
1

Model Checking To Analyze Network
Vulnerabilities

Ronald W. Ritchey
ritchey_ronald@bah.com

Paul Ammann
pammann@gmu.edu

Introduction

?Combining services may result in Vulnerability
?Example: (ftp + http) hosted on same machine

?Many Tools to check host configuration Vulnerabilities
?Example: COPS, Cyber Cop, System Scanner…
?Good for checking host vulnerabilities but not look for

combinations of configurations on same host or between hosts .

Introduction (Cont.)

?To view overall security of Network
?Vulnerabilities on single host + relationships between hosts on

network

?NetKuang: search algorithm to identify vulnerabilities

?This paper go for modeling based approach.

Model Checking

?Model Checking specification has two parts
?Model Checker

Model Checking Specification

?Model
?State Machine defined in terms of

• Variables
• initial values for the variables
• Conditions for variables to change values

?Temporal Logic Constraints over states and execution
paths

Model Checker

?Visit all reachable states
?Verify logical constraints over each path
? Provide counterexample (sequence of events)

2

Model Checking Tools

? SMV, SPIN
?Used SMV

SMV Model Checking Tool

? SMV program
?Modules

• MODULE proc(state0, state1, turn, turn0)
• Defined proc as a module with four formal parameter

?Variables declared in Module
• Type: boolean, enumeration type, integer subrange
• Example VAR state0: {noncritical, trying, critical, ready};

?Structural hierarchy
• Module may contain instances of other module

SMV program (Cont.)

?Contains main with no formal parameters
?main root of model hierarchy

SMV Model Checking Tool

SMV program (Cont.)

?Values of Variables in each state defined using
init and next

?Value of variable in next state: function of value of value of
variables in current state

?Choice is made non deterministically
?Example: Init(state0) := noncritical

Next(state0) := case
(state0 = noncritical) : {trying, noncritical}
(state0 = trying) & ((state1 = noncritical) | (state1 = trying)):ready

SMV Model Checking Tool

SMV program (Cont.)

? Example of SMV Program
MODULE prc(state0, state1, turn, turn0)
ASSIGN init(state0) := noncritical;

next(state0) := case
(state0 = noncritical) : {trying,noncritical};
(state0 = trying) & ((state1 = noncritical) | (state1 =
trying) | (state1 = ready)): ready;
(state0 = ready): critical;
(state0 = trying) & (state1 = trying) & (turn = turn0):
critical;
(state0 = critical) : {critical,noncritical};

SMV Model Checking Tool

Temporal Logic Formula

?Ensures Mutual Exclusion

? Mutual exclusion is specified by the following temporal
logic formulas:

• SPEC AG((s0 = critical) -> !(s1 = critical))
• SPEC AG((s1 = critical) -> !(s0 = critical))
• AG p means that in all possible execution sequences (specified

by the A part), it is globally true (the G part) that p holds. In
other words, p is invariant.

• In this case we are saying that once a process is in the critical
region, the other process cannot be in its critical region.

SMV Model Checking Tool

3

Temporal Logic Formula

?Concept of Invariant
• SPEC AG((s0 = trying) -> AF(s0 = critical))
• SPEC AG((s1 = trying) -> AF(s1 = critical))
• Another useful property is expressed by the formulas above. They

state that an invariant of the model is the fact that if a process is in
the trying region, then in all possible execution sequences, at some
point in the future (indicated by the F part), it will be in the critical
region.

SMV Model Checking Tool

Advantages Model Checking

?Advantages
• Communication System of NetKuang expensive to deploy
• Size of state space limited for search engines
• Model Checking can look for different possibilities
• Temporal logics implement security policies efficiently and

economically

Description Of The Model

? Four Elements
?Hosts
?Connectivity
?Attacker Point of View
?Exploits

Hosts

? Set of Vulnerabilities
?Observable System attribute which may be a prerequisite for an

exploit
?Security problems

• Example: Running an outdated version of sendmail
?Configuration Information about the host

• OS type and version, type of Authentication, max length of
passwords and network services

Description Of The Model

Hosts (Cont.)

?Current Access Level of Attacker to execute programs on
Host
?Default: User rights by current access level
?none, root

Description Of The Model

Connectivity

? host’s ability to communicate with other hosts in the model
?Look for filters
?Do not change during analysis
?Changes in filtering accounted by attacker point of view

Description Of The Model

4

Attacker Point of View

? host used by attacker for attack
?After a host is compromised attacker launch exploits

further
?May circumvent network filters

Description Of The Model

Exploits

?Defined by
?Set of vulnerabilities
?Source access level
?Target access level
?Connectivity
?Affects changes to security of hosts to make model dynamic

?Direct relation with quality of analysis

Description Of The Model

Initialization of the Model

?Four Parts
?Exploit description
?Host Initialization
?Connectivity description
?Failure definition

Exploit description

? Exploit description
• pre-requisite Vulnerabilities
• Source access level
• Target access level

? Info converted into Boolean statement
? If ((Boolean statement = True) && (Connectivity-host) = 1) then

exploit succeed
• Host updated according to the exploit
• Example: Additional vulnerabilities added to host
• Change to attacker’s current access level on the host

Initialization of the Model

Exploit description

?If ((Boolean statement = True) && (Connectivity-host) = 1) then
exploit succeed

• Host updated according to the exploit
• Example: Additional vulnerabilities added to host
• Change to attacker’s current access level on the host

Example:

Access level
changed to
httpd

ANYANY Apache Version
Up to 1.0.4

ResultsTarget
Access Level

Source
Access Level

Prerequisites

Initialization of the Model

Host Initialization

?Host initialization
?Review configuration of each host and check for

vulnerabilities in the host.
• Can use COPS, ISS
• Tool to be customized to look for prerequisite vulnerabilities

?Initialize Access level for each host
• Advantage: Can account for both outsiders and insiders

Initialization of the Model

5

Host initialization

?Example

Vulnerabilities Current Access Level

Solaris Version 2.5.1
Apache Version 1.04

Count.cgi
Phf.cgi
Telnetd

Ftpd
dtappgahther

None

Initialization of the Model

Connectivity description

?Connectivity Matrix
?Can use port numbers to enrich description

Initialization of the Model

Connectivity description

?Connectivity Matrix

N/AYesYesNoPrivate File
Server

YesN/AYesPublic Web
Server

YesYesN/AYesBorder
Router

NoYesYesN/AAttacker

Private File ServerPublic Web ServerBorder
Router

attacker

Initialization of the Model

Failure definition

? Invariant Statements- Should be true in every state
?Example: AG PrivateFileServer.Access = None
? If not then report failure

Initialization of the Model

Analyses Method

?Keeping view of
?Attacker access
?Prerequisite Host vulnerabilities for an exploit

?Model can change
?state based on rules defined for exploit

• Result in additional vulnerabilities added to target
• May update attacker’s access level on host

Analyses Method (Cont.)

?With change of state of model
?Security of the network reduces

? Stopping criteria
?Either invariant statement turn out to be violated
?Or no more exploits can be employed

6

Counterexamples

?Represent series of exploits to be run
?Till invariant has been violated

• Example: AG !host.access = root
?Represent an attacker’s scenario

Example

?Border Filtering Rules

DenyAny Any

AllowNot 192.168.1.4192.168.1.0/24

Allow192.168.1.4Any

ActionDestination
Address

Source Address

Encoding the example model in SMV

?Hosts

? Module machine
Var

access : {none, user, root}
exploit : array 1..6 of boolean
hostid : {1, 2, 3, 4}
vulnerability : array 1..15 of boolean

Hosts (Cont.)

? Initialization: each variable in host given specific initial
value

• Init (exploit[1]):=0;
• Init (exploit[2]):=0;
• Init (exploit[3]):=0;
• Init (exploit[4]):=0;
• Init (exploit[5]):=0;
• Init (exploit[6]):=0;

Encoding the example model in SMV

Hosts (Cont.)

?Hostid
• Attacker.hostid :=1;
• Init(BorderRouter. hostid) :=2;
• Next ((BorderRouter. hostid) :=2;
• Init(PublicWebServer.hostid) :=3;
• next(PublicWebServer.hostid) :=3;
• Init(PrivateFileServer.hostid) :=4;
• next(PrivateFileServer.hostid) :=4;

Encoding the example model in SMV

Hosts (Cont.)

?Vulnerabilities
• Init (PublicWebServer.vulnerability[1]):=1;

- Apache/1.04
• Init (PublicWebServer.vulnerability[2]):=0;

- home directories exported rw (ALL)
• Init (PublicWebServer.vulnerability[3]):=0;

- ftpd
• Init (PublicWebServer.vulnerability[4]):=0;

- nfsd
• Init (PublicWebServer.vulnerability[5]):=1;

- no shadow file

Encoding the example model in SMV

7

Hosts (Cont.)

?Access
? For an external attack

• Init(PublicWebServer.access) :=none;

Encoding the example model in SMV

Connectivity Matrix

• Init(connect[1][1]):=1;next(Connect[1][1]):=1;
- attacker to attacker

• Init(Connect[1][2]):=1;next(Connect[1][2]):=1;
- attacker to border router

• Init(Connect[1][3]):=1;next(Connect[1][3]):=1;
- attacker to PublicWebServer

• Init(Connect[1][4]):=0;next(Connect[1][4]):=0;
- attacker to PrivateFileServer

Encoding the example model in SMV

Exploits

?Attack module
?Result module

Encoding the example model in SMV

Exploits (Cont.)

?Attack module
• Example: Phf vulnerability exploit
next(m.exploit[4]) := - PHF.cgi
case
- current exploit number
a =4
- check for connectivity
((src = 1 & m.hostid =1 & conn[1][1]) |src = 1 & m.hostid =2 & conn[1][2]) |
src = 1 & m.hostid =3 & conn[1][3]) |src = 1 & m.hostid =4 & conn[1][4]) |
src = 2 & m.hostid =1 & conn[2][1]) |src =2 & m.hostid =2 & conn[2][2]) |
src = 2 & m.hostid =3 & conn[2][3]) |src = 2 & m.hostid = 4 & conn[2][4]) |
src = 3 & m.hostid =1 & conn[3][1]) |src = 3 & m.hostid =2 & conn[3][2]) |
src = 3 & m.hostid =3 & conn[3][3]) |src = 3 & m.hostid =4 & conn[3][4]) |
src = 4 & m.hostid =1 & conn[4][1]) |src = 4 & m.hostid =2 & conn[4][2]) |
src = 4 & m.hostid =3 & conn[4][3]) |src = 4 & m.hostid =4 & conn[4][4])) &
- check for required prerequisite
m.vulnerability[1] & m.vulnerability[6]

Encoding the example model in SMV

Exploits (Cont.)

?Attack module
Value of “a” varies non deterministically from 1 to total number of
exploits. To check if an exploit has been not run more than once.

Encoding the example model in SMV

Exploits (Cont.)

?Result Module
? next(m.vulnerability[7]) := - password hashes known

case
m.exploit[3] : 1;
- capture password hashes
1 : m.vulnerability[7];
esac;

? Setting Access level
next(m.access):=
case
m.exploit[4] | m.exploit[6] : user;
m.exploit[5]: root;
1: m.access; esac;

Encoding the example model in SMV

8

Counter Examples

Hacker’s access level on
Private File Server
changed to root

Shell login as
root

Private File
Server

Public Web
Server

Hacker’s access level on
Public Web Server
changed to root

Shell login as
root

Public Web
Server

Hacker

Hacker knows Public
Web Server’s root
password

Brute Force
Passwords

Public Web
Server

Hacker

Public Web Server’s
password hashes known
to hacker

Capture pwd
hashes

Public Web
Server

Hacker

User access on Public
Server

PhfPublic Web
Server

Hacker

ResultExploitTargetSource

Conclusions

?Model multiple attack scenarios ??

Mutating Network Models to Generate
Network Security Test Cases

Ronald W.Ritchey

Mutating Model

?Mutation analysis to generate test cases for network
security

?Define mutant operators
?Each version represent a mutant of original program

Defining Mutant Operators

? Purpose: To make MODEL less secure to create different
real world scenarios

? Source: Exploit prerequisite
?Operators

?Adding vulnerabilities
?Increasing access levels
?Adding connectivity

Adding connectivity

? capture firewall’s changes in its rule set
• Example: to allow more traffic

?Analyze demonstrate level of access an attacker can gain
by change of policy

• Example: Allow attacker direct access to private file server

9

Increase Access Level

?To answer what if an insider attack?

Add Vulnerability

?To capture configuration changes
• Example: Adding software, changing permissions, modifying

settings etc.
• Feed only feasible vulnerabilities
• Constraint: can see only known vulnerabilities
• Cant account for an unknown one

Coverage Criterion

?Number of mutant operators that can be applied together to
produce a counterexample

?Coverage level one then
• account for any single configuration changes

?Coverage level two then
• Account for two configuration changes

?Advantage : The higher coverage level more secure will be
the network

Running the analysis

Create
Network

Model

Create
Mutants

Eliminate
Unreasonable

Mutants

Run Model
Checker

Fix Network
Configuration

No

Finished

Yes

Network

Security
Requirements

Coverage Level

Counterexamples

Produced ?

Security Recommendations

Use strong
authentication on
Public Web
Server

Brute Force
Passwords on
Public Web
Server

Password Hashes
known on Public
Web Server

3

Verify PHF not on
Public Web
Server

Use PHF to gain
user access to
Public Web
Server

Add PHF program
to Public Web
Server

2

Eliminate BSD
daemons on
Private File Server

Add BSD trust
from Attacker to
Private File Server

Add Connectivity
from Attacker to
Private File Server

1

Security
Recommendation

1 s t ExploitMutantNumber

Security Recommendations (Cont.)

Use strong
authentication on
Public Web
Server

Telnet to Public
Web Server

User Passwords
known on Public
Web Server

6

Eliminate BSD
daemons on
Public Web
Servers

rlogin to Public
Web Server

BSD trust
between Attacker
and Public Server

5

Use strong
authentication on
Public Web
Server

Telnet to Public
Web Server

Root Password
known to Public
Web Server

4

Security
Recommendation

1 s t ExploitMutantNumber

10

Discussion

o Any Question???

