Motivation

] -] |- = After initial development, software will
Effectively Prioritizing Tests in Rl reauently change.

Development Environment | = Change management is critical to maintaining
software utility.

Amitabh Srivastava & REVALWEGEIEIE!
= Small changes in one part of the program
Cyntrica Eaton fay have subtle, undesired effects in other
November 26, 2002 . Seendingly unrelated parts of the program.

X
L —Key-Approach |i* —Echelon—Basie ldea

il 19
= Effectively Prioritizing Tests |-
Run the right test at the right time X >
Focusing testing efforts on parts of the program e

affected by change. | L2 =—
New defects probably result of new modifications : >
®ld Binary
. . overage
<In Development Environment 4
Technique must be fast, useful, and easily B i
integgated into the development process.

Estinate program change based on comparisons v
of Bihaf/representations of code. | Prioritized List of ist of Blocks not

Remaining Presentation ji# Features of Echelon
= Features of Echelon | "™ ~ Prioritizing Tests

.y = Calculating Program Change
= Test Prioritization Sequence
& Utilizing Program Binaries

= Empirical Evaluation
= Providing Test Coverage Information

= GeneralgPracticality

Prioritizing Tests §i# _Calculating Program Change

= Prioritizes tests into an ordered =11 = Computes changes between programs at a
Sequence based on program Change_ . very fine granularlty using an accurate blnary
' matching algorithm.
Does not permanently discard tests like
minimization techniques presented in - The paper points out other works in test selection

[4][13][19][30]. [1][3][4][20][28] and test prioritization [6][8][17][31]
that also use program change as a guiding factor.

Allows use of a non-precise algorithm that Citeghow differences in techniques affect the
warks well in practice. esfifitation of program change.

CaleutatingProgram-Change || ¢ —Caleulating Program-Change

= Source code differencing : = Source Code Differencing [6][8][28]
Simple and fast

= Data and control flow analysis i))
Can be accomplished with commonly available

tools like “diff” in Unix

= Coarse_gralned code entities Erroneously marks a procedure as changed even

if variables were only renamed.

FailS,tegdetermine the set of affected procedures
whenheader files that define macros and methods
have beea,modified.

g
¢ Calculating Program Change §i# Calculating Program Change

= Coarse-grained techniques [5] |- « Data and control flow analysis [1][20]

Uses functions, global variables, type definitions, & Difficult in a language such as C++/C which
etc. to identify which parts of the program might be ’ contains pointers, casts, and aliasing.
affected by the changes.

Flow analysis is expensive in large commercial
According to [11], estimations of program change systems [9][21] and should not be used unless the
based on coarse-grained entities [5] may select techniques will be helpful for other analyses[9].
morg tests than statement or control flow based
teehmiques.

Utilizing Program Binaries
= Working at the binary level has advantages
over working at the source code level.

Binary modification eliminates the recompilation step for
collecting coverage

Easier to integrate into the build process in production
environments.

Once available in binary form, all header file changes have
beengpropagated to the affected procedures in the given
piagram.

Simplifies the process for determining program changes.

%
f#_Test Prioritization Sequence

Binary Change Analysis
Coverage Analysis

TFest-Prioritization-Seguenee

Old Binary
Coverage

]

i —Step-1:-Binary-Analysis

Step 17 Binary Analysis

= Uses BMAT to find a matching block in the
old binary for each new block in the new
binary.

Unmatched blocks are labeled as new blocks.

Blocks with matches are further compared:
Identical blocks are labeled as old blocks
Qtherwise marked as old-modified blocks.

]

i¢ Step 17 Binary Analysis

Old Blocks
(not changed)

% %
e _Step 2: Coverage Analysis ji¢ _Step 2: Coverage Analysis
" I . . Determine which impacted blocks in the new

Binary Change Analysis [version are likely to be covered by an existing
R test.
¥

G J Old modified blocks
old Bi . Check to see if the test covered the matching block in the
Covelpaagnel old binary using the cover information of the old binary.

Test Prioritization

New blocks

Agtest may cover a new block if it covers at least one of
ftSTmmediate predecessor blocks and at least one of its

§ Immediate successor blocks, skipping in both cases, any
List of Blocks not intermediate new blocks.
Covered by Testing

* *
¢ —Step-2:-Coverage-Analysis || ¢ —Step-3:-TestPrioritization

-
PrectecessorBiocks

» Interprocedural
4 edge

New Block (N)

Sucessor Bloc

X
Step 37 Test Prioritization b StoRamii Prioritization

. I Block
= By now, Echelon has predicted the set of QhactedBiees

impacted blocks that will be covered by each
test. ” Prioritized List

= Uses the impacted block set for each testas
a basis for prioritization.

« [@ratiyely finds a short sequence of tests
Whichi'€over the maximum amount of
impacteggblocks.

Step 3. Test Prioritization fi#_Step 3: Test Prioritization
hlmpaoted Blocks -4 .:D:Dmpacted Blocks

b ol
]
4l B BN
B

SRR

Bl Pl I

F]

Impacted Blocks

S%t Prioritization 124 St%{fﬂ Prioritization
- mpacted Blocks

Weights
Priomizedtist |

o (MWL O
¢ v = e
SO m) O

StepRErest Prioritization | SOl Prioritization

Impacted Blocks J Impacted Blocks

Prioritized List

Step_3: Test Prioritization ii ¢ _Step 3: Test Prioritization
hlmpaoted Blocks -4 &:E.jmpacted Blocks

Weights e] i Weights

= Impacted Blocks pacted Blocks

S%t Prioritization 124 Stw Prioritization

Weights Weights

rioriuzed LIS

¥
StEPE eSSt Prioritization 134 Stw Prioritization

Impacted Blocks Impacted Blocks

Weights Weights

Prioritized List
T1
T2
T4

Step 3: Test Prioritization
D%ED:D Impacted Blocks

Weights e)
Protizedlist

Tl
Sequence #1
. VA

T4
T3 (Sequence #2

_I5-

Performance of Echelon

o lersion1 lversinz |
December 2000 |January 2001

Jnction 1.020 1,026
668,068 668,274
e 8,880,128 8,880,128

Performance Analysis

«How many sequences of tests were
formed?

=How many tests are in each sequence?

= How accurate is Echelon?

]
i ¢ _Empirical Evaluation
-
L = Performance
s Test sequence characteristics
¥ Predicted blocked coverage accuracy

1E

.

=Effectiveness
Early detection of defects when tests run in
preseribed, prioritized order.

Impacted Blocks ___i-_
5 SO ¢ S|
pacted Blocks 76 Blocks

225

'l'.i, First Sequence: 16 tests
-
L
r W T
&
L
i
-
- L3
=k —
! | =y
'I “1"Cover a common routine T1

Y

Performance of Echelon

Impacted Blocks |New oo |
roa__[s78

Impacted Blocks 176 Blocks
Covered

16 Tests

Number of 1,225

seguences

Time taken by 210 seconds
elo

Performance-Analysis

= Accuracy

How many blocks that were predicted to be
covered by a test were not covered?

How many blocks that were expected to
remain uncovered were actually
uncovered?

Y

Performance Analysis

False positives can be explained by instances where
there was also a direct path from the predecessor to
the succes:

New Block (N)

SN RIncks (S)

Fmpacted Bocks

Performance Analysis

Number of Impacted Blocks in Each Sequence

Maximum number of covered blocks

Incorrectly Predicted False Positives

(e —

Incorrectly Predicted False Negatives

¥ %
¢ Performance Analysis f#_System Effectiveness

How early can defects be detected if the

False negatives can be attributed to tests are run in the prescribed order?
instances when new blocks are inserted at : = Method:

the head of an indirectly called procedure. | Obtained a binary with a known amount of
Because of the manner in which the defects

procedure is called, no predecessor of these (Ejbﬁailned a prioritized list of tests generated by
chelon

new blocks were visible in the graph. Ran tests in the prescribed order

Dgeumented the number of unique defects
detected for each sequence of tests

%
System-Effectiveness bt —System-Effectiveness

Defects detected in each sequence] Defects detected in each sequence

100
80
60
40
20

(0]

% Defects detected

g
£
8
it
3
@
2
2
5
[a]

2 3
Sequence Sequence

1e Defects B196 Defects ue defects

Main Conclusion
The use of binary matching to determine] Sy e
inter-version program changes and influence o Semaries g
regression test prioritization is effective in 1 il
large-scale production environments. | Informati

D. S. Rosenblum, and K. P o e Regression
1 onf.

' are Eng., pp

dG. Rothermel, “Test c: ation: A family of empirical
ngg. , vol. 28, 1 2, F

8] s JEiBbum , Rotherm
Proel int'l Syfiap. Softwa 1g and An;

18] TN GravesiW. J. Haaold, J-M. Kim, A. Porte -Rothe “An empirical study o

regression test selectio) are Engineering, Apr.

ANV Har ol STestiaaEy olving Software”, Journal of Systems and Software, vol. 47, no. 2-3,
pp. 173-181, Jul. 1999.

Cited References

[43] M. J. Harrold, R. Gupta and M ffa, A N for Controlling the Size of a T
Suite", ACM Trans. Software Eng. And Methodology, vol. 2, no. 3, pp. 270-285, July 1

[17] G. Rothermel, R. H. Untch and M. J. Harrold, *Prioritizing Test Cases For Regression Tes
|EEE trans. On Software Engineering, vol. 27, no. 10, Oct. 2001

[19] G. Rothermel, M. J. Harrold, J. Ostrin and C. Hong, "An Empirical Study of the Effects of
Minimization on the Fault Detection Capabilities of Test Suites”, Proc. Int'l Conf. Software
Maintenance, pp. 34-43, Nov. 1998.

[20] G. Rothermel and M. J. Harrold, "A Safe, Efficient Regression Test Selection Technique", ACM
Trans. Software Eng. And Methodology, vol. 6, no. 2, pp. 173-210, Apr. 1997.

28] F. Vokolos and P. Frankl, "Pythia: a regression test selection tool based on text differencing’,
Int'l conference on reliability, Quality and relntensive Systems, May 1997.

ong IR Horgan, S. London, and A. P. Mathur, "Effect of Test Set Minimization on
tgbtion Effective Soft and Experience, vol. 28. no. 4, pp. 347-369,

[31] W. E.
Tes

ing . Proc. Ei oftware Reliability Eng., pp. 230-238,
Nov. 1997.

Effectively Prioritizing Tests in
Development Environment

Amitabh Srivastava & NEVAGEGEIETED

Cyntrica Eaton
November 26, 200

10

