
1

Incremental Integration
Testing of Concurrent

Programs

P.V. Koppol, R.H. Carver and K.C.
Tai

Presented by
Chuk Yang Seng

Roadmap
Select test sequences for concurrent
programs

Labeled transition systems (LTS)
Problems

Incremental Approach
Annotated labeled transition system (ALTS)
Reduction Algorithms

Coverage Criteria

Introduction
Test case

A test sequence – a sequence of actions
performed by the concurrent processes.

Model: Compositional Hierarchy
P

P12
P3

P2P1

Introduction
Labeled Transition System

Node – state of a process
Edge

Actions performed during state transition
Interactions between processes

Introduction - LTS

Composition of LTS -> Lg (reachability
graph)

Introduction
To select test sequences

Select a set of paths from reachability
graph.
For each selected paths, derive one or
more inputs and force deterministic
executions according to the path –
deterministic testing.

2

Introduction
Problem

State explosion: number of states in the
reachability graph is exponential to number
of processes.

Incremental Reachability
Analysis

Building a reduced LTS Lg
r.

Reduced LTS must be semantically
equivalent to Lg.
Strong equivalence:

2 LTSs whose behaviors are
indistinguishable to an observer, including
??events.

Incremental Reachability
Analysis

Observational equivalence:
2 LTSs whose behavior are
indistinguishable when ??events are
invisible.

To build reduced LTS
Subsystems are successively composed
and simplify.
Simplify be removing some ??events.
Simpler but observationally equivalent LTS

Incremental Reachability
Analysis

However, paths from the reduced graph
cannot be used for deterministic
testing.

Annotated LTS
e-transition (non ?)

process i performs this send
event and the identifier of the receiver will
be determined during synchronization.

process j performs receive
event with the identifier of the sender to
be determined during synchronization.

?-transition
Synchronize 2 matching events:

?),,(ie

)?,,(je

),,(jie

Annotated TLS
ALTS reduction:

Suppose we have a sequence of ??
transitions:

We can collapse them into a single ??
transition:

),,(),,(),,(22221111 mmmm jiejiejie ??? ??? ?

)),,(),,(),,((222111 mmm jiejiejie ??

3

Annotated TLS
Suppose we have an a-transition (a is
not equals to ????such that a is preceded
and followed by a ?? transition

The result of collapsing into a single a-
transition is:

)),,(),,(),,(

)1?,,(),,(),,(),,((

222111

222111

s
r

s
r

s
r

ssssss

p
m

p
m

p
m

pppppp

jiejiejie

ajiejiejie

?

?

?

???

Annotated TLS
Synchronizing:

Process 1:
Process 2:
Composite:

Where P and S are ?-transitions

11)1?,,(SeP ??

22 ?),2,(SeP ??

2121)1,2,(SSePP ????

Annotated TLS
Example

ALTS is deterministic if
No state that has 2 or more outgoing transitions
with same event name/annotation

ALTS Reduction Algorithm
ALTS A is reduced into a smaller ALTS
A’
A’ must satisfied 2 properties:

A’ must be observationally equivalent to A.
Each path of A’ must be a path of A.

3 procedures:
Collapse
??–eliminate
Prune

ALTS Reduction Algorithm -
Collapse

be a sequence of ?-transitions
(length k).
2 states are, s1, s2 in the same ?-
component if:

and

k?

21

1

ss
k

? ?? ?

12
2

ss
k

? ?? ?

ALTS Reduction Algorithm -
Collapse

Pick 1 state from ?-component.
Call this the survivor state. The survivor
state will remain while we remove the
rest.
Observable transitions are retained.

4

ALTS Reduction Algorithm -
Collapse

Example:

ALTS Reduction Algorithm –
?-Eliminate

Candidate states (?-states) satisfies
All incoming transitions are ?-transitions.
One or more outgoing transitions.
One or both of:

All outgoing transitions are ?-transitions.
Source state for each incoming ?-transitions is
observationally equivalent to the state.

ALTS Reduction Algorithm –
?-Eliminate

Example:

ALTS Reduction Algorithm –
Prune

2 paths of an ALTS are said to be
externally equivalent if :

They start from the same state.
Have the same external behavior (ignoring
annotations)
Lead to either the same state or to 2
different termination states

ALTS Reduction Algorithm –
Prune

Suppose s has e-transitions to s’ and s” and
s’ and s” are observational equivalent.
For every path that starts at s and has an
e-transition to s’, there is at least one
externally equivalent path that also starts at
s and has an e-transition into s”.
Delete one of the transitions.
After deleting, some other states may
become unreachable. These states are also
removed.

ALTS Reduction Algorithm –
Prune

Example:

5

ALTS Reduction Algorithm
Eliminate all self looping ?? transitions.
Partition the states with respect to
observational equivalence.

Compute the transitive closure of ?-
transitions.
Identify ?-components.

Collapse the ?-components.
?-eliminate

ALTS Reduction Algorithm
While(reduced)

Prune
If (reduced)

?-eliminate

End while

Bottom Up Incremental
Testing

For intermediate node, N:
Synchronizations are at interface level if
they occur among immediate children of N.
Lower-level synchronizations occur within
each immediate child of N.

Bottom Up Incremental
Testing

Bottom up traversal
At nonleaf node, N:

Generate ALTS A N

Select a set T of test paths from A N
Convert T into set T’ of test paths for PN where PN
is the set of processes in P corresponding to
ALTSs in node N
Use T’ to perform deterministic testing of PN
If N is root, terminate. Else reduce A N to A N’ (such
that these 2 ALTS are observationally equivalent)

Bottom Up Incremental
Testing

Example:

Incremental Testing Using
Program Slice

After constructing AN we replace each
interface-level transition label ??of AN with a
non-??label.
Bottom up traversal and reduction of
intermediate nodes until root node is
reached.
The interface level synchronizations of AN
remain in the ALTS.
The resulting root represents a slice of
program P.
The paths selected focus on the coverage of
interface-level transitions of node N.

6

Incremental Testing Using
Program Slice

Example:

Comparison
Bottom up

Paths generated
from an immediate
node may not
correspond to any
paths of global ALTS.
Bottom up can be
used to test parts of
the program.

Program slice
The test paths are
generated from a
global ALTS.

All or nothing: Root
node may be too
large to be
generated and
reduced.

Comparison
Bottom up

Test paths generated do
not specify a path
through the processes in
the environment of Ps.
The paths include
interactions with some of
the processes in the
environment and they
must be simulated by
drivers.

Program slice
Test paths include all
of the processes in
the program,
including
environment.

Coverage Criteria
Property:

C – incremental coverage criterion.
T – a set of test paths.
If C is applied to the reduced ALTSs and T
satisfies C, then T would also satisfy C if C
were applied to the unreduced ALTS.

Some Coverage Criteria
All paths:

Cover all paths of an ALTS at least once.
All-proper-paths:

Proper-path is a path that does not contain any
duplicate states, except the first and last may be
duplicated once.
Cover all proper-paths of an ALTS at least once.

All transitions:
Cover all transitions of an ALTS at least once.

All states:
Cover all states of an ALTS at least once.

Synchronizations Coverage
All synchronizations:

L-synchronizations

T-synchronizations

7

Synchronizations Coverage
All-T-synchronizations

Cover all distinct T-synchronizations at
least once.

All-L-synchronizations
Cover all distinct L-synchronizations at
least once.

Synchronizations Coverage
Interface Synchronizations (bottom up
incremental testing)

Take advantage of incremental testing.
Focus on detection of faults involving
interface-level synchronizations, since
lower-level synchronizations have already
been covered by test paths.

Synchronizations Coverage
Interface Synchronizations (continued)

All-int-transitions
All-int-T-synchronizations
All-int-L-synchronizations

Synchronizations Coverage
Example:

Synchronizations Coverage
Covering All Synchronizations
Incrementally:

Definitions of external equivalent paths are
based on transition labels, not annotations.
Prune must consider annotations.

Critique
Incremental approach is a nice idea:

Work done at lower level is passed upwards
so relatively little work is needed at upper
levels.
Reduction is a crucial thing.

Bad things:
No mention of coverage criteria for program
slice approach.
Prune should be modified before publishing.

8

Conclusion
Incremental approach to testing of
concurrent programs.
Advantages:

Alleviates state explosion problems.
Supports incremental development and
testing.
Focuses on faults in the interactions of
concurrent processes.

