Test Coverage & Adequacy

- How much testing is enough?
- When to stop testing
- Test data selection criteria
- Test data adequacy criteria
 - Stopping rule
 - Degree of adequacy
- Test coverage criteria
- Objective measurement of test quality

Preliminaries

- Test data selection
 - What test cases
- Test data adequacy criteria
 - When to stop testing
- Examples
 - Statement Coverage
 - Branch coverage
 - Def-use coverage
 - Path coverage

Goodenough & Gerhart ['75]

- What is a software test adequacy criterion
 - Predicate that defines “what properties of a program must be exercised to constitute a thorough test”, i.e., one whose successful execution implies no errors in a tested program
Goodenough & Gerhart ['75]

- Reliability requirement
 - “Test criterion always produces consistent test results”
 - If a program tested successfully on one test set that satisfies the criterion, then the program also tested successfully on all test sets that satisfy the criterion
- Validity requirement
 - “Test always produces a meaningful result”
 - For every error in a program, there exists a test set that satisfies the criterion and is capable of revealing the error
- There is no computable criterion that satisfies the above requirements

Uses of test adequacy

- Objectives of testing
- In terms that can be measured
 - For example branch coverage
- Two levels of testing
 - First as a stopping rule
 - Then as a guideline for additional test cases

Categories of Criteria

- Specification based
 - All-combination criterion
 - Each-choice-used criterion
- Program based
 - Statement
 - Branch
- Note that in both the above types, the correctness of the output must be checked against the specifications
Classification according to underlying testing approach

- Structural testing
 - Coverage of a particular set of elements in the structure of the program
- Fault-based testing
 - Some measurement of the fault detecting ability of test sets
- Error-based testing
 - Check on some error-prone points

Structural Testing

- Program-based structural testing
 - Control-flow based adequacy criteria
 - Statement coverage
 - Branch coverage
 - Path coverage
 - Length-based coverage
 - Cyclomatic number criterion
 - Set of \(v \) independent paths, where \(v = e - n + 1 \)
 - Multiple condition coverage
 - All possible combinations of truth values of predicates
 - Data-flow based adequacy criteria
Structural Testing

- Data-flow based adequacy criteria
 - All definitions criterion
 - Each definition to some reachable use
 - All uses criterion
 - Definition to each reachable use
 - All def-use criterion
 - Each definition to each reachable use

Data-flow Testing

```
read(x, y)
x := x + 2; y := 2;
x := x + 2;
x := y + 2;
```

```
1: read(x, y)
2: 3:
4: 5: 6:
7: 8:
```

All Definitions Criterion

- A set P of execution paths satisfies the all-definitions criterion iff
 - for all definition occurrences of a variable x such that
 - there is a use of x, which is feasibly reachable from that definition,
 - there is at least one path p in P such that
 - p includes a subpath through which the definition of x reaches some use occurrence of x
A set P of execution paths satisfies the all-uses criterion iff

- for all definition occurrences of a variable x and all use occurrences of x,
 - that the definition feasibly reaches,
 - there is at least one path p in P such that
 - p includes a subpath through which that definition reaches the use.

All DU-paths criterion

- A set P of execution paths satisfies the all-DU paths criterion iff
 - for all definitions of a variable x and all paths q through which that definition reaches a use of x,
 - there is at least one path p in P such that
 - q is a subpath of p and q is cycle-free.
Fault-based Adequacy

- Error seeding
 - Introducing artificial faults to estimate the actual number of faults

- Program mutation testing
 - Distinguishing between original and mutants
 - Competent programmer assumption
 - Mutants are close to the program
 - Coupling effect assumption
 - Simple and complex errors are coupled

Subsumption

- Criteria C_1 subsumes criteria C_2, iff
 - For all programs p being tested with specifications s
 - All test sets t
 - t is adequate according to C_1 for testing p with respect to s
 that t is adequate according to C_2 for testing p with respect to s

- Path subsumes branch
- Path subsumes statement