Main ldea..

All-du-path Coverage for
Parallel Programs

Automatic generation of All-du-paths for testing
parald programs.

Introduce a tool “della pasta’ (Delaware Parallel
Software Testing Aid) for automatic generation of
all-du-paths for shared memory parallel programs.

* Cheer-SunD. Yang Amie L. Souter Lori L. Pollock
Department of Computer and Information Sciences
University of Delaware, Newark

Presented by
Hyma SMurthy
Dated: 12/03/02

Introduction

Paradllel programs are categorized by ther
synchronization and communication mechanisms :
- Message passing and shared memory
Problems in testing paralel programs :

* Focus is on the gpplicability of all-du-path testing
to paralle programs, and hence on generating test
cases automatically for adequate testing.

¢ All-du-path (All-Definition Use-Path) coverage

testing involves :

- Identifying al du pairsin the program.
- Create a path for each du pair.

- Produce test data for testing the path.

- Non- deterministic nature prevents application
of traditional testing approaches.
Lack of pardlel software testing tools for
testing correctness and reliability.

Program Model

Program Model and Notation. » Pardld program is considered to consst of
Testing paadign and deding with multiple threads of control that can be executed
nondeterministic nature of parallel programs. simultaneoudly.

Problems in providing al-du-path coverage for — Thread is an independent sequence of

shared memory parallel programs. execution.
Test Coverage classification. » Communication between threads is through shared

Du-Path finding algorithm. variabl&.. I . .
Della pasta tool e Synchronization is achieved by caling post and
Condus ' wait system calls.
onclusion. « Pthread create system cal is used for thread
creation.

Organization of the paper

Notations

e Paralel program -
PROG = (T1,T2,...,Tn), where Ti, (1 < i < n) n(>2) represents
threads. T1 isthe manager and the rest are worker threads.
e Pardlel Program Flow Graph — PPFG
G=(V,B)
V = nodes (statements in the program)
E=(Es? Et? El)
El = intrathread control edges (m', n)
Es = synchronization edges (post, wait!)
postiispost st in thread Ti and waiti iswait stin Tj (Ti ? Tj)
Et = thread-creation edges (n, ni)
niiscal stinTi and ni isthefirststin Tj (Ti ? Tj)

R
Path Pi (n,,/, n,J) is an alternating sequence of nodes and
intrathread edges, e/, ..., €,
Du-pair isatriplet (var,n/, nj), ni isthe uth nodein thread
Ti, where thevar isdefined, and nj isthejth nodein thread
Tj whereit is used.
A nodenl (1<I<k) in aparalel program is covered by a set
of paths PATH = (P1,...Pk) inthreads T1,T2,...Tk
respectively or n? , PATH, ifn, ? , P,
MP(W) ={p|(pw) ? Es}

Matching postsfor waits
MP(p) ={w | (pw) ? Es}

Matching waits for posts

Example of a PPFG

Es = arrow in blue
Et = arrow in red
El = arrowsin yellow

Testing Paradigm

» Tempora testing is advocated for automaticaliyms
generating and executing test cases in the face of
nondeterminism.

 Alter the scheduled execution of program segments to
detect synchronization errors.

e Temporal du-path testing involves identifying the
delay points along the du-paths to be tested, and
atering the execution time of process creation and
synchronization events.

» Tempord Test case— TTCisa3-tuple (PROG, |, D)

PROG is program being tested, | isthe input to it.

D is the timing change, depending on which the execution time d
synchronization events is changed for each test case.

Last of the Notations !

e “a < b” — an ingance of node a completes
execution before an instance of node b.
* Du-path coverage for parallel programs
— Given a shared memory parald program PROG
=(TL,T2,...,Tn), for each du-pair (var,ni,nj) in
PROG, find a set of paths PATH = (PL,.. Pk) in
threads T1,T2,..Tk, that covers the du-par
(var,n/, nj), sucl

Summary of the testing process

Generate du-paths statically.
Execute multiple times without timing changes.

Examine trace results. Execution of different paths
is an indication of synchronization errors.

Generate temporal test cases for the du-paths and
perform temporal testing.
Examine the results.

Problemsin al-du-path coverage
LA
e Inconsistency in number of loop iterations may
cause one thread to wait infinitely.

Branch sdection aso influences thread
termination.

* Defineis after use
—Define< useisviolated
¢ Thisis not an exhaustive list however.

Du-pair coverage may cause an infinite wait

12-14-15-11-16

Du-pair is incorrectly covered

Path Coverage:

Manager: 1-2-3-4-5-6-7-3-8
Worker: 10-11-12-13-14-15-

11-16

Test Coverage Classification

* Du-path coverage classified as
— Acceptable and unacceptable
— W-runnable and non-w-runnable
 Acceptability.... denoted as PATH,
A set of paths PATH for a duair (define, use) is
acceptableif it satisfies the following:
— define? , PATH; use? , PATH,
—?wait nodesw ?, PATH, ? apost node p 2, MP(w),
suchthat p?,,PATH,
— If ?(post, wait) ? Es, such that define < post < wait <
use, then post, wait? ,PATH.
—? n?, PATHwhere(n, i) ? Et, ? n? \PATH.

W-runnability of du-path coverage...PATH,,

» W-runnable path coverage doesn't cause infinite
wait in any thread. PATH, is w-runngble if
following conditions are satisfied —

—Each instance of a wait, w* 7, PATH, ? an
ingance of post, ps, ?, PATH, where p5, ?
MP(w).

—?/ post nodes p, P, and wait nodes, wi, wi such
that

(P <w)? (9 <w))? W <p)? Wi <p)

A peek at related work

Thedu-path finding agorithm for parallel progratli'fwI
a combination of the Depth first search (DFS)
approach and the Dominator (DT) and Post-dominator
(also Implied tree -IT) trees approach.

The DFS and the DT-IT approaches are designed for
sequential programs. DFS finds a path to connect two
nodes, and DT-IT approach finds branch coverage.

Individually, when applied to parallel programs, they
fail to provide coverage for intervening wait's and
their matching posts as required for PATH, or may
generate apath where defineis after use.

The Hybrid Approach

e Uses two sets of digoint nodes: I

— Required nodes which include the pthread_crezate() call
nodes, the define node, the use node to be covered, and
the associated post and wait nodes such that the partial
order define < use is guaranteed.

— Optional Nodes, which are the remaining nodes along
the path, whose order is not set.

e The agorithm has two phases :

— Annotate phase where DFS is used to cover required
nodes, DT-IT is used to cover optional nodes. Once a
path to a node is found, all nodes along the path are
given anumber, TRN, traversal control number.

— Path Generation phase where the actua path is
generated using the TRNSs.

5. I* process the synchronization nodes * /
while (any working queuePot empty)
{ For each thread, if working queue not empty
{ Remove one node from the working queue;
if the node's TRN is zero
{ Find a path to cover this node
For each node in the complete path:
Increment TRN by one;
If nodeisa WAIT,
Add matching nodes into appropriate working queues,
If node is an ifnode,
Add the successor node in the path into decision queue;

}

Annotate the graph()

Input: A DU-pair, and aPPFG
Output: Annotated PPFG
Mcthod:
1. InitializeTRN’s decision queues, and working queues;
2. Find a path to cover pthread-create and define nodes using dfs
From the define node, search for the use node using df s
3. Complete the two sub-paths using DT-I T.
4. For each node in the complete paths:
Increment TRN by one:
If nodeisaWAIT,
Add matching nodes into appropriate working queues,
If nodeisan if-node,
Add the successor node in the path into decision queue;

Traverse_the_graph()

Input: An annotated PPFG

For &l threads
{ current = begin node of the thread:
while (current node's TRN > 0 and current is not the end node)
{ add the current node to the result DU-path;
decrement TRN of current node by one:
if (current isan iftnode)
current = first node from decision queue;
delete the first node in the queue:
eseif (‘current isn loop node)
current = successor with smallest non-zero RPO:
else
current = successor node of current;

Generating PATH,

The definition of X a node 4 and its use a node 26 is consider I.
Create a path between pthread_create(), define, post2,wait2, and the
use nodes using DFS.

Using the DT -IT approach, get the paths 1-2-3-4-5-7-8-9-3-11 for the
manager and 21-22-23-25-26-27-28-22-30 for the workerl.

TRNSs are assigned to all the nodes above, 22 has TRN 2 and all others
have TRN 1.

When node 9 is reached nodes 28 and 35 are placed into the working
queues for workerl and worker2.

Node 28 is covered, so a path 31-32-33-34-35-32-36 is found for the
worker2.

Phase 2 finds the final paths for al the threads, which are theabove.

Generating non-PATH,,

The steps till generating the path for the manager thread
remain the same as the previous example.
The path for the worker1 thread is generated as 21-22-23-25-
26-27-29-22-30. Node 29 is covered instead of 28.
When node 9 is reached during the traversa, a path is
generated for both nodes 28 and 35 as

— 21-22-23-25-26-27-28-22-30 and

31-32-33-34-35-32-36 respectively.

Hence the second phase generates the following paths:
Manager : 1-2-3-4-5-7-8-9-3-11
Workerl : 21-22-23-25-26-27-29-22-23-25-26-27-28-22-30
Worker2 : 31-32-33-34-35-32-36
Workerl has an infinite wait, hence not w-runnable.

TheTool - “DedlaPasta’

Objective is to demonstrate partial automation of
test data generation and respond to programmer
querieson testing.

Functions include finding al du-pairs, finding
path coverage for user specified dupairs,
displaying al-du-path coverage in graphic mode
or text mode and adjusting path-coverage when
desired by the user.

Uses a datic andyzer to perform the first two
functions, and a path handler for the other two.

Correctness of the Algorithm

R
TRN preserves the no of traversals of anodewithina
loop.
TRN and the decision queue, guarantee that the same
sequence of branches traversed during the first phase
will be selected during the second phase.
DFS ensuresthat define < post < wait < use.
TRN and working queues guarantee the termination of
the algorithm — this is proved by means of induction
on the pairs of synchronization nodes.
Using the above, given a du-pair, the hybrid approach
terminatesand findsaPATH,.

Conclusions

« Limitations
— The agorithm requires that PPFG be constructed
statically, else the analysis may not produce meaningful
du-pairs.
— In case of aclear before/after wait, the algorithm
reports more test cases than needed.
e Successes
— First attempt at extending sequential testing criteriato
paralel programs.
— Classifies coverage, identifies problemsin the parallel
program realm and finds all-du-path coverage for
shared memory paralel programs.

