
1

Using Model Checking To
Generate Tests From

Requirements Specifications
Angelo Gargantini and Constance Heitmeyer

Presented by : Susmita Ghose

SCR Requirements Method

• Formulated in 1978 to specify the
requirements of a Flight Safety Program of
the US Navy

• SCR Toolset : Consistency Checker,
Dependency Graph Browser, Model
Checker…

• System represented as a state machine

SCR Requirements Method

• Monitored Variables
• Controlled Variables
• Input Event
• Output Event
• Auxiliary Variables: Modes (from

Mode class) , Terms
• Constants

Output
Devices

Input
Devices Software

Environment Environment

SIS
WaterPres

Block

Reset

Sensors Safety
Injection

Safety Injection System

SIS

• Monitored variables :{WaterPres, Block,Reset}
• Controlled variable : {Safety Injection}
• Mode Class defined on WaterPres: {Pressure}
• Modes : { Too Low,Permitted, High}
• Term: {Overridden}
• Constants {Low=10, Permit=20}

SCR Requirements Method

• System is represented as a 4-tuple
(S,So,Em,T)
– S : is the set of states
– So : is the initial set of states
– Em: is the set of input events
– T : is the transformation describing the allowed

state transition

2

SCR Requirements Method

•Event Tables
•Condition Tables

•Event is a predicate defined on a pair of
system states implying that the value of at
least one variable is changed

•Condition is a predicate defined on a
system state

Generating Test Sequences from an
Operational Specification

• Derivation of functions from the
condition/event table

• Translation of these into the language of the
model checker

• Construction of test sequences using the
model checker’s ability to generate counter-
examples

Event Table Defining the Mode Class
“Pressure”

Permitted@T(WaterPres<
Permit)

High

High

TooLow

@T(WaterPres>=
Permit)

@T(WaterPres<
Low)

Permitted

Permitted@T(WaterPres>=
Low)

Too Low

New ModeEventsOld Mode

Function Defining ‘Pressure’
if

Pressure = TooLow
if
@T(WaterPres>= Low) -> Pressure’ = Permitted
(else) -> Pressure’ = Pressure c2
fi

Pressure = Permitted
if
@T(WaterPres >= Permit) -> Pressure’ = High c3
@T(WaterPres < Low) -> Pressure’ = TooLow c4
(else) -> Pressure' = Pressure c5
fi

Pressure = High
if
@T(WaterPres < Permit) -> Pressure' = Permitted c6
(else) -> Pressure’ = Pressure c7
fi

fi

Promela Code for Cases c1 and c2

if
: : (Pressure == TooLow) ->

if
: : (WaterPresP >= Low) && ! WaterPres >= Low

-> PressureP = Permitted; CasePressure = 1;
:: else CasePressure = 2;
fi

. . .
fi

Test Sequence Derived from SPIN
Counterexample for c1

• Trap Property:
assert (CasePressure != 1)

• A test sequence of length 20 is generated

• The sequence concludes with two states (s,s’)
such that, in state s, WaterPres !>= Low and
Pressure is TooLow (implied by WaterPres =
9 at step 19) and, in state s’, WaterPres>Low
and Pressure is Permitted (implied by
WaterPres equals 10 at step 20).

3

Test Case from Condition Table

OnOffSafety
Injection

FalseTruePermitted,
High

NOT
Overridden

OverriddenToo Low

ConditionConditionMode

if
Pressure = TooLow

if
Overridden =true ->SafetyInjection = Off cl
Overridden = false -> SafetyInjection = On c2
fi

Pressure = Permitted ->SafetyInjection = Off c3
Pressure = High ->SafetyInjection = Off c4

fi

Branch Coverage

• In each condition table, every condition not
equivalent to false is tested at least once

• In each event table, every event is tested at
least once.

• In each event table, in each mode, a change in
each monitored variable which does not
change the value of the variable that the table
defines is tested at least once.

A Tool for Automatically Generating
Test Sequences

• Tool in java
– Automatically translates SCR into the language of

the model checker (SMV or SPIN)
– Constructs the different cases
– Executes the model checker on each case
– Derives the test sequences
– Write each test sequence to a file

• Applied to four specifications

Conclusion

• Issues to be addressed
– State explosion problem
– Alternate methods for selecting test sequence

for a given branch
– Use the suite of test sequences to test a real

software implementation

