Test Case Prioritization:
A Family of Empirical Studies

S. Elbaum, A. G. Malishevsky, G. Rothermel

Presented By:
Harsh Nanda
26t November, 2002

Eest Case Prioritization Problem

Given:

T : Test suite

PT :Setof permutations of T

f : Function from PT to real numbers
Problem:

Find T'in PT, such that

(T2 PO 2TIH(T)? £(T)]

[Goal of Prioritization

Rate of fault detection

Rate of code coverage

Rate of increase of confidence in
reliability

Rate of fault detection in specific code
changes

verage of the Percentage of
aults Detected (APFD)

[Test Case Prioritization Technigues

Comparator (2)

Experimental controls
Statement Level (4)

Fine granularity techniques
Function Level (12)

Coarse granularity techniques

Lomparator Techniques

Random ordering
Lower bound on performance

Optimal Ordering
Upper bound on performance

[Statement & Function Level]

Technigues

[<eywords - Total v/s Additional

Total
Ordering independent of execution
Ordering finalized before execution starts

Additional

Ordering based on feedback
Ordering changed on the fly

Statement & Function Level]
Technigues

[<eywords - FEP

Fault Exposing Probability

For every t (test case) in T (test Suite)
and for every component c in program P

Calculate ms(c,t): ratio of mutants exposed
by t to the total mutants of component ¢
Calculate “award value” of t: sum ofm(s,t)
for every component c of program P

[Statement & Function Level]
Technigues

Leywords - FI

Fault Index

Each function is assigned a fault index
representing the fault proneness based
on:

Function complexity

Complexity of changes introduced in the

function
For each test case, its “award value” is
the sum of the Fl values of the functions
that the test case executes

Technigues

[Statement & Function Level

[<eyword - Diff

Syntactic Differences
Simple alternative to Fault Index
For each function in P & P’ measure the
degree of change by adding the number
of lines inserted, deleted or changed
For each test case, its “award value” is
the sum of the Diff values of the functions
that the test case executes

Statement & Function Level
Technigues

meirical Study: Motivation

RQ1: Can prioritization improve the
rate of fault detection?

RQ2: Fine granularity or coarse
granularity prioritization techniques?
RQ3: Use or not, of predictors of fault
proneness for prioritization?

[Experiment Instrumentation

Programs

- 8 C programs (Siemens & Space)
Versions

- First order & higher-order versions

Test Suites

- Randomly select test cases from test pool
- Stopping Criteria: Branch Coverage

50 test suites for each program

preriment 1: Prioritization

Two experiments: statement level
techniques (1a) and function level (1b)
techniques

APFD value calculations for eight levels
(one per program), with 29 versions and 50
test suites per program and all prioritization
techniques

Statistical calculations to determine
significance of difference in means

[Experiment la: Results

Grouping | Mecans

Techniques

(@ v=Rv=livg

80.733
78.867
78.178
76.077

st-fep-addtl

st-fep-total
st-total
st-addtl

Experiment 1b: Results

Carasiring | Means | Technigues

A 77453
A 70957
A 76938

B 73405

fr-fep-addt]

JI|-|-.'::-II.|I..'||
f-total
Fr-aele]

[Experiment 2: Granularity Effects

Pair-wise analysis of corresponding pairs

Results

Grouping
A
B
B C
¢ D
D E
D E al
E st-addt]
F fn-addtl

preriment 2: Granularity Effects

Pair-wise analysis of corresponding pairs

Results

Grouping

Technigues

st-fep-addtl
at-fep-tatal
Al

fu-total
st-addi

[Experiment 2: Granularity Effects

Pair-wise analysis of corresponding pairs

Results

Grouping

st-addt]
fn-addtl

xperiment 2: Granularity Effects

Pair-wise analysis of corresponding pairs

Results

Grouping

fn-feq
fn-fep-total

fu-total
dtl
addtl

Experiment 3: Adding Prediction
of Fault Proneness

Grouping Means Techniques |
A 70479 | n-diff-fepeaddtl
A T9.A450 | tn-difi-fep-total
A D 78.712 | fn-fi-fep-total
n 7RG fn-fi-fep-addrl
¢y | 77453 fn-fep-addel
¢ | 77321 fn-fi=total
C D | 77.057 fn-diff-total
D | 76.957 fn-fep-total
I | 76.928 fn-total
E T4.596 fr-fi-addtl
E 73465 fr-addl
F G7.666 fr-diff-addt]

Ease Study: Objects of Study

Grep & Flex — 5 versions each
Publicly available v/s test suite/fault data
Test suite: Category Partition Method
Faults: Manual seeding (1/20 % criteria)
QTB — 6 versions (300K LOC)
Test execution takes 27 days!
139 test cases & 69% function coverage
Coverage information only functional

an

Lase Study: Results - Surprises!

QTB: Mean APFD values for feedback
based techniques is lesser than the
mean APFD values of techniques which
do not use feedback

Flex & Grep: Random prioritization
performs better than most heuristics
Techniques using fault proneness did
not produce substantial improvements

[Conclusion

Statistically significant improvements
Greater variance in case studies
Vary across programs
Function level techniques quite close
to statement level techniques
Statistically significant but small &
inconsistent improvements using fault
proneness

Leal World

Cost of prioritization v/s savings

Saving Factor (SF)
Cost of executing test suite
Environmental factors

C(A)-C(B) < SF*(APFD(A)-APFD(B))
Not taking repeated testing into account
Linear savings factor

[I did not but you should !

Sec 2: Test case prioritization problem

Sec 4.2: Empirical approaches &
challenges

Sec 5.1.2: Prioritization & analysis
tools

Sec 5.3: Threats to validity
Sec 6.2: Design

