
Data-flow Testing
read(x, y)



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:





Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:









Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



Data-flow Testing
read(x, y)





Data-flow Testing
read(x, y)

x := x + 2; y := 2;



Data-flow Testing
read(x, y)



Data-flow Testing
read(x, y)



Data-flow Testing
read(x, y)



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;



Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2;7:

8:

y := y * 2;4:



Data-flow Testing
read(x, y)





Data-flow Testing
read(x, y)

x := x + 2; y := 2;



All Definitions Criterion
• A set P of execution 



All Definitions Criterion
• A set P of execution 

paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 



All Definitions Criterion
• A set P of execution 

paths satisfies the all-
definitions criterion iff 
– for all definition 

occurrences of a 
variable x such that 

• there is a use of x, 







All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;



All Uses Criterion
read(x, y, z)

x := x + 2; yTw
[)



All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;



All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;



All Uses Criterion
read(x, y, z)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;



All DU-paths criterion
• A set P of execution paths satisfies 
the all-DU paths criterion iff 
– for all definitions of a variable x and 
all paths q through which that 
definition reaches a use of x,

– there is at least one path p in P such 
that 
• q is a subpath of p and q is cycle-free



An Applicable Family of Data 
Flow Testing Criteria

• Assumptions about the program
– No 

• goto statements
• with
• variant records
• Functions having ‘var’ parameters

– By reference
• Procedural or functional parameters
• Conformant arrays

– Every boolean expression that determines the 
flow of control has at least one occurrence 
of a variable or a call to the function ‘eof’ or 
‘eoln’



Program Structure
• Program consists of ‘blocks’
•



Classifying each 
variable occurrence

• Definition
– Value is stored in a memory location

• Use
– Value is fetched from a memory location

• Undefinition
– Value and location becomes unbound

• C-use
– Use in a computation or output statement
– Associated with each node

• P-use
– Use in a predicate
– Associated with each edge



Simple Statements



Simple Statements



Simple Statements



Repetitive Statements



Repetitive Statements



Repetitive Statements



Conditional Statements



Conditional Statements





Arrays
• Arr variableys



Pointers
• Impossible to determine statically the 



Records & Files

ReF
ile

s
R

e
F

i
l

e
s





Restricted Programs Class
• Satisfying the following properties

– NSUP
• No-syntactic-undefined-p-use Property

– For every p-use of a variable x on aunedge (i,j), iun
P, there is some path from the start node to edge 
(i,j), which contains a global definition of x

– NSL
• Non-straight-line property

– P has at least one conditional or repetitiven
statement

» At least one node iunP’s flow-graph has moren
thaunone successor

» At least one variable has a p-use in P



Def-use graph
• Obtained from the flow graph
• Associate with each node the sets

– C-use(i)



Definitions for def-use graph















All-DU-paths criterion
• If variable x has a global definition 
i[ode i, the a(All-DU-path)]TJ
T*rg
0 Tc
0.0901 Tw
s criteri20 quires the test data toh



Other DF testing criteria
• All-p-uses
• All-c-uses
• All-p-uses/some-c-uses
• All-c-uses/some-p-uses



Definitions of DF criteria



“includes”
•



Includes relationship



Applicability
• It may be the case that no test set for 





Recall Definition
•





Equivalently
• fdcu(x,i) =

– {j ∈∈∈∈ dcu(x,i) | the association (i,j,k) is 
executable}

• fdpu(x,i) =
– {(j,k) ∈∈∈∈ dpu(x,i) | the association 
(i,(j,k),x) is executable}

• Intuitively
• new criterion C* for each DF criterion C
• By selecting the required associations from 

fdcu(x,i) and fdpu(x,i) instead of from 
dcu(x,i) and dpu(x,i)



Feasible Data-flow Criteria 
(FDF)



Includes Relationships



Why the different relationships

Example



The Program’s DU-paths



Why the different relationships
Let x = X (any integer)
And y = Y < 0

Path executed is
{1,2,3,4,3,4,
3,5,6,7,9,10}

Are all DU-paths 
shown earlier covered?
YES

But the associations (2, (6,8), y) and (2,8,x) 
are not!
And they are executable by a test case that causes the 
execution of {1,2,3,4,3,4,3,5,6,8,9,10}
Hence (all-du-paths)* 



Interprocedural DF Testing
• Most DF testing methodologies deal with 

dependencies that exist within a 
procedure (i.e., intraprocedural)

• Data dependencies also exist among 
procedures

• Requires analysis of the flow of data 
across procedure boundaries

• Calls and Returns 
• Direct dependencies (single call/return)
• Indirect dependencies (multiple 

calls/returns)





Recursive procedureRecursive procedure



First element of array



last element of arraylast element of array



Returns the largest 
element in array

Returns the largest 
element in array



Global variableGlobal variable



Lets consider only 
reference parameters 

that reach across 
procedure boundaries

Lets consider only 
reference parameters 

that reach across 
procedure boundaries



MXMX



Actual parameters at the 
call site that are bound 

to formal reference 
parameters in called 

procedures









The Def-uses



A test case



A test case
S = {3,5,1,6}

F = 1
L = 4

Execute and 
check

Execute and 
check



A test case



Any missed 



Any missed 
def-uses?




