An Applicable Family of Data
Flow Testing Criteria

- Assumptions about the program

- No
+ goto statements

* with

* variant records

+ Functions having 'var’ parameters
- By reference

* Procedural or functional parameters

+ Conformant arrays

- size of an array parameter is not known to the called
function until run-time

- Every Boolean expression that determines the
flow of control has at least one occurrence
of a variable or a call to the function 'eof’ or
‘eoln’

Program Structure

* Program consists of 'blocks'
- Block

- Sequence of statements

* Whenever the first statement is executed,
the remaining statements in the block are
executed in the given order

- Can be represented by a flow graph

Classifying each
variable occurrence

Definition

- Value is stored in a memory location

+ Use

- Value is fetched from a memory location

Undefinition

- Value and location becomes unbound

C-use

- Use in a computation or output statement

- Associated
P-use

with each node

- Use in a predicate

- Associated

with each edge

Simple Statements

Assignment statement:

]

1

1

' Nodc i has c-uses o
L expr followed by a
I
1

v:i= expr;

f cach variable in
definition of v.

—

Simple Statements

Input/Output statements:

1

]

: read(vl,...,vn);

» readln(vi,...,vn);

! read(f,v1,...,vn);

| readin{f,vi,...,vn);
|

b

|

{

1

1

1

1

I

1

1

1

{l

Node i has definitions of v1,...,vo. :
If the file variable f is present then node i ‘L
also has a c-use followed by a definition of ft. '
1

write(el,...,en); ' é :
:

1

1

1

|

|

)

|

l

i

writeln(el,...,en);
write(f,cl,...,en);
writeln(f,el,...,en);

Node i has ¢-uses of each variable occurring in el,._.,en..
If the file variable £ is present then node i
also has a definition followed by a c-use of ft.

Procedure call: P(el,...,en);

I
l
Ncde j bas c-uses of cach variable occuring in :
the expressions ¢1,...,en. :
Thesc are followed by definitions of each actual i
parameter which corresponds to avar formal parameter. |
|
i
i
)
I
I

Nodes i and k are included to assure that
the procedurc call has its own node.

Repetitive Statements

while statement: while B do S;

Let h be the entry node
to subgraph S.

Edges (i,h) and (i,j) have
p-uses of each variable in

the boolean expression B.
e S "_D_‘z
Repetitive Statements

for statement:
for v:=eltoe¢2 do §;
for v:=¢1 downto ¢2 do §;

Let tmp be a new variable.

Let f and g be the entry

and exit nodes, respectively,

of S. Node h has c-uses of

each variable in el,

followed by a definition of v and
c-uses of each variable in €2
followed by a definition of tmp.
Edges {i,f) and (i,j) bave

p-uses of v and tmp. Node g has
a c-use followed by a def of v.

Repetitive Statements

repeat statement:
repeat 81;...;8n until B;

J

I

I

i

Let j be the entry node of :
51, and let k be the exit ',
node of Sn. '
Edges (k,j) and (k,i) have :
p-uses of cach variable in i
the boolean expression B. !
1

1

1

1

)

L]

]

if-then-clse statement

if B then 51;

l I
1 1
| t
1 if B then S1 else 82, : ‘/ \
1 1
' Letk and j be th des of '
| ctk and j ¢ entry nodcs o | @
| |
l :
1 1
1 i
|]
l |
[} 1
I

$1 and S2, respectively.

Edges (i,j} and (i,k) have

p-uses of each variable in the
boolean expression B.

if there is no "clsc” part then
subgraph S2 has a single node
corresponding to an empty block.

Conditional Statements

case ¢l of
label-listl : 81,

i
?
label-listn : Sn l \
cod; | @ .
]
|
]
I
1

Let j1,...,jo be the entry nodes of
51,...,8n, respectively.

Edges (i,i1),.-..(i,in)

have p-uses of each variable

in the expression el.

Entry and exit nodes

* Entry node

- Has the definition of
+ Each parameter
+ Each non-local variable that is used in the program
* Input buffer inputt

* Exit node has
- An undefinition of each local variable
- A c-use of each variable parameter
- A c-use of each non-local variable
- A c-use of the input buffer input®

Arrays

- It is impossible to determine the
particular array element which is being
used or defined in an occurrence of an
array variable

- A[2]

- Afi+]]

+ Definition of a[expr]

- A c-use of each variable in expr

- Followed by a definition of a

* Use of a[expr]

- c-uses of all the variables in expr

- Followed by a use of a

Pointers

- Impossible to determine statically the
memory location to which a pointer points

* Syntactic treatment

 If p is a pointer variable
- Definition of p*

* C-use of p

» Followed by a definition of p”
- Use of p”~

* C-use of p

» Followed by a c-use of p”

- Ignore definitions and uses of p”

Records & Files

- Records

- Each field is treated as an individual
variable

- Any unqualified occurrence of a record
is treated as an occurrence of each
field

 File variables

- Considering the effect on the file
buffer

Simplifying Assumptions

* No interprocedural dataflow
analysis

- Ignore pointers
- Array reference simplification
* No aliasing/side-effects

- Consequences
- Perhaps "less than perfect” test data

Global Definition

* Global c-use
* A c-use of x innode i is global if x has been assigned
in some block other than i
+ Def-clear path wrt x “"from node i to
node j” and “from node i to edge (n,, j)”
+ A path (i, n, n,, ..., n,, j) containing no definitions or
undefinitions of x in nodes n;, n,, .., n

* Global definition of x
- A node i has a global definition of a variable

x if
- it has a definition of x and
* there is a def-clear path wrt x from node i to some
node containing
- aglobal c-use or
- edge containing a p-use of x

m

Restricted Programs Class

- Satisfying the following properties

- NSUP

* No-syntactic-undefined-p-use Property

- For every p-use of a variable x on an edge (i,j), in
P, there is some path from the start node to edge
(i.§), which contains a global definition of x

- NSL
* Non-straight-line property
- P has at least one conditional or repetitive
statement

» At least one node in P's flow-graph has more
than one successor

» At least one variable has a p-use in P

Def-use graph

Obtained from the flow graph
Associate with each node the sets
- C-use(i)
+ Variables which have global c-uses in block-i
- Def(I)
+ Variables which have global definitions in block-i
Associate with each edge (i,)
- P-use(i,j)
+ Variables which have p-uses on edge (i,j)
- Define sets of nodes
- dcu(x,i)

* Nodes j such that x e c-use(j) and there is a def-clear
paths with respect to x fromi to j

- dpu(x,i)
- Edges (j k) such that x € p-use(j k) and there is a def-clear
path with respect to x from i to (j k)

Definitions for def-use graph

v = the set of variables

N = the set of nodes

E = the set of edges

def(i) = {x € V| x has a global definition in block i}

c-use(i) = {x€ VI x has a global c-use in block i}

p-use(ij) = {x € V| x has a p-use in edge (i,j) }

deu(x,i) = {je NI x e c-use(j) and there is a def-clear path wrt x from i to j}

dpu(x.i) = {(jk) € Elxe p-use(i.k) and there is a def-clear path wrt x from i 1o (j,k) }

10

Explanation

* If x e def(i) and j e dcu(x,i), then
- x has a global definition in node i and
- A c-use in node j, and
- There is a definition clear path with respect
to x from node i to node |
* Hence

- It may be possible for control to reach node
J with the variable x having the value which
was assigned to it in node i

More definitions

Definition-c-use association

- Triple (i,j,x) where i is a node containing a global
definition of x and j € dcu(x,i)

Definition-p-use association

- Triple (i,(j,k),x) where i is a node containing a global
definition of x and (j,k) € dpu(x,i)

A path (ny,n,, .., nl,nk) is a du-path wrt x if n,

has a global definifion of x and either

- n has a global c-use of x and (n;, ..,n;, n) is a def-
clear simple path wrt x, and

- (n;, ny) has a p-use of x and (n;, .., n) is a def-clear
loop-free path wrt x

An association is a definition-c-use association,

a definition-p-use association, or a du-path

Yet more definitions

Complete path
- Path from the entry node to the exit node

Covering

- A complete path n covers a definition-c-use
association (i,j,x) if it has a definition clear subpath
wrt x from i to j

- A complete path n covers a definition-p-use
association (i,(j,k),x) if it has a definition clear
subpath wrt x from i to (j, k)

- n covers a du-path n' if ' is a subpath of ©

- The set I1 of paths covers an association if some
element of the set does

- A test set T covers an association if the elements of
T cause the execution of the set of paths II, and II
covers the association

Finally, the criteria

* Intuitively

- The family of DF testing criteria is based on
requiring that
+ the test data execute definition-clear paths from
each node containing a global definition of a variable
to specified nodes containing
- global c-uses and
- edges containing p-uses of that variable

- For each variable definition, the criteria
require that

+ All/some definition-clear paths wrt that variable
from the node containing the definition to all/some of
the uses/c-uses/p-uses reachable by some such paths
be executed

12

All-defs criterion

* If variable x has a global definition
in node i, the all-defs criterion
requires the test data to exercise
some path which goes from i to
some node or edge at which the
value assigned to x in node i is used

All-uses criterion

* If variable x has a global definition
in node i, the all-uses criterion
requires the test data to exercise
at least one path which goes from i
to each node and edge at which the
value assigned to x in node i is used

13

All-DU-paths criterion

* If variable x has a global definition
in node i, the all-DU-paths
criterion requires the test data to
exercise all paths which go from i
to each node and edge at which the
value assigned to x in node i is used

Other DF testing criteria

- All-p-uses
- All-c-uses
- All-p-uses/some-c-uses
* All-c-uses/some-p-uses

14

Definitions of DF criteria

CRITERION ASSOCIATIONS REQUIRED

All-defs Some (i,jx) s.t. jedcu(x,i) or
some (1,0.k),x) st
(k)edpu(x,i).

All-c-uses All (1,j,%) s.t. je dea(x,i).

All-p-uses All G,(3,k),%) 5.t (.k)e dpu(x,i).

All-p-uses/some-c-uses All (3,,k),x) s.t. (j.k)e dpu(x,i).

In addidon, if dpu(x.i)=$ then
some (ij,x) s.t jedcu(xi).
Note that since i has a global
definition of x, dpu(x,i}=¢ =

deu(x,i)=d.
All-c-uses/some-p-uses All (jx) st jedcu(x,i). In

addition, if dcu(x,i)=¢ then

some (1,G.X).x) s.L

(j.k)e dcu(x,i). Note that since
i has a global definition of x,

deu(x,i)=tp = dpu(x,i)*d.
All-uses All (ij,x) st j € dou(x,i) and

all (3,(3,k),x) s.t. (,k)e dpu(x,i).
All-du-paths All dy-paths from i to j with

respect to x for each je dou(x,i)
and all du-paths from i to (j,k)
with respect to x for each
(ke dpux,i).

“includes”

* Criterion C; includes criterion C, iff

- For every subprogram, any test set
that satisfies C,; also satisfies C,

- C, strictly includes C,, iff
- denoted C; = C,,

- C, includes C, and for some
subprogram P there is a test set that
satisfies C, but does not satisfy C,

15

Includes relationship

ALL-PATHS

I

ALL-DU-PATHS

(4
ALL-USES

™
ALL-C-USES/SOME-P-USES ALL-P-USES/SOME-C-USES
7 N Ny
ALL-C-USES ALL-DEFS ALL-P-USES

N
ALL-EDGES

l
ALL-NODES

Applicability

+ It may be the case that no test set for
program P satisfies criterion C
- Infeasible paths

* Tailor the DF criteria so that they are
applicable

* Assumptions
- All aliases are known
- All side effects are known

- No element of the test set causes the
program to crash
+ Execution of entry node to exit node

Executable/Feasible Paths

* Recall
- Complete path
* Path from the entry node to the exit node
* Executable/feasible complete path

- A complete path that is executed on
some assignment of values to input
variables

- Executable/feasible path

- A subpath of an executable complete
path

Recall Definition

Definition-c-use association
- Triple (i,j,x) where i is a node containing a global
definition of x and j € dcu(x,i)
+ Definition-p-use association
- Triple (i,(j,k),x) where i is a node containing a global
definition of x and (j,k) € dpu(x,i)
* A path (n,n;, .., n,n) is a du-path wrt x if n
has a global definifion of x and either

- n has a global c-use of x and (n;, ..,n;, n) is a def-
clear simple path wrt x, and

- (n;, ny) has a p-use of x and (n;, .., n) is a def-clear
loop-free path wrt x
* An association is a definition-c-use association,
a definition-p-use association, or a du-path

17

Executable Associations

 Definition
- An association is executable if there is some

executable complete path that covers it;
otherwise it is unexecutable

- fdeu(x,i) e dcu(x,i)
- Nodes j such that x € c-use(j) and there is

an executable definition clear path wrt x
from i to j

- fdpu(x,i) € dpu(x,i)
- Edges (j,k) such that x € p-use(j,k) and
there is an executable definition clear path
wrt x from i to (j,k)

Equivalently

- fdcu(x,i) =
- {j € dcu(x,i) | the association (i, j k) is
executable}

- fdpu(x,i) =
- {(j.k) € dpu(x,i) | the association
(i.(j.k),x) is executable}
* Intuitively

* new criterion C* for each DF criterion C

* By selecting the required associations from
fdcu(x,i) and fdpu(x,i) instead of from
dcu(x,i) and dpu(x,i)

Feasible Data-flow Criteria
(FDF)

CRITERION REQUIRED ASSOCIATIONS

(all-defs)* if fdeu(x i) U fdpu(x,i) # ¢ then
some (i,j.x) s.t jefdeu(x,i) or
some (1,(.k),x) s.L.

. (j.k)e fdpu(x,i).

(all-c-uses)* all 1,j.x) s.t. je fdcu(x,i).

(all-p-uses)* all (,G.k).x) s.t. (jk)e fdpu(x,i).

(all-p-uses/some-c-uses)* all (1,G.k),x) s.t. (j,k)e fdpu(x,i).

In addition, if fdpu(x,i) = ¢ and
fdcu(x,i) # ¢ then some (ij,x)
s.t. je fdcu(x,i).

(all-c-uses/some-p-uses) ¥ all (i,jx) st jefdcu(x,i). In
addition, if fdeu(x,i) = ¢ and
fdpu(x,) # ¢ then some

: (14.k).%) s.t. ()€ fdpu(x,i).

(all-uses)* all (ij,x) s.t. j € fdcu(x,i) and

al G4,Gk.sx) st (k) e
fdpu(x,i).
(all-du-paths)* all executable du-paths with

respect o x from i to j st
jedcu(x,i) and all executable
du-paths with respect to x from
i o (k) for cach (jk) €
dpu(x,i).

Includes Relationships

(ALL-PATHS)*

/ / \\

Pl it

(ALL-DU-PATHS)* (ALL-EDGES)*

Ny N
(ALL-USES)* (ALL-NODES)*

7 N

(ALL-C-USES/SOME-P-USES)* (ALL-P-USES/SOME-C-USES)*
W Ny Ny
(ALL-C-USES)* (ALL-DEFS)* (ALL-P-USES)*

19

Interprocedural DF Testing

* Most DF testing methodologies deal with
dependencies that exist within a
procedure (i.e., /ntraprocedural)

+ Data dependencies also exist among
procedures

- Requires analysis of the flow of data
across procedure boundaries

* Calls and Returns
- Direct dependencies (single call/return)

* Indirect dependencies (multiple
calls/returns)

module Main

declare] Recursive procedure
S$: an array 1...N of integer;

LMAXMIN: integer; S e .

begin

forl:=
GetMax(1

N r;a First element of array I _____
write(MAX);
—— Actual parameters at the

call site that are bound

end;

procedure Ge last element

input — to formal reference
S — 5
i e parameters in called
MX: reference integer;
declare M1,MZ isinteger: procedures J
begin :

if F+1=L then PairMax(S[F],

else begin] ‘ i Dotvial
gfm}l(?gﬂgﬂff S~ I m o
P MMM 10Dl T Sl

Lets consid®

procedure PairMax;

input LJ,K: reference integer; reference par'ame‘l'er's

begin that reach across
ifI>J thenK :=1 .
else K:=1J; procedure boundaries

end:

20

The Def-uses

e m— == ———— -
|
-)

= {3,5,1,6} B1 E_I;ﬂ;aﬁl-(ﬁij\ﬁ}-] Execute and
1 check
4

S
F
L

All def-use
pairs are
covered

Any missed
def -uses?

module Main

declare
S: an array 1...N of integer;
LMAX MIN: integer;

begin
for 1:=1to N do read(S[I]);
GetM. AX);

declare M1,M2 MD: in
begin
if F+1=L then PairMax(S[F],
else begin
MD := (F+L) DIV 2;
GetMax(F,MDM1);
M2);

ifI>JthenK :=1
else K:=7J;

end:

22

