Predicate-based Testing

* Predicates are conditions
- Divides the input domain into partitions
- Define the paths of the program

 Program P Input (X)
- Input X; Predicate C :

- If outcome of C is incorrect,
* Either Cis incorrect, true 7 \ false
e Or statement(s) executed before C " \4

- Most likely, P’s output is incorrect
» Low probability of “coincidental correctness”
* Predicate-based testing

- Require certain types of tests for each
predicate in the program

Importance of Predicate-

based Testing
e Thorough testing of C used to
- Detect faults in C,
- Statements executed before C
- Statements executed after C

Terms Defined

* Predicate

- Simple or compound predicate
e Simple predicate

- Boolean variable, or

- Relational expression,

- May have one or more NOT (=) operators
* Relational expression

- E1 <rop> E2
e E1 and E2 are arithmetic expressions
e <rop> ? {&, <5, 0,05, /5, =

Terms Defined (2)

Compound predicate

At least one “binary Boolean operator”
Two or more operands

Maybe NOT operators

Maybe parenthesis

Binary Boolean operators

- OR (]) and AND (&)

Simple operand

- Operand without binary Boolean operators
Compound operand

- Operand with at least one binary Boolean
operator

Terms Defined (3)

Boolean expression

- Predicate with no relational
expressions

Bi = Boolean expression

Ei = Arithmetic expression

<rop> or <rop;> = relational
operator

<bop> or <bop,> = binary Boolean
operator

Assumptions

Predicate has no syntactic faults

Types of Faults

* An “incorrect” predicate may have one or
more of the following faults
Boolean operator fault
e Incorrect AND/OR or missing/extra NOT
Boolean variable fault
 Incorrect Boolean variable
Parenthesis fault
e Incorrect location
Relational operator fault
« Incorrect relational operator

Arithmetic expression fault
 Various types

Yet More Terms

e Existence of one/more faults is
“detected by a test” T if an
execution of C with T produces an
incorrect outcome of C

e Test set T for C “guarantees the
detection” of certain type of faults
F in C if the existence of F in C
can be detected by at least one
element in T, provided C doesn’'t
contain faults of other types

Yet More Terms (2)

 Assume that C* has the same set of
variables as C and is not equivalent to C.
Test set T “distinguishes” C from C* if C
and C* produce different outcomes for T

e Assume that C contains faults and C” is
the correct version of C. Test set T is
“Insensitive” to the faults in C if this
test cannot distinguish C from C”

Testing Simple Predicates

e Branch testing
- TRUE and FALSE branches be
executed at least once
* Relational Operator Testing
- Given E1 <rop> E2
- Need 3 tests
-E1 >E2; E1 < E2; E1 = E2

- If only <rop> is incorrect and E1 and
E2 are correct, then detection is
guaranteed

Testing Compound

Predicates

e Complete branch testing

- All TRUE and FALSE branches of each
simple/compound operand in compound
predicate C be executed at least once

e Exhaustive branch testing
— All combinations of TRUE and FALSE
branches of simple operands in C be
executed at least once
- C has N Boolean Operators, then N+1
simple operands. Requires 2™(n+1) test
cases

Testing Compound
Predicates (2)

« Complete relational operator testing
- Relational operator testing for each
relational expression in C
- Let C# be (E1 = E2) & (E3 /= E4)
- Assume T1 contains 3 tests
e T11 makes E1 = E2 and E3 = E4
 T12 makes E1>E2 and E3 > E4
 T13 makes E1 <E2 and E3 < E4
- T1 satisfies relational operator testing for
each simple operand of C#
« If E1, E2, E3, and E4 are correct, what
can we say about the correctness of

operators?

Complete Relational

Operator Testing
e Can the test cases T11, T12, and
T13 distinguish between C# and
- (E1 = E2) & (E3 < E4)
- (E1 /= E2) & (E3 = E4)

BR-constraints

e Given a predicate
* (<opd,> <bop;> <opd,> <bop,> ... <opd,> <bop,>
* <opdy> is the ith simple operand
» BR-constraint
- (D1, D2, .., Dn)

e Each Di is a symbol specifying a constraint on
the Boolean variable or relational expression
in <opdy>

BR-constraints (2)

e Constraints for a Boolean variable B
- The value of B is TRUE
- The value of B is FALSE
- No constraint

e Symbols
-t
- f

*

BR-constraints (2)

e Constraints for a relational
expression (E1 <rop> E2)

e Value is TRUE t
e Value is FALSE T
«(E1-E2)>0 >
«(E1l-E2)=0 =
«(E1-E2)<O0 <

*

* No constraint

Constraint Satisfaction

» Definition
- Constraint D on predicate C is covered (or
satisfied) by a test if during the execution
of C with this test, the value of each
Boolean variable or relational expression in C
satisfies the corresponding constraint in D
° E_g_’
- (:’ <)
- for ((E1 >= E2) | =(E3 > E4))
» Coverage requires that (E1 = E2) and
(E3 < E4)

Constraint Satisfaction (2)

e Definition
- Set S of BR-constraints on predicate
C is covered (or satisfied) by a test
set T if each constraint in S is
covered for C by at least one test in
—~

Terms Redefined

e In terms of BR-constraints

- Branch testing (E1 <rop> E2)
* {(0), (O}

- Relational operator testing (E1 <rop> E2)
* {(), (3. (9}

- Complete branch testing ((E1 <ropl> E2)
<bop> (E3 <rop2> E4))
« {(t,*), (£, %), (*, 1), (*, A}

- Complete relational operator testing ((E1
<ropl> E2) <bop> (E3 <rop2> E4))
G), (5 %), (%), (5.2), (5, 2), (%, 9}

Terms Defined

e Concatenation

- Let u = (U, Uy, .., Uy) and v = (Vq, Vs, .., V)
be two sequences
= (UV) = (Ugs Ups s Uppy Vi, Voo s V)

e Other terms

- Let A and B be two sets

- A$B denotes the union of A and B
A*B is the product of A and B
|A] is the size of A

A%B is called the onto from A to B
e Minimal set of (u,v) such that u ? A and every element
in A appears in u at least once; v ? B and every
element in B appears in v at least once

10

Terms Defined

e Observations
- |[A%B| = max(]A[, [B])
- A%B may have several possible values
« If C={(a), (b)} and D = {(c), (d)}
e Then what is C%D
- ((a,c),(b,d))
- ((a,d),(b,c))
e How about if E = {(a), (b)} and F ={(c), (d),
(e)}

Expected Outcome

e Let X be a constraint that contains “t”,
“f7, *>7, “<, and “=" for a predicate C

e Value produced by C on any input
covering X; C(X)

e X covers the TRUE branch of C if
C(X)=TRUE, and

e X covers the FALSE branch of C if
C(X)=FALSE

e Let S be a set of constraints for C

e Partition Sinto S tand S_f
-S tC) ={XinS|CKX) =t}
- S f(C)={XinS | C(X) = f}

11

Lets Try Them Out

e E1 < E2
- S1 ={(<), (®»), (3}
- S1 t ={(<)}
- S1_f={(>), ()}

e E3 >= E4
- S2 ={(>), (), (9}
- 82_t={(>), (=)}
- S2 T ={(<)}

e E5 = E6
- S3={(=). (9, >)}
- S3_t = {(=)}
- S3_f ={(<), (>)}

| &

 More complex predicates
- (E3 >= E4) | (E5 = E6)
*S4_F={(< 9, ()}
- (E3 >= E4) & (E5 = E6)
*S9_t={(=), = =)}

e How about S4_t and S9 f?

E3}=E4 E.5=E6

S2 t = {(>),(=)} S3_t={(=)}
S2 f = {(9)} S3_f = {(>), (<)}

N

S4 f =82 f % S3_f = {(<,>), (£,<)}
By choosing (<) as f2 and (>) as {3,
S4 1 =(S2_t* {3 $ ({£f2} * S3_)

= {(>,>), (=), (<,=)}

Surprise Quiz

e How About S9 f?

13

El < E2 E3 »>= E4 E5 = E6

S1t = {{<)} 521 = {(==)} S31={(=)}
S1f = {(>M=)} S2_f={(<)} 531 = {(>), (=)}

N/

541 =82 1% 83 1= {{>), (=)}

By choosing (<) as £2 and (=) a5 {3,

S84 t=(S2_t* (£3}) % ({£2} * 53.0)
= {(=>) (=2} (<=)}

&

S5 t =81t % S4_t = {(<>2) (&=2) (&5=)}
By choosing (<) as 11 and (>,>) as 14,
S50 =(SLf * {14}) § ({11} * S4_D
= {{z=>)h (=220 (£23), (<.<<)].
551 %53 fis a BRO conshaint set for O

What Next?

e Once all the constraints have been
obtained, test cases may be
generated

14

