
1

Taxonomies of Testing 
Techniques

• Conventional taxonomies
• Based on operational characteristics

– Static vs. Dynamic
• For example,

An Example Taxonomy
• Two dimensions

– Types of documents
– Static/dynamic



2

Why Taxonomy?
• Well suited to planning a series of 

validation activities
– Identifies the type of documents required
– Allows a manager to identify where a 

technique may fit into the product’s lifecycle
• Helps cost estimation

– Identify resources/needs/documents
– Static analysis is computationally cheaper 

than dynamic
• May be misleading

Observations
• No single testing technique is capable of 

finding all faults
• Every technique involves a tradeoff

– Between accuracy and completeness on one 
hand

– And tractability on the other
• Various software validation schemes have 

been defined
– Combine several techniques by applying them 

in sequence
• Limited success



3

Drawback of Operational 
Characterization

• Limited success because of 
static/dynamic analysis orientation

• Predisposes one to view each technique in 
isolation

• Obscures the important issues of 
technique interaction

• Dimensions of tradeoff are orthogonal to 
the issue of program execution

• Conventional taxonomies do not 
adequately address tradeoffs between 
accuracy and computational effort/cost

Practical Testing
• Sampling subset of program behaviors

– Execute a few program paths
• Folding states together

– Abstracting away details to create a model
• Control-flow model
• Data-flow model

• Discussion



4

Sampling
• Explore few states

– Statement 
– Branch 
– Path

• All feasible paths
– Exhaustive

• All inputs

• Threshold of tractability!
• Threshold of decidability!

Truly Impossible

Merely Hopeless

Inaccuracy
• Can we fail to reject an incorrect 

program?
– Optimistic inaccuracy

• Can we fail to accept a correct program?
– Pessimistic inaccuracy

• For practical techniques
– Admit at least one inaccuracy

• Conservative techniques
– Pessimistic inaccuracy
– But no optimistic inaccuracy



5

Proving Correctness
• Impossible in general
• Construct proofs for some programs by 

abstracting away details
– E.G., Flow-graphs, “virtual coarsening”
– Data-flow
– Static type checking?
– If successful, then program is (may be) 

correct
– Failure to find a proof?

• Program “may” or ”may not” be incorrect
• Pessimistic inaccuracy

Folding 
• Abstracting away details

– Structural properties
– Dataflow analysis
– Reachability analysis
– Infallible proof finder Truly Impossible

Merely Hopeless



6

Combining Folding & Sampling
• First fold states to get a “smaller” 
state-space

• The sample a part of this state-
space

• For example, create a Petri net 
model and execute it

Summary



7

Symbolic Evaluation
• Symbolic execution

– Program flow-graph
• Nodes for each program statement
• “If” statement node has two out-edges
• “While” statement node has two out-edges

– Execution representation
• Token represents a thread of control
• Path expression

– Program variables <-> symbolic values
• Path conditions

– Predicates describing the conditions

Symbolic Execution
– Initialize execution

• Token on edge leading to first node
• Path condition is TRUE
• Path expression: associate each program 

variable with a unique symbol
– Execute

• Advance token from in-edge to out-edge
– Assignment statement: modify path expression
– “If” and “while” statements: add a term to the 

path condition



8

Symbolic Execution
• Program state

– Path expression & path condition
• State space

– For a program without loops, what does the 
state space look like?

• A tree: can (in principle) be exhaustively explored to 
check for problems

– With loops, the state space is infinite. Only 
some paths may be checked, i.e., Explore a 
sample of the state space

• Symbolic testing
– Start from the initial state to a terminal 

state

Symbolic Execution
• Can we fail to reject an incorrect 
program?

• How about unexplored paths? What if a fault 
lies on one of them!!

• Optimistic inaccuracy


