Test Oracles

• Discussion
 - Automation of oracle necessary
 - Expected behavior given
 - Necessary parts of an oracle
 - Name spaces

Test Oracle

• A test oracle determines whether a system behaves correctly for test execution

• Webster Dictionary - Oracle
 - a person giving wise or authoritative decisions or opinions
 - an authoritative or wise expression or answer

Purpose of Test Oracle

• Sequential Systems
 - Check functionality
• Reactive (event-driven) Systems
 - Check functionality
 - Timing
 - Safety

Reactive Systems

• Complete specification requires use of multiple computational paradigms
• Oracles must judge all behavioral aspects in comparison with all system specifications and requirements
• Hence oracles may be developed directly from formal specifications

Parts of an Oracle

• Oracle information
 - Specifies what constitutes correct behavior
 - Examples: input/output pairs, embedded assertions
• Oracle procedure
 - Verifies the test execution results with respect to the oracle information
 - Examples: equality
• Test monitor
 - Captures the execution information from the run-time environment
 - Examples
 - Simple systems: directly from output
 - Reactive systems: events, timing information, stimuli, and responses

Approach

• Test class
 - Set of test data described by a condition that constrains input data and the initial system state
• Every test class will have an explicitly represented test oracle
• Results are monitored and verified against the oracle corresponding to all test classes satisfied for the test data
Phases of the Approach

- Oracle derivation
 - From specifications for each test class
- Monitoring test execution
- Mapping and applying the oracle procedure to the execution results

Automated Test Oracles for GUIs

Foundations of Software Engineering, 2000

A Test Case for WordPad

What Is Correct Behavior

Check State, not only Output!!
Research Focus

- **Goal**
 - To check the GUI's state after each event
- **Approaches**
 - Manual
 - Automated
- **Challenges**
 - Generating expected state
 - Extracting actual state
 - Comparing expected & actual states

Outline

- Overview of GUI Oracle
- Generating Expected State
 - Modeling the GUI's State
 - Objects
 - Properties
 - Modeling the Events
- Obtaining Actual GUI's State
- Comparing Actual & Expected States

Overview of GUI Oracle

- Test Case
- Formal GUI Model
- Expected-state Generator
- Actual State
- Execution Monitor

Modeling the GUI

- A GUI consists of Objects
- Properties
- Button
- Label
- Form
- Window State
- Width 1088
- AutoScroll TRUE
- Files of type: Files of type:
- Enabled TRUE
- Visible TRUE
- Height 65

Determining Properties

- Manual Examination of GUI
- Specifications (Reduced Set)
 - GUI being tested
- Toolkit/Language (Complete Set)
 - All available properties

Now we know how to represent the GUI's state
Modeling Events

- Events are State Transducers

State: S_i

SelectText

Event: e

Notation: $S_j = [S_i, e]$

State: S_j

Representing Events

- We define an event as:
 $S_j = [S_i, \text{event}]$
- For example:
 $S_j = [S_i, \text{cut}]$
- Need a compact representation

Operators

Operator = CUT

Preconditions: isCurrent(Menu2).

Effects:
 - FORALL Obj in Objects
 - Selected(Obj)\Rightarrow
 - ADD inClipboard(Obj)
 - DEL onScreen(Obj)
 - DEL Selected(Obj)
 - ADD isCurrent(Menu1)
 - DEL isCurrent(Menu2).

Obtaining next state

Deriving Expected State

- Given S_0, the initial state,
- A sequence of events
 e_1, e_2, \ldots, e_n
- Obtain $S_1 = [S_0, e_1]$
- And $S_i = [S_{i-1}, e_i]$

Obtaining Actual GUI’s State

- Execution Monitor
 - Screen Scrapping
 - Queries
 - Compatible with Expected State
 - Returns <Object, Property, Value>
 <Button1, "Caption", "Cancel">

Automated Execution

Test Executor

GUI Under Test

Test Cases

Expected State

Verifier
Comparing Actual and Expected States

- Verifier
- Three Levels of Testing
 - Changed Property Set (Operators)
 - GUI Relevant Property Set (Specifications)
 - Complete Property Set (Toolkit/Language)
- Hybrid Approach
 - Use all 3