
1

Incremental Testing of Object-
Oriented Class Structures

M. Harrold, J. McGregor,
K.Fitzpatrick

1992

Presented by Dave Tahmoush

Object Oriented Programming

• Benefit from reuse of information-hiding modules
– Called classes
– A class has attributes

• Data members or instance variables
• Member functions or methods

– Classes can be used to define new classes, or subclasses
• Inheritance allows subclasses to use attributes from parent class

– May also cancel attributes
– Redefine attributes
– Create new attributes

– Would like to create libraries of tested classes to reuse
• Completely retesting too expensive

Heirarchical Incremental Class Testing

• Reuse testing information from parent class
• Create testing history

– Test suites for each attribute

• Incrementally update to guide testing of subclass
– Inherit testing history, and update it
– Automatically classify attributes

• Test or not, or only partially test?
• Can we reuse test cases?

• Inheritance is guide to testing

Inheritance in Object-Oriented Systems

• Modifier M changes the attributes of parent
class P to create new class R

• Incremental modification technique
• M contains attributes that alter class R
• Types of attributes in R

– New, defined in M
– Recursive, defined in P but available in R
– Redefined, defined in P and changed in M
– Virtual of all above types, specified but

incomplete

• Examples on next slide

Example of inheritance, with P on left, M in the middle, and R
on the right.

Note the examples of new, recursive, and redefined attributes

• Inheritance can be thought of as incremental

• A is parent to B

• B is parent to C

• Thus only need to determine how to extend testing from parent t o
child, and can use recursively to test grandchildren, etc.

2

Heirarchical Incremental Class Testing

• Test base class
– Test each member function
– Test interactions among the member functions
– Save test cases and execution information in a testing history

• Test subclass
– Use testing history to avoid retesting when not necessary

Base Class Testing

• Test functions using traditional techniques
– Specification based, or black box

• (TS, test?)

– Program based, or white box
• (TP, test?)

• Test interactions among the member functions
– Called integration testing

• Focuses on interfaces between functions or units
– IO format, format of entry or exit parameter values

– Intra-class testing, when the functions are in the same class
• (TIP, test?) or (TIS, test?)

– Inter-class testing, when the functions are in different classes
– Example is class Shape on next slides

Class Shape {

Private: Point reference_point;

Public: void put_reference_point(Point); // access to data

Point get_reference_point(); // access to data

void move_to(Point); // defined to be erase() and draw()

void erase(); // calls draw() to overwrite area

virtual void draw() = 0; // pure virtual – no implementation

virtual float area(); // has an initial implementation

shape(Point); // constructor

shape(); // constructor

}

Definition of class Shape and its class graph. Note the Inter-class messages go to
class Point

The testing history for class Shape. Note that there are two shape functions but
their integration test cases are omitted for brevity.

move_to() calls erase() and draw()

erase() calls draw()

Subclass Testing
• Transform testing history from parent to child
• Modifications are analyzed to transform the testing history

– New or Virtual-New functions fully tested
• Use Y for full retest with new test cases

– Recursive or Virtual-Recursive functions not retested
• Use N for no retesting
• Integration tests run if interact with changed code (New or Redefined)

– Use P for partially retested

– Redefined or Virtual-Redefined functions fully tested
• Use Y for retest, may reuse some test cases and build new ones

3

Algorithm for transforming a testing history from parent to child
Definition of subclass Triangle and its testing history.

area(), get_vertex1(), and put_vertex1() call functions get_ and put_reference_point

EquiTriangle is a subclass that modifies Triangle

Experimentation

• Determine the savings using this technique
– Compare the number of attributes to test

• Code to test
– Base class Interactor has subclass Scene
– Class Scene has subclass MonoScene
– Class MonoScene has subclass Dialog
– Data next slide

Conclusions

• Savings in the amount of testing
• Algorithmic approach may reduce time to analyze classes

to determine what must be tested

