
1

All-du-path Coverage for
Parallel Programs

• Cheer-Sun D. Yang Amie L. Souter Lori L. Pollock
Department of Computer and Information Sciences

University of Delaware, Newark

Presented by
Hyma S Murthy
Dated: 12/03/02

Main Idea..

• Automatic generation of All-du-paths for testing
parallel programs.

• Introduce a tool “della pasta” (Delaware Parallel
Software Testing Aid) for automatic generation of
all-du-paths for shared memory parallel programs.

Introduction

• Parallel programs are categorized by their
synchronization and communication mechanisms :
- Message passing and shared memory

• Problems in testing parallel programs :
- Non- deterministic nature prevents application

of traditional testing approaches.
- Lack of parallel software testing tools for

testing correctness and reliability.

Contd…………

• Focus is on the applicability of all-du-path testing
to parallel programs, and hence on generating test
cases automatically for adequate testing.

• All-du-path (All-Definition Use-Path) coverage
testing involves :
- Identifying all du pairs in the program.
- Create a path for each du pair.
- Produce test data for testing the path.

Organization of the paper

• Program Model and Notation.
• Testing paradigm and dealing with

nondeterministic nature of parallel programs.
• Problems in providing all-du-path coverage for

shared memory parallel programs.
• Test Coverage classification.
• Du-Path finding algorithm.
• Della pasta tool.
• Conclusion.

Program Model

• Parallel program is considered to consist of
multiple threads of control that can be executed
simultaneously.
– Thread is an independent sequence of

execution.
• Communication between threads is through shared

variables.
• Synchronization is achieved by calling post and

wait system calls.
• Pthread_create system call is used for thread

creation.

2

Notations

• Parallel program
PROG = (T1,T2,…,Tn), where Ti, (1 < i < n) n(>2) represents

threads. T1 is the manager and the rest are worker threads.

• Parallel Program Flow Graph – PPFG
G = (V,E)
V = nodes (statements in the program)
E = (Es ? Et ? El)

El = intra-thread control edges (mii, n i)
Es = synchronization edges (post i, wait j)
post i is post st in thread Ti and wait j is wait st in Tj (Ti ? Tj)
Et = thread-creation edges (n i, n j)
ni is call st in Ti and n j is the first st in Tj (Ti ? Tj)

Example of a PPFG

begin

Pthread_create

loop

wait

U:z=3*m

loop

D:m=x+y

post

begin

end

end

T2

T1

Es = arrow in blue
Et = arrow in red
El = arrows in yellow

Contd……..

• Path Pi (nu1
i, nuk

i) is an alternating sequence of nodes and
intra-thread edges, eu1

i, eu2
i,…., euk

i.

• Du-pair is a triplet (var,nu
i, nv

j), nu
i is the uth node in thread

Ti, where the var is defined, and nv
j is the jth node in thread

Tj where it is used.
• A node nl (1<l<k) in a parallel program is covered by a set

of paths PATH = (P1,…Pk) in threads T1,T2,…Tk
respectively or nl ? p PATH, if nl ? p Pl.

• MP(w) = {p | (p,w) ? Es}
Matching posts for waits

• MP(p) = {w | (p,w) ? Es}
Matching waits for posts

Last of the Notations !

• “a < b” – an instance of node a completes
execution before an instance of node b.

• Du-path coverage for parallel programs
– Given a shared memory parallel program PROG

= (T1,T2,…,Tn), for each du-pair (var,nu
i,nv

j) in
PROG, find a set of paths PATH = (P1,…Pk) in
threads T1,T2,…Tk, that covers the du-pair
(var,nu

i, nv
j), such that nu

i < nv
j.

Testing Paradigm

• Temporal testing is advocated for automatically
generating and executing test cases in the face of
nondeterminism.

• Alter the scheduled execution of program segments to
detect synchronization errors.

• Temporal du-path testing involves identifying the
delay points along the du-paths to be tested, and
altering the execution time of process creation and
synchronization events.

• Temporal Test case – TTC is a 3-tuple (PROG, I, D)
PROG is program being tested, I is the input to it.
D is the timing change, depending on which the execution time of

synchronization events is changed for each test case.

Summary of the testing process

• Generate du-paths statically.
• Execute multiple times without timing changes.
• Examine trace results. Execution of different paths

is an indication of synchronization errors.
• Generate temporal test cases for the du-paths and

perform temporal testing.
• Examine the results.

3

Problems in all-du-path coverage

• Inconsistency in number of loop iterations may
cause one thread to wait infinitely.
Branch selection also influences thread
termination.

• Define is after use
– Define < use is violated

• This is not an exhaustive list however.

Path Coverage:
Manager: 1-2-3-4-5-6-7-3-8
Worker: 10-11-12-13-15-11-

12-14-15-11-16

Du-pair coverage may cause an infinite wait

Path Coverage:
Manager: 1-2-3-4-5-6-7-3-8
Worker: 10-11-12-13-14-15-

11-16

Du-pair is incorrectly covered
Test Coverage Classification

• Du-path coverage classified as
– Acceptable and unacceptable
– W-runnable and non-w-runnable

• Acceptability…. denoted as PATHa

A set of paths PATH for a du-pair (define, use) is
acceptable if it satisfies the following:

– define ? p PATH; use ? p PATH,
– ? wait nodes w ? p PATH, ? a post node p ? p MP(w),

such that p ? p PATH,
– If ? (post, wait) ? Es, such that define < post < wait <

use, then post, wait ? p PATH.
– ? nj ? p PATH where (ni, nj) ? Et, ? ni ? p PATH.

W-runnability of du-path coverage…PATHw

• W-runnable path coverage doesn’t cause infinite
wait in any thread. PATHa is w-runnable if
following conditions are satisfied :–
– Each instance of a wait, wi

t ? p PATH, ? an
instance of post, ps

u ? p PATH, where ps
u ?

MP(w i
t).

– ? / post nodes pi, pj, and wait nodes, wi, wj such
that
((pi < wj) ? (pj < w i)) ? (wi < pi) ? (wj < pj)

A peek at related work

• The du-path finding algorithm for parallel programs is
a combination of the Depth first search (DFS)
approach and the Dominator (DT) and Post-dominator
(also Implied tree -IT) trees approach.

• The DFS and the DT-IT approaches are designed for
sequential programs. DFS finds a path to connect two
nodes, and DT-IT approach finds branch coverage.

• Individually, when applied to parallel programs, they
fail to provide coverage for intervening wait’s and
their matching posts as required for PATHa or may
generate a path where define is after use.

4

The Hybrid Approach

• Uses two sets of disjoint nodes :
– Required nodes which include the pthread_create() call

nodes, the define node, the use node to be covered, and
the associated post and wait nodes such that the partial
order define < use is guaranteed.

– Optional Nodes, which are the remaining nodes along
the path, whose order is not set.

• The algorithm has two phases :
– Annotate phase, where DFS is used to cover required

nodes, DT-IT is used to cover optional nodes. Once a
path to a node is found, all nodes along the path are
given a number, TRN, traversal control number.

– Path Generation phase, where the actual path is
generated using the TRNs.

Annotate_the graph()
Input: A DU-pair, and a PPFG
Output: Annotated PPFG
Mcthod:
1. InitializeTRN’s, decision queues, and working queues;
2. Find a path to cover pthread-create and define nodes using dfs:

From the define node, search for the use node using dfs;
3. Complete the two sub-paths using DT-IT.
4. For each node in the complete paths:

Increment TRN by one:
If node is a WAIT,

Add matching nodes into appropriate working queues,
If node is an if-node,

Add the successor node in the path into decision queue;

5. /* process the synchronization nodes * /

while (any working queuePot empty)

{ For each thread, if working queue not empty

{ Remove one node from the working queue;

if the node’s TRN is zero

{ Find a path to cover this node

For each node in the complete path:

Increment TRN by one;

If node is a WAIT,

Add matching nodes into appropriate working queues,

If node is an if-node,

Add the successor node in the path into decision queue;

}

}

}

Traverse_the_graph()
Input: An annotated PPFG
Outpu t: A DU-path
Method:
For all threads
{ current = begin node of the thread:

while (current node’s TRN > 0 and current is not the end node)
{ add the current node to the result DU-path;

decrement TRN of current node by one:
if (current is an if-node)

current = first node from decision queue;
delete the first node in the queue:

else if (current is n loop node)
current = successor with smallest non-zero RPO:

else
current = successor node of current;

}
}

Examples

Generating PATHa

• The definition of X at node 4 and its use at node 26 is considered.
• Create a path between pthread_create(), define, post2,wait2, and the

use nodes using DFS.
• Using the DT -IT approach, get the paths 1-2-3-4-5-7-8-9-3-11 for the

manager and 21-22-23-25-26-27-28-22-30 for the worker1.
• TRNs are assigned to all the nodes above, 22 has TRN 2 and all others

have TRN 1.
• When node 9 is reached nodes 28 and 35 are placed into the working

queues for worker1 and worker2.
• Node 28 is covered, so a path 31-32-33-34-35-32-36 is found for the

worker2.
• Phase 2 finds the final paths for all the threads, which are the above.

5

Generating non-PATHw

• The steps till generating the path for the manager thread
remain the same as the previous example.

• The path for the worker1 thread is generated as 21-22-23-25-
26-27-29-22-30. Node 29 is covered instead of 28.

• When node 9 is reached during the traversal, a path is
generated for both nodes 28 and 35 as
– 21-22-23-25-26-27-28-22-30 and

31-32-33-34-35-32-36 respectively.
• Hence the second phase generates the following paths :

Manager : 1-2-3-4-5-7-8-9-3-11
Worker1 : 21-22-23-25-26-27-29-22-23-25-26-27-28-22-30
Worker2 : 31-32-33-34-35-32-36

• Worker1 has an infinite wait, hence not w-runnable.

Correctness of the Algorithm

• TRN preserves the no of traversals of a node within a
loop.

• TRN and the decision queue, guarantee that the same
sequence of branches traversed during the first phase
will be selected during the second phase.

• DFS ensures that define < post < wait < use.
• TRN and working queues guarantee the termination of

the algorithm – this is proved by means of induction
on the pairs of synchronization nodes.

• Using the above, given a du-pair, the hybrid approach
terminates and finds a PATHa.

The Tool - “Della Pasta”

• Objective is to demonstrate partial automation of
test data generation and respond to programmer
queries on testing.

• Functions include finding all du-pairs, finding
path coverage for user specified du-pairs,
displaying all-du-path coverage in graphic mode
or text mode and adjusting path-coverage when
desired by the user.

• Uses a static analyzer to perform the first two
functions, and a path handler for the other two.

Conclusions
• Limitations

– The algorithm requires that PPFG be constructed
statically, else the analysis may not produce meaningful
du-pairs.

– In case of a clear before/after wait, the algorithm
reports more test cases than needed.

• Successes
– First attempt at extending sequential testing criteria to

parallel programs.
– Classifies coverage, identifies problems in the parallel

program realm and finds all-du-path coverage for
shared memory parallel programs.

