Taxonomies of Testing
Techniques
e Conventional taxonomies

e Based on operational characteristics
- Static vs. Dynamic

e For example,

An Example Taxonomy

e Two dimensions

- Types of documents
- Static/dynamic

Static Diynamic
Fanctional testing
Requirements et check! o Testing by clasees of input data
Formal modeling

Testing by classes of output data

Design | Static analysls of design documents Design-based testing

General information

Stroctural testing
Programs | Static error analysis

Expression testing
Data-flow testing

Symbalic execntion




Why Taxonomy?

» Well suited to planning a series of
validation activities
- ldentifies the type of documents required
- Allows a manager to identify where a
technigque may fit into the product’s lifecycle
e Helps cost estimation
- ldentify resources/needs/documents

- Static analysis is computationally cheaper
than dynamic
< May be misleading

Observations

No single testing technique is capable of
finding all faults
Every technique involves a tradeoff

- Between accuracy and completeness on one
hand

- And tractability on the other
Various software validation schemes have
been defined

- Combine several techniques by applying them
in sequence

Limited success




Drawback of Operational
Characterization

e Limited success because of
static/dynamic analysis orientation

* Predisposes one to view each technique in
isolation

e Obscures the important issues of
technique interaction

e Dimensions of tradeoff are orthogonal to
the issue of program execution

e Conventional taxonomies do not
adequately address tradeoffs between
accuracy and computational effort/cost

Practical Testing

e Sampling subset of program behaviors
- Execute a few program paths
* Folding states together

- Abstracting away details to create a model
e Control-flow model
 Data-flow model

e Discussion




Sampling

* Explore few states
- Statement
- Branch

- Path
« All feasible paths

- Exhaustive
e All inputs

Merely Hopeless

Truly Impossible

e Threshold of tractability!
e Threshold of decidability!

Inaccuracy

Can we fail to reject an incorrect
program?

- Optimistic inaccuracy

Can we fail to accept a correct program?
- Pessimistic inaccuracy

For practical techniques

- Admit at least one inaccuracy

Conservative techniques

- Pessimistic inaccuracy

- But no optimistic inaccuracy




Proving Correctness

e Impossible in general

e Construct proofs for some programs by
abstracting away details
- E.G., Flow-graphs, “virtual coarsening”
Data-Tflow
Static type checking?

IT successful, then program is (may be)
correct

Failure to find a proof?
e Program “may” or "may not” be incorrect
« Pessimistic inaccuracy

Folding

- Structural properties
- Dataflow analysis

- Reachability analysis
- Infallible proof finder}TrU'y Impossible

Merely Hopeless

e Abstracting away deta}'ls




Combining Folding & Sampling

e First fold states to get a “smaller”
state-space

 The sample a part of this state-
space

 For example, create a Petri net
model and execute it

Summary

Exhatstive Infaliible
besting qnp procf finder

Felding




Symbolic Evaluation

 Symbolic execution

- Program flow-graph

* Nodes for each program statement

e “If” statement node has two out-edges

* “While” statement node has two out-edges
- Execution representation

e Token represents a thread of control
e Path expression

- Program variables <-> symbolic values
« Path conditions

- Predicates describing the conditions

Symbolic Execution

- Initialize execution
» Token on edge leading to first node
« Path condition is TRUE
» Path expression: associate each program
variable with a unique symbol
- Execute

e Advance token from in-edge to out-edge
- Assignment statement: modify path expression

- “If” and “while” statements: add a term to the
path condition




Symbolic Execution

* Program state
- Path expression & path condition

e State space

- For a program without loops, what does the
state space look like?
« A tree: can (in principle) be exhaustively explored to
check for problems
- With loops, the state space is infinite. Only
some paths may be checked, i.e., Explore a
sample of the state space

« Symbolic testing

— Start from the initial state to a terminal
state

Symbolic Execution

e Can we fail to reject an incorrect
program?

* How about unexplored paths? What if a fault
lies on one of them!!

e Optimistic inaccuracy




