
1

Effectively Prioritizing Tests in
Development Environment

Amitabh Srivastava Jay Thiagarajan&
Cyntrica Eaton

November 26, 2002

Motivation
? After initial development, software will

frequently change.

?Change management is critical to maintaining
software utility.

? Small changes in one part of the program
may have subtle, undesired effects in other
seemingly unrelated parts of the program.

Key Approach
? Effectively Prioritizing Tests…..

? Run the right test at the right time
? Focusing testing efforts on parts of the program

affected by change.
? New defects probably result of new modifications

?….in Development Environment
? Technique must be fast, useful, and easily

integrated into the development process.
? Estimate program change based on comparisons

of binary representations of code.

Echelon: Basic Idea

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Remaining Presentation
?Features of Echelon

?Test Prioritization Sequence

?Empirical Evaluation

Features of Echelon
? Prioritizing Tests

?Calculating Program Change

?Utilizing Program Binaries

? Providing Test Coverage Information

?General Practicality

2

Prioritizing Tests
?Prioritizes tests into an ordered

sequence based on program change.

?Does not permanently discard tests like
minimization techniques presented in
[4][13][19][30].

?Allows use of a non-precise algorithm that
works well in practice.

Calculating Program Change
?Computes changes between programs at a

very fine granularity using an accurate binary
matching algorithm.

? The paper points out other works in test selection
[1][3][4][20][28] and test prioritization [6][8][17][31]
that also use program change as a guiding factor.

? Cites how differences in techniques affect the
estimation of program change.

Calculating Program Change
?Source code differencing

?Data and control flow analysis

?Coarse-grained code entities

Calculating Program Change
? Source Code Differencing [6][8][28]

? Simple and fast

? Can be accomplished with commonly available
tools like “diff” in Unix

? Erroneously marks a procedure as changed even
if variables were only renamed.

? Fails to determine the set of affected procedures
when header files that define macros and methods
have been modified.

Calculating Program Change
?Coarse-grained techniques [5]

? Uses functions, global variables, type definitions,
etc. to identify which parts of the program might be
affected by the changes.

? According to [11], estimations of program change
based on coarse-grained entities [5] may select
more tests than statement or control flow based
techniques.

Calculating Program Change
?Data and control flow analysis [1][20]

? Difficult in a language such as C++/C which
contains pointers, casts, and aliasing.

? Flow analysis is expensive in large commercial
systems [9][21] and should not be used unless the
techniques will be helpful for other analyses[9].

3

Utilizing Program Binaries
?Working at the binary level has advantages

over working at the source code level.

? Binary modification eliminates the recompilation step for
collecting coverage

? Easier to integrate into the build process in production
environments.

? Once available in binary form, all header file changes have
been propagated to the affected procedures in the given
program.

? Simplifies the process for determining program changes.

Test Prioritization Sequence

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Test Prioritization Sequence

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Step 1: Binary Analysis

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Step 1: Binary Analysis
?Uses BMAT to find a matching block in the

old binary for each new block in the new
binary.

?Unmatched blocks are labeled as new blocks.

?Blocks with matches are further compared:
? Identical blocks are labeled as old blocks
? Otherwise marked as old-modified blocks.

Step 1: Binary Analysis

Old Build New Build

New Blocks

Old Blocks
(not changed)

Old Blocks
(changed)

4

Step 2: Coverage Analysis

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Step 2: Coverage Analysis
?Determine which impacted blocks in the new

version are likely to be covered by an existing
test.

? Old modified blocks
? Check to see if the test covered the matching block in the

old binary using the cover information of the old binary.

? New blocks
? A test may cover a new block if it covers at least one of

its immediate predecessor blocks and at least one of its
immediate successor blocks, skipping in both cases, any
intermediate new blocks.

Step 2: Coverage Analysis
Predecessor Blocks (P)

Successor Blocks (S)

New Block (N)

Interprocedural
edge

Step 3: Test Prioritization

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized List of
Test Cases

List of Blocks not
Covered by Testing

Old Binary

New Binary

Step 3: Test Prioritization
? By now, Echelon has predicted the set of

impacted blocks that will be covered by each
test.

?Uses the impacted block set for each test as
a basis for prioritization.

? Iteratively finds a short sequence of tests
which cover the maximum amount of
impacted blocks.

Weights

Step 3: Test Prioritization

T1

T2

T3

T4

T5

5

3

2

4

1

Impacted Blocks

Prioritized List

5

Step 3: Test Prioritization

Weights

3

2

4

1

Impacted Blocks

Prioritized List

T1
T2

T3

T4

T5

Step 3: Test Prioritization

Weights

3

2

4

1

Impacted Blocks

Prioritized List

T1
T2

T3

T4

T5

Step 3: Test Prioritization

Weights

1

1

0

0

Impacted Blocks

T2

T3

T4

T5

Prioritized List

T1

Step 3: Test Prioritization

Weights

1

0

0

Impacted Blocks

T3

T4

T5

Prioritized List

T1

T2

Step 3: Test Prioritization

Weights

1

0

0

Impacted Blocks

Prioritized List

T1

T2

T3

T4

T5

Step 3: Test Prioritization

Weights

2

4

1

Impacted Blocks

T3

T4

T5

Prioritized List

T1

T2

6

Step 3: Test Prioritization

Weights

2

1

Impacted Blocks

T3

T5

Prioritized List

T1

T2

T4

Step 3: Test Prioritization

Weights

2

1

Impacted Blocks

T3

T5

Prioritized List

T1

T2

T4

Impacted Blocks

Step 3: Test Prioritization

Weights

1

1

T3

T5

Prioritized List

T1

T2

T4

T5

Step 3: Test Prioritization

Weights

1

Impacted Blocks

Prioritized List

T1

T2

T4
T3

Step 3: Test Prioritization

Weights

1

Impacted Blocks

T5

Prioritized List

T1

T2

T4
T3

Step 3: Test Prioritization

Weights

Impacted Blocks

Prioritized List

T1

T2

T4
T3
T5

7

Step 3: Test Prioritization

Weights

Impacted Blocks

Prioritized List

T1

T2

T4
T3
T5

Sequence #1

Sequence #2

Empirical Evaluation
?Performance

?Test sequence characteristics
?Predicted blocked coverage accuracy

?Effectiveness
?Early detection of defects when tests run in

prescribed, prioritized order.

Performance of Echelon

31283128No. of Tests

8,880,1288,880,128File Size (bytes)

668,274668,068Blocks

31,02631,020Functions

January 2001December 2000Date

Version2Version 1

Performance of Echelon

1,225Number of
sequences

210 secondsTime taken by
Echelon

16 TestsTests in first seq.

176 BlocksImpacted Blocks
Covered

Total

Old

New 220

378

158
Impacted Blocks

Performance Analysis
?How many sequences of tests were

formed?

?How many tests are in each sequence?

?How accurate is Echelon?

Performance Analysis
Number of Tests in Each Sequence

First Sequence: 16 tests

Cover a common routine

8

Performance of Echelon

1,225Number of
sequences

210 secondsTime taken by
Echelon

16 TestsTests in first seq.

176 BlocksImpacted Blocks
Covered

Total

Old

New 220

378

158
Impacted Blocks

Performance Analysis
Number of Impacted Blocks in Each Sequence

Maximum number of covered blocks

Performance Analysis
?Accuracy

?How many blocks that were predicted to be
covered by a test were not covered?

?How many blocks that were expected to
remain uncovered were actually
uncovered?

Performance Analysis
Incorrectly Predicted False Positives

Performance Analysis

Successor Blocks (S)

New Block (N)

False positives can be explained by instances where
there was also a direct path from the predecessor to
the successor of a new block.

Performance Analysis
Incorrectly Predicted False Negatives

9

Performance Analysis

False negatives can be attributed to
instances when new blocks are inserted at
the head of an indirectly called procedure.
Because of the manner in which the
procedure is called, no predecessor of these
new blocks were visible in the graph.

System Effectiveness
? How early can defects be detected if the

tests are run in the prescribed order?
? Method:

? Obtained a binary with a known amount of
defects

? Obtained a prioritized list of tests generated by
Echelon

? Ran tests in the prescribed order
? Documented the number of unique defects

detected for each sequence of tests

System Effectiveness

0

20

40

60
80

100

%
 D

ef
ec

ts
 d

et
ec

te
d

1 2 3 4
Sequence

Defects detected in each sequence

% Defects % Unique Defects

System Effectiveness

0

20

40

60

80
100

%
 D

ef
ec

ts
 d

et
ec

te
d

1 2 3 4

Sequence

Defects detected in each sequence

% Defects % Unique defects

Main Conclusion
The use of binary matching to determine
inter-version program changes and influence
regression test prioritization is effective in
large-scale production environments.

Cited References
[1] T. Ball, "On the Limit of Control Flow Analysis for Regression Test Selection". Proc. ACM Int'l

Symposium. Software Testing and Analysis, pp. 134-142, Mar. 1998.

[3] D. Binkley, "Semantics guided Regression Test Cost Reduction", IEEE Trans. Software Eng.,
vol. 23, no. 8, pp. 498 -516, Aug. 1997.

[4] T. Y. Chen and M. F. Lau, "Dividing Strategies for the Optimization of a Test Suite",
Information Processing Letters, vol. 60, no. 3, pp. 135-141, Mar. 1996.

[5] Y. F. Chen, D. S. Rosenblum, and K. P. Vo, "TestTube: A System for Selective Regression
Testing," Proc. 16 th Int'l Conf. Software Eng., pp. 211-222, May 1994.

[6] S. Elbaum, .A. Malishevsky and G. Rothermel, "Test case prioritization: A family of empirical
studies", IEEE Trans. Software Engg. , vol. 28, no. 2, pp. 159-182, Feb. 2002.

[8] S. Elbaum, .A. Malishevsky and G. Rothermel, "Prioritizing test cases for regression testing",
Proc. Int'l Symp. Software Testing and Analysis, pp. 102-112, Aug. 2000.

[9] T. L. Graves, M. J.Harrold, J-M. Kim, A. Porter and G. Rothermel, "An empirical study of
regression test selection techniques", 20 th Int'l Conference on Software Engineering, Apr.
1998.

[11] M. J. Harrold, "Testing Evolving Software", Journal of Systems and Software, vol. 47, no. 2-3,
pp. 173-181, Jul. 1999.

10

Cited References
[13] M. J. Harrold, R. Gupta and M. L. Soffa , "A Methodology for Controlling the Size of a Test

Suite", ACM Trans. Software Eng. And Methodology, vol. 2, no. 3, pp. 270-285, July 1993.

[17] G. Rothermel , R. H. Untch and M. J. Harrold, "Prioritizing Test Cases For Regression Testing",
IEEE trans. On Software Engineering, vol. 27, no. 10, Oct. 2001

[19] G. Rothermel , M. J. Harrold, J. Ostrin and C. Hong, "An Empirical Study of the Effects of
Minimization on the Fault Detection Capabilities of Test Suites", Proc. Int'l Conf. Software
Maintenance, pp. 34-43, Nov. 1998.

[20] G. Rothermel and M. J. Harrold, "A Safe, Efficient Regression Test Selection Technique", ACM
Trans. Software Eng. And Methodology, vol. 6, no. 2, pp. 173-210, Apr. 1997.

[28] F. Vokolos and P. Frankl , "Pythia: a regression test selection tool based on text differencing",
Int'l conference on reliability, Quality and Safety of Software Intensive Systems, May 1997.

[30] W. E. Wong, J. R. Horgan, S. London, and A. P.Mathur, "Effect of Test Set Minimization on
Fault Detection Effectiveness", Software-Practice and Experience, vol. 28. no. 4, pp. 347-369,
Apr. 1998.

[31] W. E. Wong, J. R. Horgan, S. London, and H.Agrawal, "A Study of Effective Regression
Testing in Practice", Proc. Eighth Int'l Symposium Software Reliability Eng., pp. 230-238,
Nov. 1997.

Effectively Prioritizing Tests in
Development Environment

Amitabh Srivastava Jay Thiagarajan&
Cyntrica Eaton

November 26, 2002

