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GUI Test Case
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e Sequence of Events
- [IEEE TSE Feb '01]

e Not just individual events

Coverage Criteria

— —

e Two purposes
- Test data selection criteria
* Rules used to select test cases

- Test data adequacy criteria

* Rules used to determine how much testing
has been done

e Common Examples for Conventional

Software
- Statement coverage
Structural
- Branch coverage Representation

- Path coverage of the Code




Coverage Criteria for GUIs

e Cannot use code-based coverage
- Source code not always available

- Event-based input
e Different level of abstraction

e Qur Contribution

- Hierarchical structure of the GUI in
terms of events

- Coverage criteria based on events

Role of the Coverage Criteria -
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GUI Definition
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e Hierarchical
e Graphical Front-end

» Accepts User-generated and System-
generated events

e Fixed sets of events
e Deterministic Output

e State of the GUI is the set of
Objects and their Properties




_GUI Representation

——

e Motivation

- GUI testing needs a “Unit of Testing”
« Manageable
* Test the unit comprehensively
e Test interactions among units

- GUIs are created using library elements

* Need to test these elements before
packaging them for reuse
- Certain level of confidence that the element has
been adequately tested
e User of these elements should be able to
test the element in its context of use

_Model GUI Hierarchically

——

e Hierarchy

- GUIs are decomposed into a hierarchy
of components

- Hierarchical decomposition makes
testing intuitive and efficient

- Several hierarchical views of GUIs

- We examine Modal Dialogs to create the
hierarchical model
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_ Modal Windows in GUIs

11

_ Modal Windows in GUlIs
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_ Modal Windows in GUIs
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Integration Tree

——
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Definition: Integration tree is a triple <N, R, B>
e N is the set of components in the GUI
e R ? N is a designated component called the Main component

e B is the set of directed edges showing the invokes relation
between components, i.e., (C,, C,) ? B iff C, invokes C,.




Representing a Component

follows

Contents ...

Event-flow Graph

Definition: Event e, follows e, iff e, can be performed
immediately after e,.

Event-flow Graph
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Definition: Event-flow graph is a 4-tuple <V, E, B, I>
* Vs the set of vertices, representing events,

e E is the set of directed edges, showing the follows
relationship,

e B is the set of events first available (shown in red),

e | is the set of events that invoke other components
{dotted Hnes)
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_ Classifying Events

«Classification

-A new classification of events aids in creating
the hierarchical model of the GUI
e Opening modal windows

- Restricted-focus events

Closing modal windows

- Termination events

Opening modeless windows

- Unrestricted-focus events

Opening menus

- Menu-open events

Interacting with underlying software
- System-interaction events
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__ Coverage Criteria
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e Intuitively
- Each component is a unit of testing

- Test events within each component
e Intra-component coverage criteria

- Test events across components
e Inter-component coverage criteria




__Coverage Criteria _
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e Intra-component Coverage

- Event coverage
« Individual events
e Each node in the event-flow graph
- Event-interaction coverage
» Each pair of events
e Each edge in the event-flow graph
- Length-n event sequence coverage
e Sequences of events

* Bounded by length
- Length-1 event sequences
- Length-2, length-6 event sequences

* Paths in the event-flow graph
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__Coverage Criteria
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 Inter-component Coverage

- Invocation coverage
« Invoke each component
» Each restricted-focus event

- Invocation-termination coverage
« Invoke each component and terminate it
» Restricted-focus event followed by a
termination event
- Inter-component length-n coverage

 Longer sequences from one component to
another

« Bounded by length

20
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Case Study
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e Purpose

- To determine:

« How many test cases do we need to test
WordPad

« Correlation between event and code-based
coverage

* How well did our planning-based approach
[ICSE '99] do

e Experimental design

- GUI: our version of MS WordPad (36
modal windows, 362 events)

- Hardware platform: 350 MHz Pentium
based machine, 256 MB RAM
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_Test Cases_for WordPad

——

Event-sequence Length

Component Name |1 [2|1] 2 3 4 5 6

Main 56| 791 14354 255720| 4490626 | 78385288
FileOpen 10| 80| 640 5120| 40960| 327680
FileSave 10| 80| 640 5120| 40960| 327680
Print 12|108| 972 8748 78732| 708588
Properties 13[143| 1573| 17303| 190333| 2093663
PageSetup 11| 88| 704| 5632| 45056| 360448
FormatFont 9| 63| 441| 3087| 21609| 151263

Print+Properties 13| 260] 3913 52520 663013

Main+FileOpen 10 100] 1180 17160 278760

Main+FileSave 10 100] 1180 17160 278760

[l [l ol [l
NN [N [ho [N

Main+PageSetup 11| 110/ 1298| 18876| 306636
Main+FormatFont 9 81 909| 13311] 220509
Main+Print+Properties 12| 145| 1930] 28987| 466578

Results
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Correlation between
Event-based & Code-based Coverage

e Code Instrumentation

e Generated all event sequences up to
length 3. Total test cases: 21,659

e Executed all 21,659 cases and
obtained execution traces

e Statement coverage
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Correlation between
Event-based & Code-based Coverage
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Evaluating the Planning Approach

» Used our earlier-developed planning-
based approach

e 500 test cases of different lengths

Evaluating the Planning Approach

Event-sequence Length

Component Name | 1" |2'|1]|2]| 3 4 5| 6

Main 88/41(10.92 0.36/0.03|0.00
FileOpen 90|56(17.50{ 0.72]0.06)|0.05
FileSave 90/41[20.63| 1.27]0.47)|0.02
Print 92|34[32.20( 9.00[3.92|0.19
Properties 92|45(27.59( 1.80{0.97|0.06
PageSetup 91/49(25.43| 2.56|0.66|0.06
FormatFont 89|37{39.00{13.67] 0.66| 0.06
Print+Properties 100] O 46(51.15| 8.18]3.87|0.05
Main+FileOpen 100 O 40)11.00)10.17) 1.30| 0.16
Main+FileSave 100] O 20]/13.00| 8.64]1.26[0.28
Main+PageSetup 100 O 45(60.91| 4.31]1.94|0.08
Main+FormatFont 100 O 33]|28.40| 5.17|0.97(0.10
Main+Print+Properties 50[38.62| 6.37]0.65|0.09

Results
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Future Work

——

e GUI's Structure and its Testability
« Apply Criteria to

- Object-oriented Software

- Component-based Software

- Reactive Software
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