On Comparison of Random, Partition, and Proportional Partition Testing

In IEEE Transactions on Software Engineering, October 2001
Presentation by Nada Hashmi

Road Map
- Introduction
- Previous Studies
- The Experiment
- Results: Proportional Partition vs Random
- Results: Partition vs. Random with other factors
- Conclusion

Introduction
- Random Testing
 - Random selection of test cases from ENTIRE input domain
 - Successfully employed in practice
 - Relatively easy to employ
 - Effort
 - Cost
 - Problems
 - No guarantee
 - Not systematic

Introduction (cont)
- Partition Testing
 - Partition into disjoint sub-domains
 - Coverage of all sub-domains
 - At least one test case from each sub-domain
 - Problems
 - Can not truly have disjoint sub-domains
 - Is one test case per sub-domain enough?

Introduction (cont)
- Proportional Partition Testing
 - Associates a probability \(p \) to each sub-domain
 - Probability \(p \) based on when that sub-domain is likely to occur.
 - \(n \) testcases to the \(k \) sub-domains according to \(p \)
 - Example
 - Grades
 - Problems
 - 2 sub-domains and a million test cases

Previous Studies
- Duran and Ntafos
 - July 1984
 - Performance of random and partition very close
 - Random more cost-effective than partition
- Hamlet Taylor
 - Dec 1990
 - Similar results
Previous Studies (cont)

- Weyuker and Jeng
 - July 1991
 - Partition testing ‘at least’ as well as random
 - ‘IF’ sub-domains are of equal size
- Most Studies:
 - ‘Proportional partition testing’ as the strategy increases the chances of proper coverage of the particular sub-domain

Problems:

- Non-realistic approach- looked at:
 - How many times random testing did better than proportional partition testing
 - $P_r > P_p$
 - What about ‘did as well as’?
- Other factors
 - Cost
 - Effectiveness

The Experiment

- “Simulations”
 - Details in Duran and Ntafos, July 1984
 - $k = 20$ sub-domains
 - $20 \leq n \leq 800$ test cases
 - Probability and failure rate for (k,n) generated
 - Each experiment run 1000 times
 - P_r = Probability of random test detecting at least one failure
 - P_p = Probability of partition test detecting at least one failure

The Experiment (cont)

- Proportional partition vs. random testing
 - Three sets of experiments
 - Small number of sub-domains
 - Vary the number of sub-domains
 - Vary the number of test cases
 - Vary the failure rates
- Partition vs. random testing with cost and effectiveness as factors
 - Five sets of experiments
 - Vary the failure rate distribution
 - Vary the number of test cases

Results: Proportional vs. Random

- ‘U curve’: realistic

Results: Proportional vs. Random (cont)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Random vs. Proportional Partition Testing ($n = 100$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Random vs. group</td>
</tr>
<tr>
<td>20</td>
<td>0.453 ± 0.515</td>
</tr>
<tr>
<td>40</td>
<td>0.675 ± 0.725</td>
</tr>
<tr>
<td>60</td>
<td>0.898 ± 0.932</td>
</tr>
<tr>
<td>80</td>
<td>1.121 ± 1.162</td>
</tr>
<tr>
<td>100</td>
<td>1.346 ± 1.381</td>
</tr>
<tr>
<td>120</td>
<td>1.571 ± 1.603</td>
</tr>
<tr>
<td>140</td>
<td>1.796 ± 1.828</td>
</tr>
<tr>
<td>160</td>
<td>2.021 ± 2.052</td>
</tr>
<tr>
<td>180</td>
<td>2.246 ± 2.276</td>
</tr>
</tbody>
</table>

The U curve: realistic
Results: Proportional vs. Random (cont) [vary k and failure rates]

- Similar with a minor delay

Results: Proportional vs. Random (cont) [vary k and failure rates]

- As failure rate becomes smaller, longer delay
 - BUT same shape

Results: Proportional vs. Random

- Proportional Partition Testing is not more effective than Random
- Random Testing does ‘as well as’ Proportional Testing
- Proportional Testing not a worthwhile goal due to other factors

Results: Partition vs. Random

- Other factors
 - Cost
 - Hard to measure
 - Data not easy to obtain
 - E.g.
 - Cost of preparing and executing test cases
 - Training for the technique
 - Cost of failures left undetected
 - Testing Tools

Results: Partition vs. Random (cont)

- Other factors (cont)
 - Relative effectiveness
 - Selecting test cases in partition testing
 - Functional testing
 - Fault-based strategies
 - Homogeneity of faults

Results: Partition vs. Random (cont)

- For simulations
 - Translate cost and relative effectiveness into equivalent number of additional test cases
 - It takes x number of random test cases to be equivalent to the n number of partition testing
 - $x = m^n$
Results: Partition vs. Random (cont)

- Set 1
 - $k=20$, $n=20$, failure rate dist.: (0,0.1]
- Set 2
 - $k=20$, $n=20$, failure rate dist.: (0,0.001]
- Set 3
 - $k=20$, $n=20$, failure rate dist.: 95% in (0,0.1]
- Set 4
 - $k=20$, $n=40$, failure rate dist.: 95% in (0,0.1]
- Set 5
 - $k=20$, $n=20$, failure rate dist.: 95% in (0,0.1]

Moral of the Story:
- If Homogeneity, use Partition Testing
- Else, use Random Testing
- Homogeneity is not always true in practice

Results: Partition vs. Random (cont)

<table>
<thead>
<tr>
<th>Set</th>
<th>Proportional Test</th>
<th>Random Test</th>
<th>Proportional Test</th>
<th>Random Test</th>
<th>Proportional Test</th>
<th>Random Test</th>
<th>Proportional Test</th>
<th>Random Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>4</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>5</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Conclusion

- Proportional Testing is not the ‘way’ to do testing
- Random Testing has advantage when no homogeneity and cost-effectiveness factors included
 - IF random is less effective and cheaper than partition
- "Simulations":
 - More empirical studies necessary?