
1

Properties of Criteria
• Program-based
• To recognize a good adequacy 
criteria

• And to discard poor choices
• Objective, well-defined properties

1. Applicability Property
• For every program, there exists an 
adequate test set

• Every program must be adequately 
testable



2

Criteria
• Statement coverage
• Branch coverage
• Path coverage
• Def-use coverage

• One cannot algorithmically 
determine whether more testing 
must be performed

Exhaustive test set
• If all representable points of the 

specification’s domain have been tested 
– Set of all inputs for which the program 

should produce the desired output
• Exhaustive test set is surely adequate

– No matter what criterion is used
• There can be no additional testing 

possible
• Practical if domain is small
• A criterion that always requires an 

exhaustive test set is unacceptable



3

2. Non-exhaustive Applicability
• There is a program P and (not 
exhaustive) test set T such that P 
is adequately tested by T

3. Monotonicity 
• Once a program has been adequately 

tested, running some additional test 
cases cannot cause the program to be 
deemed inadequately tested

• If T is adequate for P, and T ? T’ then 
T’ is adequate for P

• “Stop when we find less than 50 errors 
per 1000 hours of testing”

• Note
– An exhaustive test set is always adequate



4

4. Inadequate empty set
• If no testing has been performed, 
then the program cannot be 
considered adequately tested

• The empty set is not an adequate 
test set for any program

Program Equivalence
• P ? Q

– P is equivalent to Q
• For x (input vector) in the 
specification’s domain

• P(x) = Q(x)
– Results of P and Q on every x are 
same



5

5. Antiextentionality 
• There are programs P and Q, such that 

P ? Q, and a test set T is adequate for 
P but T is not adequate for Q

• Remember
– Program-based

• Semantic equivalence of two programs 
does not necessarily imply that they be 
tested the same way

• Program-based testing should consider 
the implementation, not the functions 
computed

Syntactic Closeness
• Two programs have the same shape

– If one can be transformed into 
another by applying the following 
transformations, any number of times
• Replace relational operator r1 in a predicate 

with relational operator r2

• Replace constant c1 in a predicate or 
assignment statement with constant c2

• Replace arithmetic operator a1 in an 
assignment statement with arithmetic 
operator a2



6

6. General Multiple Change
• There are programs P and Q, which 
are the same shape, and a test set 
T is adequate for P but T is not 
adequate for Q

• Syntactic closeness of programs 
does not imply that they should be 
tested the same way

Program Decomposition
• A component Q of a program P is 
any contiguous sequence of 
statements of P



7

7. Antidecomposition
• There exists a program P, and
• component Q, 
• such that test set T is adequate 
for P, 

• T’ is the set of vectors of values 
that variables can assume on 
entrance to Q for some t in T, and

• T’ is not adequate for Q

Explanation
Program P

Component Q

T is adequate for P

t ? T

T’ is not adequate 
for Q



8

Explanation
• Although a program has been adequately 

tested, it does not necessarily imply that 
each of its component pieces has been 
properly tested

• A routine that has been adequately 
tested in some environment or context 
has not necessarily been tested for 
other environments

• Even though P appears to be more 
complicated than Q, (P syntactically 
contains Q), semantically, Q may be 
more complex than P

Explanation
Program P

Read x;
Read y;

If (FALSE) {

}

Print x;
End;

Component Q

Negate y;

T is adequate for P

t ? T

T’ is not adequate 
for Q



9

Explanation
Program P

Read x,y

A = {x,y};

Print A;
End;

Component Q
General sorting routine

/* sort A */

T is adequate for P

t ? T

T’ is not adequate 
for Q

Criteria
• Statement coverage
• Branch coverage

• Antidecomposition property rules 
out criteria that do not recognize 
that the context of a piece of code 
is important



10

Program Composition
• Assume a structured programming 

language
– Programs are single-entry/single-exit
– All input statements appear at the start of 

the program
– All output statements appear at the end of 

the program
• Programs P and Q

– Using the same set of identifiers
– Remove all output statements of P
– Remove all input statements of Q

• P;Q is the composed program

8. Anticomposition
• There exist programs P and Q, and 
• test set T, 
• such that T is adequate for P, and 
• the set of vectors of values that 
variables can assume on entrance to 
Q for inputs in T is adequate for 
Q, but 

• T is not adequate for P;Q



11

Criteria
• Statement coverage
• Branch coverage

• Anticomposition property eliminates 
criteria that do not have provision 
for testing the interaction of 
program pieces

Gödel Numbering
• Definition

– A unique numerical value for each program, 
such that the program can be algorithmically 
retrieved from this value

• For a program P with Gödel number p
– A test set T is Gödel adequate for P if p ?

T
• Any test set T that contains a program 

P’s Gödel number is adequate for P



12

Examining Gödel Adequacy
• Gödel adequacy has nothing to do 
with a program’s semantics, syntax 
or specifications

• Every program will always have an 
adequate test set of size one

• Does this criterion satisfy all the 
properties that we have discussed?

• Do you think that this criterion is 
useful?

Program Renaming
• P is a renaming of Q if

– P is identical to Q, except
– All instances of an identifier xi of Q 
have been replaced by an identifier xj
where xj does not appear in Q, or

– If there exists a sequence Q = P1, P2, 
P3, …, Pn = P, where
• Pi+1 is a renaming of Pi for i = 1, …, n-1



13

9. Renaming Property
• Let P be a renaming of Q
• Test set T is adequate for P iff T is 

adequate for Q

• Intuitively, an “inessential” change in a 
program, such as changing variable 
names, should not change the test data 
required to adequately test the program

• Gödel adequacy does not satisfy this 
property!!

Canonical Representation
• Given a Program P with k variables

– Obtain its canonical representation by
– Renaming variables using the set {x1, 
x2, …, xk} where x1 replaces the first 
variable used in the program and xk
replaces the kth variable used; xi
replaces the ith variable used



14

Gödel-class Numbering
• Definition

– A unique numerical value for each program’s 
canonical form, such that the it can be 
algorithmically retrieved from this value

• For a program P with Gödel-class number 
p
– A test set T is Gödel-class adequate for P if 

p ? T
• Any test set T that contains a program 

P’s Gödel-class number is adequate for P
• Does it satisfy Renaming Property?
• And all other 8 properties?

10. Statement Coverage
• If T is adequate for P, then T 
causes every executable statement 
of P to be executed


