Pairwise Testing

• Necessary condition
 - For each pair of input parameters, every combination of valid values of these two parameters be covered

• Example
 - Parameter A has values A1 and A2
 - Parameter B has values B1 and B2
 - Parameter C has values C1 and C2

• Discussion

Some Test Cases

• {(A1, B1, C1), (A1, B2, C2), (A2, B1, C3), (A2, B2, C1), (A2, B1, C2), (A1, B2, C3)}

• {(A1, B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C3), (A2, B1, C1), (A1, B2, C2), (A1, B1, C3)}

• {(A1, B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C2), (A2, B1, C1), (A1, B1, C2), (A1, B1, C3), (A2, B2, C3)}
Growth Terms

- **Horizontal**
 - Let T be a pairwise test set for parameters $P_1, P_2, ..., P_{n-1}$
 - Horizontal growth of T for parameter P_i is to extend each test in T by adding the value of P_i.

- **Vertical**
 - After applying horizontal growth
 - Let T be a test set for $p_1, p_2, ..., p_i$
 - Let p be the set of tests not covered by T
 - The vertical growth of T according to p is to construct new tests for pairs in p and add them to T

Horizontal Growth

Algorithm $IPO_{HR}(T, p_i)$

// T is a test set. But T is also treated as a list with elements in arbitrary order.
assume that the domain of p_i contains values $v_1, v_2, ..., v_q$;
let $\pi = \{ \text{pairs between values of } p_i \text{ and values of } p_1, p_2, ..., p_{i-1} \}$;

if ($|T| \leq q$)
 for $1 \leq j \leq |T|$, extend the jth test in T by adding value v_j and remove from π pairs covered by the extended test;
else
 for $1 \leq j \leq q$, extend the jth test in T by adding value v_j and remove from π pairs covered by the extended test;
 for $q < j \leq |T|$, extend the jth test in T by adding one value of p_i such that the resulting test covers the most number of pairs in π, and remove from π pairs covered by the extended test;
Vertical Growth

Algorithm IPO.$V(T, \pi)$

1. let T' be an empty set;
2. for each pair in π
 1. assume that the pair contains value w of p_k, $1 \leq k < i$, and value u of p_i;
 2. if (T' contains a test with "−" as the value of p_k and u as the value of p_i)
 1. modify this test by replacing the "−" with w;
 3. else
 1. add a new test to T' that has w as the value of p_k, u as the value of p_i, and "−" as the value of every other parameter;
3. $T = T \cup T'$;