Coverage Criteria for
GUI Testing

Atif M. Memon*, Mary Lou Soffa, Martha E. Pollack
atif@cs.umd.edu
Dept. of Computer Science
University of Pittsburgh

*now at the University of Maryland

Research focus

—t —— ———— R

. 50% of code

7 GUI

o
Interactions between the ﬁf
GUI and the underlying code o

_y- > _._-"- # "- i 1
\ A E Underlying
&7 & Code

GUI Test Case

—— —

e Sequence of Events
- [IEEE TSE Feb '01]

e Not just individual events

Coverage Criteria

— —

e Two purposes
- Test data selection criteria
* Rules used to select test cases

- Test data adequacy criteria

* Rules used to determine how much testing
has been done

e Common Examples for Conventional

Software
- Statement coverage
Structural
- Branch coverage Representation

- Path coverage of the Code

Coverage Criteria for GUIs

e Cannot use code-based coverage
- Source code not always available

- Event-based input
e Different level of abstraction

e Qur Contribution

- Hierarchical structure of the GUI in
terms of events

- Coverage criteria based on events

Role of the Coverage Criteria -

|
J g . \ .
¥ | GUI Specijcations GUI Implementation:

Foots{tangpagesTootkits)
GUI £
Implementer
L)
Executing
7\ J

/(Coverage
Criteria Z Regression

Test Case Y

> | |Coverage

Outline_

- —

e GUI Definition
Representation of GUIs
Coverage Criteria

Case Study

Conclusions

GUI Definition

- —

e Hierarchical
e Graphical Front-end

» Accepts User-generated and System-
generated events

e Fixed sets of events
e Deterministic Output

e State of the GUI is the set of
Objects and their Properties

_GUI Representation

——

e Motivation

- GUI testing needs a “Unit of Testing”
« Manageable
* Test the unit comprehensively
e Test interactions among units

- GUIs are created using library elements

* Need to test these elements before
packaging them for reuse
- Certain level of confidence that the element has
been adequately tested
e User of these elements should be able to
test the element in its context of use

_Model GUI Hierarchically

——

e Hierarchy

- GUIs are decomposed into a hierarchy
of components

- Hierarchical decomposition makes
testing intuitive and efficient

- Several hierarchical views of GUIs

- We examine Modal Dialogs to create the
hierarchical model

10

_ Modal Windows in GUIs

11

_ Modal Windows in GUlIs

—

B Bt e wwan o Foes Han

= e Y R
[T —rer] = -

| ; H
T k]

Frs Help, praga Pl

o

invokes

12

13

_ Modal Windows in GUIs

Féa Ml e Bean Foed Hen lﬂﬁﬂml
I_"IE|E 5 ﬂﬂ - I-‘_ Elﬂi&“ Pope Sk -] Lr= 3
T ¥ & Pt S T | - s, S E |
[Trman Hirw Fiowsan diiantany | T
. : 1 opwci [0w
a-mm
Balls —
N BT PP Bt PO, Rt
e
ForHuip prnFl L] %t i T L
iy S e =
Paat [E= ;a L TR a e
el
o [oe 5 — L = /
"\ —

o T LI (Wain)
:; o :xl_'J| ”_:}'.j] r'_sl 1@ omponents

e

14

Integration Tree

——

@@@@@W@
repare”

Definition: Integration tree is a triple <N, R, B>
e N is the set of components in the GUI
e R ? N is a designated component called the Main component

e B is the set of directed edges showing the invokes relation
between components, i.e., (C,, C,) ? B iff C, invokes C,.

Representing a Component

follows

Contents ...

Event-flow Graph

Definition: Event e, follows e, iff e, can be performed
immediately after e,.

Event-flow Graph
— == L < E—

-

Aboutf M Eentents ~

. @@@

To File, Edit
and Help

To Flle Edit
and Help ‘

Definition: Event-flow graph is a 4-tuple <V, E, B, I>
* Vs the set of vertices, representing events,

e E is the set of directed edges, showing the follows
relationship,

e B is the set of events first available (shown in red),

e | is the set of events that invoke other components
{dotted Hnes)

——

17

_ Classifying Events

«Classification

-A new classification of events aids in creating
the hierarchical model of the GUI
e Opening modal windows

- Restricted-focus events

Closing modal windows

- Termination events

Opening modeless windows

- Unrestricted-focus events

Opening menus

- Menu-open events

Interacting with underlying software
- System-interaction events

18

__ Coverage Criteria

—

e Intuitively
- Each component is a unit of testing

- Test events within each component
e Intra-component coverage criteria

- Test events across components
e Inter-component coverage criteria

__Coverage Criteria _

—-—

e Intra-component Coverage

- Event coverage
« Individual events
e Each node in the event-flow graph
- Event-interaction coverage
» Each pair of events
e Each edge in the event-flow graph
- Length-n event sequence coverage
e Sequences of events

* Bounded by length
- Length-1 event sequences
- Length-2, length-6 event sequences

* Paths in the event-flow graph

19

__Coverage Criteria

—-—

 Inter-component Coverage

- Invocation coverage
« Invoke each component
» Each restricted-focus event

- Invocation-termination coverage
« Invoke each component and terminate it
» Restricted-focus event followed by a
termination event
- Inter-component length-n coverage

 Longer sequences from one component to
another

« Bounded by length

20

10

Case Study

P —

-

e Purpose

- To determine:

« How many test cases do we need to test
WordPad

« Correlation between event and code-based
coverage

* How well did our planning-based approach
[ICSE '99] do

e Experimental design

- GUI: our version of MS WordPad (36
modal windows, 362 events)

- Hardware platform: 350 MHz Pentium
based machine, 256 MB RAM

21

_Test Cases_for WordPad

——

Event-sequence Length

Component Name |1 [2|1] 2 3 4 5 6

Main 56| 791 14354 255720| 4490626 | 78385288
FileOpen 10| 80| 640 5120| 40960| 327680
FileSave 10| 80| 640 5120| 40960| 327680
Print 12|108| 972 8748 78732| 708588
Properties 13[143| 1573| 17303| 190333| 2093663
PageSetup 11| 88| 704| 5632| 45056| 360448
FormatFont 9| 63| 441| 3087| 21609| 151263

Print+Properties 13| 260] 3913 52520 663013

Main+FileOpen 10 100] 1180 17160 278760

Main+FileSave 10 100] 1180 17160 278760

[l [l ol [l
NN [N [ho [N

Main+PageSetup 11| 110/ 1298| 18876| 306636
Main+FormatFont 9 81 909| 13311] 220509
Main+Print+Properties 12| 145| 1930] 28987| 466578

Results

22

11

23

Correlation between
Event-based & Code-based Coverage

e Code Instrumentation

e Generated all event sequences up to
length 3. Total test cases: 21,659

e Executed all 21,659 cases and
obtained execution traces

e Statement coverage

24

Correlation between
Event-based & Code-based Coverage

100 92 A 3

80 //' '
60 /

40 /

20 /

N . .

0 1 2 3

Event-sequence Length

Percentage of Statements
Executed

Results

12

Evaluating the Planning Approach

» Used our earlier-developed planning-
based approach

e 500 test cases of different lengths

Evaluating the Planning Approach

Event-sequence Length

Component Name | 1" |2'|1]|2]| 3 4 5| 6

Main 88/41(10.92 0.36/0.03|0.00
FileOpen 90|56(17.50{ 0.72]0.06)|0.05
FileSave 90/41[20.63| 1.27]0.47)|0.02
Print 92|34[32.20(9.00[3.92|0.19
Properties 92|45(27.59(1.80{0.97|0.06
PageSetup 91/49(25.43| 2.56|0.66|0.06
FormatFont 89|37{39.00{13.67] 0.66| 0.06
Print+Properties 100] O 46(51.15| 8.18]3.87|0.05
Main+FileOpen 100 O 40)11.00)10.17) 1.30| 0.16
Main+FileSave 100] O 20]/13.00| 8.64]1.26[0.28
Main+PageSetup 100 O 45(60.91| 4.31]1.94|0.08
Main+FormatFont 100 O 33]|28.40| 5.17|0.97(0.10
Main+Print+Properties 50[38.62| 6.37]0.65|0.09

Results

13

Future Work

——

e GUI's Structure and its Testability
« Apply Criteria to

- Object-oriented Software

- Component-based Software

- Reactive Software

27

14

