
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MXMX



Actual parameters at the 
call site that are bound 

to formal reference 
parameters in called 

procedures









The Def-uses



A test case



A test case
S = {3,5,1,6}

F = 1
L = 4

Execute and 
check

Execute and 
check



A test case



Any missed 



Any missed 
def-uses?




