Testing Spreadsheets

WYSIWYT Testing in the Spreadsheet Paradigm: An Empirical Evaluation

Presenter: Alex Aris

Overview

- Almost no work
 - SE tasks in creation and maintenance
- Real-world issues
 - Budgets, student grades, tax calculations
- Different from common PL
 - Declarative
 - Dependence-driven
 - Direct-manipulation working model

Do spreadsheets contain faults?

- 4 field audits
 - Errors in 20.6%
- 11 experiments (participants created…)
 - Errors in 60.8%
- 4 experiments (participants inspected…)
 - Missed 55.8% of errors

Motivation for WYSIWYT

- Why so many faults?
 - Overconfidence
 - Too much feedback and responsiveness
 - Interferes w/problem solving
 - Gilmore & Svendsen
 - Feedback of testedness

Designed with … in mind

- Declarative evaluation model of spreadsheets formulas
- Incremental style of development
- Immediate visual feedback
- Various users

Points of Concern

- Is it efficient?
 - Coexist with the immediate redisplay after edit
 - Most algorithms O(1)
- Will faults be uncovered?
 - Hidden data-flow test adequacy criterion
- Will it decrease overconfidence?
 - Empirical studies
Features of Methodology

- Evaluation is driven by data dependencies
- Control flow only within cell formulas
- Flexibility
 - Scheduling algorithms
 - Optimization to computations
 - Incremental development
- Efficiency
 - Immediate visual response

Test Adequacy Criterion

- Can it be specification based?
 - Users not likely to write specs
- Code based testing adequacy
 - Output-influencing-all-du-criterion
 - “du adequacy”
 - Executable def-use’s
 - Impossible/infeasible to determine by computation
 - No enforcement of evaluation order

Experiment Design

- More … than ad hoc?
 - Effective
 - DU adequacy
 - Efficient
 - Less redundancy
 - Less overconfident
- Training ?

Experimental Design

- People tested spreadsheets
- Experimental group
 - Includes WYSIWYG
- Control group
 - No WYSIWYG
- Recorded to transcript files
- Questionnaires
 - Subject background
 - Post-experiment
 - Use/understanding of WYSIWYG feedback

Experimental Environment

- Forms/3
 - Cells
 - Value defined by formula
- Grade book
- Visual clock with hands

Visual Feedback

- Cell Borders
 - Blue (fully tested)
 - Red (not tested)
 - Shades of purple
- Cell’s check box
 - ‘×’ Tested
 - ‘?’ Not fully tested
 - ‘·’ Further testing doesn’t increase coverage
- %Tested indicator
Subjects

• Computer Science students
 – Experienced
 – 2 upper division undergraduate, 1 graduate
 – Potentially less room for improvement
 – No previous exposure

Groups

• Ad-hoc & WYSIWYT
• Random division
 – Subject to balancing grad & undergrad
• (37,41) ≠ (30,39)
 – Whose computer crashed
 – Who corrupted their data by mistake

Characteristics of Groups

• 0.2-0.25 lower GPA in WYSIWYT group
 – 1/3rd didn’t report
 – Significant, but tenuous (slight)
 – Higher GPA assumed to lead in better performance
• Subjects w/ spreadsheet experience
 – 12/30 (ad-hoc) vs. 10/39
• Grad students
 – 10/30 (ad-hoc) vs. 8/39
• Professional experience
 – 11/30 (ad-hoc) vs. 20/39

Tutorial

• Quick reference handout
• 20-minute Forms/3 tutorial
 – Language features
 • Basic syntax of formulas
 • Environmental features
 • How to edit cells
• How to record testing decisions
 – Input cells, checking output cells
 – Incorrect cells ≠ Bug Recorder
• How to interpret the testing feedback

Training

• Total time: equal
• No info about du coverage

Tasks

• Testing Clock & Grades: (both groups)
 – Different problem domains
 • Numerical vs. graphical
 – Clock difficult, grades easy to understand
 – Verifying
 • Difficult for Grades
 • Easy for Clock
• Familiar problems, limited time (15 min)
• Counterbalancing first & second spreadsheets
Results

• Effectiveness ≠ du-adequacy
• Analysis of Variance (ANOVA)
 – Environment (WYSIWYT & ad-hoc)
 – Problem (Clock & grades)
• Significant difference
 – Effectiveness (du) & efficiency (wasted effort)
• No interaction effect

Results (continued)

• Speed as efficiency
 – Three 5-minute intervals
 – WYSIWYT subjects significantly faster after on the 3rd interval
• Overconfidence
 – Compare asked & calculated grades
 • Ad-hoc group was significantly more overconfident

Overconfidence

• Clock
 – Ad-hoc ≠ 16/30 overconfident
 – WYSIWYT ≠ 10/39 overconfident
• Grades
 – Ad-hoc ≠ 20/30 overconfident
 – WYSIWYT ≠ 14/39 overconfident

Redundancy

• Clock
 – Ad-hoc ≠ 61.3% redundant
 – WYSIWYT ≠ 15.4% redundant
• Grades
 – Ad-hoc ≠ 44.0% redundant
 – WYSIWYT ≠ 4.3% redundant

Helpfulness

• Feature: Very helpful, helpful, not helpful
 – Question marks 69% 31% 0%
 – Clicking to validate 64% 36% 0%
 – Colored cell borders 56% 44% 0%
 – Colored arrows 51% 41% 8%
 – Check marks 44% 49% 8%
 – ‘Tested’ indicator 36% 56% 8%
 – Blanks 23% 51% 26%

Understanding

• Opinions would be misleading if they didn’t understand their meaning
• Had only 20 minutes to learn
• Asked 3 questions about meanings
 – Q1: 100%
 – Q2: 87%
 – Q3: 64%
Learning curve

- Even in the 1st problem WYSIWYT did better than Ad-hoc
- In the 2nd problem WYSIWYT benefited from experience
 - Same number of test cases
 - Increased coverage (by 15%)
- Ad-hoc didn’t significantly increase their coverage

Learning Effects

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tested</th>
<th># Tests</th>
<th>Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad-hoc</td>
<td>69.0%</td>
<td>13</td>
<td>51.3%</td>
</tr>
<tr>
<td>WYSIWYT</td>
<td>82.7%</td>
<td>20</td>
<td>11.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tested</th>
<th># Tests</th>
<th>Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad-hoc</td>
<td>71.6%</td>
<td>22</td>
<td>56.3%</td>
</tr>
<tr>
<td>WYSIWYT</td>
<td>97.8%</td>
<td>18</td>
<td>7.7%</td>
</tr>
</tbody>
</table>

Threats to Validity

- Internal, addressed
 - Balanced 2 groups (year/class)
 - Counterbalancing problem type
 - Equalizing training time
 - Problems from familiar domains
- External, not addressed
 - CS students may not represent general population
 - Spreadsheets may not be representative enough

Threats to external validity (continued)

- WYSIWYT doesn’t handle non-executable du associations
 - Avoided as much as possible
- No faults, formulas unchanged
 - Task would be interrupted
- Other measures for testing effectiveness
 - Number of faults detected
 - Also poses a threat to validity

Conclusion

- WYSIWYT subjects performed significantly better in terms of
 - Effectiveness
 - Efficiency
 - Being less overconfident
- Without formal training on the underlying testing theory

Discussion

Questions & Comments