Plan Generation for GUI Testing

- The 21st International Conference on Software Engineering
- The Fifth International Conference on Artificial Intelligence Planning and Scheduling
- I EEE Transactions on Software Engineering

3

Why Planning for GUI Testing

- GUIs are Event Driven
- Individual User Events
 - NOT ENOUGH!
 - Sequences of User Events lead to Different States
- Test Case: Sequence of User Events
- How to Generate Test Cases?
- Use Planning to Select Likely Test Cases

4

Selecting Test Sequences

- Infinitely Many
- Randomly Choose Sequences
- Expert Chooses Sequences
- Automatically Generate Events for COMMONLY USED TASKS

Outline

- Using Planning for Test Case Generation
 - Overall Approach
 - Exploiting GUI Structure
 - Generating Alternative Test Cases
- Experimental Results
- Related Research
- Concluding Remarks

Phase	Step	Test Designer	Automatic Planning-based System
Setup	1		Derive Planning Operators from GUI
	2	Code Preconditions and Effects of Operators	
Test Case Generation	3	Specify a Task (Initial and Goal States)	
	4		Generate Test Cases

Exploit the GUI's Structure

- Reduce the Number of Operators
 - System more Efficient
 - Easier for the Test Designer

5

Create Hierarchical Operators

Two Types of Abstractions

- Combine Buttons? Create System-Interaction Operators
- Decompose GUI Hierarchically ? Create Abstract Operators

7

Effects of Exploiting the GUI's Structure

- Reduction in Planning Operators
 - 325 operators? 32 operators
 - Ratio 10:1 for MS WordPad
 - 20:1 for MS Word
- System Automatically Determines the System-interaction and Abstract Operators

Methods to Generate Alternative
Test Cases

- Different Results from Planner
- Abstract Operator Decompositions
- Linearizations of the Partial-order Plan

Feasibility Study

- Purpose
 - To Determine whether Planning is a Feasible Approach for GUI Test Case Generation
 - Execution Time
 - Human Effort
- Experimental Design
 - GUI: MS WordPad
 - Planner: IPP [Koehler et al. '97]
 - Hardware Platform: 300 MHz Pentium based Machine, 200 MB RAM, Linux OS
 - 8 Tasks, Multiple Test Cases for each Task

Experimental Results

25

(Task)	Plan	Sub Plan	Total
Plan	Time	Time	Time
No.	(sec.)	(sec.)	(sec.)
1	3.16	0	3.16
2	3.17	0	3.17
3	3.2	0.01	3.21
4	3.38	0.01	3.39
5	3.44	0.02	3.46
6	4.09	0.04	4.13
7	8.88	0.02	8.9
8	40.47	0.04	40.51

Concluding Remarks

- Automatic Planning is a Feasible Approach for GUI Test Case Generation
- Automatic Generation of Preconditions and Effects from GUI Specifications
- Generate Expected Output (Automated Verification)