Data-flow and Control-flow

Criteria Compared
+ Coverage criteria monitor the
thoroughness of software tests
- Control-flow based
- Data-flow based
* Are they effective?
* Which ones are more effective?

Experiments

* Goals
- Comparing effectiveness of data-flow
coverage and control-flow coverage for
fault-detection
- Is it necessary to achieve 100% coverage to
benefit from a criterion?
* Criteria
- Data-flow
- Edge coverage

+ Extends branch coverage by considering both explicit
and implicit control-flow in Boolean expressions

+ IF (a && b && c) THEN x=5 ELSE x=10; has 6 edges,
not 2

Model of Coverage-based
Testing

‘Additional

Initial Test
Generation
Method

Additional
Test Cases

Code Coverage
Analysis

Initial
Test Cases

Pruning

Base Programs

*+ 7 moderate sized programs

Executable |
Program |LOC Description
Edges | DUs
replace | 512 | 191 664 E)attem replace
tcas 141[46 | 57 [altitude separation

usl.123 472 97 268 ‘ lexical analyzer
usl.128 399 | 159 240 | lexical analyzer
schedulel | 292 62 294 | priority scheduler
schedule2| 301 80 217 | priority scheduler

tot_info | 440 83 292 | information measure

How Do We Proceed?

* Generate test cases according to criteria
- How many test cases?
+ Say we decide on a number N
- What coverage?
+ Say 100%
- Execute them on the programs
- How to detect faults?
- What if no faults are found?

- Discussion

Fault Space

- Seed faults in the programs
+ Ideal world
- Real faults that have been recorded in the
course of development of production software
+ Real world
- Seeded "realistic” faults
+ Mostly changes to single line of code

- Simple mutations or missing code
+ Sometimes multiple changes

- Requirements on seeded faults
+ Neither too easy nor too difficult to detect

Fault Space

* Why?
- If too easy then all tests would detect them,
irrespective of the coverage
- If too difficult, then none would detect - no
difference in techniques
+ Objective measure of “reasonable” fault

- Too difficult if less than LB test cases
detect it

- Too easy if more than UB test cases detect
+ 10 people seeded faults

-LB=3;UB-=350

- 55 were too difficult, 113 were too easy

- 130 were reasonable; were included in study

Test Oracle

* The original program was assumed
to be “correct” and used as an
Oracle

Now How Do We Proceed?

- Generate test cases
- Execute them on the programs/mutants
+ Record the faults detected

+ Any problems with test case generation?

- Do two test suites that satisfy a coverage
criterion have the same fault detection
ability?

- Discussion

Test Pool

* Use 2-3 testers to create a test
pool

* Randomly select test cases from
this test pool

Creation of Test Pool

Realistic process
+ Create initial test pool (ITP)
- Category-partition method
- Examine coverage: identify missing areas
* Create additional test pool (ATP)
+ Goal

- Each exercisable coverage unit is covered by
at least 30 test cases
* Run each test case in the pool and
record the outcome (fault detected vs.
undetected) and the list of edges and
DUs exercised

Test Pool Data

Base Number of Test Pool (TP) Range of failure
Program | _‘2ulty Initial | Additional | Final Size | ratios in the
Versions | Tests (ITP)| Tests (ATP)|(ITP + ATP)| test pool

replace 32 79% 21% 5548 .0005-.056
teas 39 65% 35% 1562 10006-.084
usl.123 7 99% 1% 4092 10007-.056
usl. 128 10 99% 1% 4076 10079-.086
schedulel 9 90% 10% 2637 10027-.100
schedule2 10 7% 23% 2666 .0008-.024
wtinfo | 23 64% 36% 1067 0019-.159
- usl.128

- Test pool size = 4076 cases
- Hardest fault detected by 32 cases
- Easiest detected by 350 cases

Generating Test Sets

* Goal
- 5000 tfest sets for each faulty program
- For each test set of size N
- Randomly take a test case from pool
- If it increases coverage, add it
- Until N tests or 100% coverage
- Sizes
- Chosen randomly from 1, 2, ..,R, where R
was determined for each program by trial-
and-error as the number slightly larger than
the size of the largest test set reaching
100% coverage
* At least 30 tests for each 2% coverage
interval

Coverage Graph

Size 6raph

1.0 4
. ... L
o
'ﬁ .
0.8 - N
s 3
E 0.6 <
8 .
g £
& 0.4 4 + %
. + Edge coverage
+;" « DU coverage
0.2 —F
random
T T T T T
10 20 30 40 50
Test Sat Size

1.0 4
L]
2
S 08
g + Edge coverage L)
S . .
E 06 DU coverage
a O
= +
s 0.4 4 0 +
L5 .
I,
024 st
. :.#. +
o W
T T T T 1
60 70 80 90 100
PercentCoverage |
Observations

* In general, the performance of both
coverage varied widely

* Program classification
- According to the method that seemed most
effective in detecting its faults

- Define relations
+ DU > Edge
+ Edge > DU
+ DU > Random
+ Edge > Random
+ Random > DU
* Random > Edge

Better Analysis

* For each faulty program
- Fit second order, least squares curves
+ Coverage (FCpy, FCeqg.)
* and size plots (FSpy, FSgye)
+ Definition
- DU > Edge if
* FCou(100%) > FCeyyo(100%)
- And (FCyy(100%) - FCey,(100%)) > (standard
deviation of the difference between the

measured fault detection ratio and their
least squares approximation)

Better Analysis
: Fr'undom(s)

- Given a test set size s

- Probability that a randomly chosen set
of s fest cases from the test pool
contains at least one fault-detecting
test case

- Expected fault-detection ratio of
random test sets of size s

* Always computed from TP or ITP
- Avoids bias in favor of coverage

Better Analysis

- For DU coverage

+ Largest fest set generated = d

* Maximum value of FSy(s) for s = 1..d = Maxy,
- Similarly, For edge coverage

+ Largest fest set generated = e

* Maximum value of FSgyy(s) fors = 1..e = Maxgyy,

- Definitions

+ DU > Random if Maxpy > Frgngom(d)
+ Edge > Random if Maxegy, > Frongom(€)
- And differences satisfy a similar property for DU >

Edge and Edge > DU

- Similarly, DU < Random if Maxpy < Fyngom(d)
and Edge < Random if MaxEdgz < Frclndom(d)

Classification of Faults

Class Characteristics | glfu;: :ﬁ: P:rllt;());ies:\?:n]x{gacuo
min, avg, max
DU DU > Edge and DU > Random @ .19, .67, 1.0
Edge Edge > DU and Edge > Random @ 17, .57, .99
-&-| i > o)
o DU Bageorpages Dy | | 145010
average Total | DU > Random or Edge > Random @ -
Non-Coverage | DU < Random and Edge < Random -
Other T® | -

cannot classify

Detection ratios were very low 24

DU coverage vs. Random

% DU Coverage 9193% | 9395% | 9597% | 97-99% | 99-100%

average size of DU coverage test sets 79 9.1 | 1.3 14.2 17.4
average fault detection ratio of DU coverage test sets| 33 42 St
average % superiority in fx?ult detection of DU cov- 1% 33% 2% 68%
erage test sets over same size random test sets | {

average % increase in the size of random test sets }

required to yield the same fault detection as the DU | 2% 46% 9% | 160%
coverage test sets |

* The observed difference is not statistically significant (less than 95% confidence).

Edge Coverage vs. Random

% Edge Coverage 91-93% | 93-95% | 95-97% | 97-99% | 99-100%
average size of Edge coverage test sefts 7.6 85 9.7 12 126
“average fault detection ratio of Edge coverage test sets| 28 31 35 41 46
s o e e | | o | wn | e
average % increase in the size of random test sets .
required to yield the same fault detection as the Edge | 51% | 64% | 77% | 112% | 163%

coverage test sets

DU Coverage vs. Edge

Coverage

% Coverage 95-97% 97-99% | 99-100%
average % difference in size of DU coverage test 1% 9% 21%
sets over Edge coverage test sets
average % difference in fault detection of DU * * 38%
coverage test sets over Edge coverage test sets °

*The observed dif is not

(less than 95% confidence).

