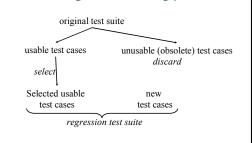


New Event-flow Model

- · Event-flow of a GUI
 - User interactions are sequences of events
 - Test case is also modeled as a sequence of events (TSE 2001, ICSE 1999)
 - Test oracles also at event level (FSE 2000, ASE 2003)
 - Test coverage defined in terms of events (FSE 2001)
- Enabled successful development of tools and techniques to test GUIs
 - Now a new *Regression Testing* technique based on the event-flow model



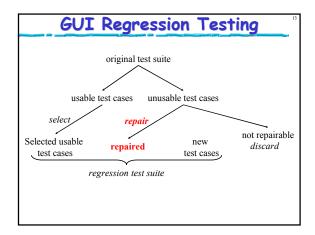
Outline

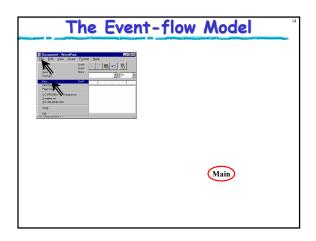
- · Traditional regression testing
- · Creating GUI test cases
- · Event-flow model
- · Repairing test cases
- · Case studies
- · Conclusions and future work

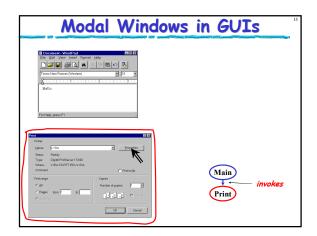
Traditional Regression Testing

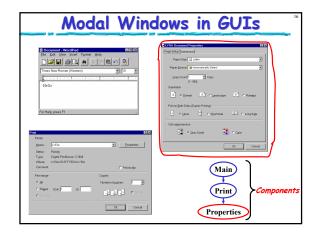
- · Retest-all
- · Selective regression testing process

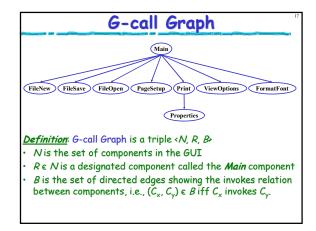
Challenges for GUIs

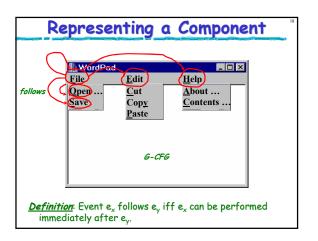

- · Test case generation is manual
 - Small number of test cases
 - Each test case is valuable
- Changes result in a large number of obsolete test cases
 - Structural and layout changes
- Frequent modifications
 - Driven by constant user feedback
 - Need frequent testing

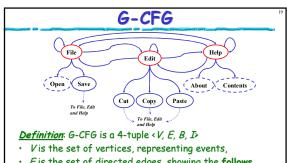

Capture/replay tools • Tools for generating GUI test cases Capture ✓ User MANUALLY performs events on the GUI ✓ Tool records all user inputs and application response TESTER INPUT APPLICATION UNDER TEST

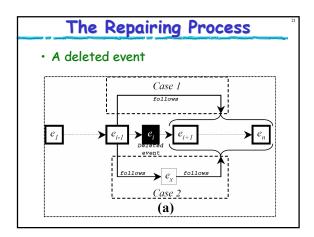

Replay Tool replays users actions Modifications made to enhance testing of the GUI Verify application response against expected response REPLAY INPUT RESPONSE DATABASE EXPECTED RESPONSE APPLICATION UNDER TEST

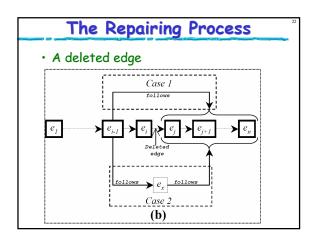

Our Approach

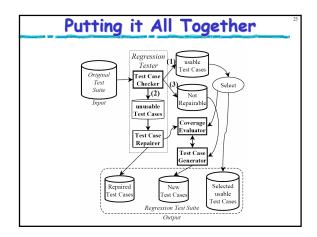

- · Typical test cases
 - 10 to 50 events
 - 5 to 10 minutes to create
- · For a software
 - Tester may create 200-300 test cases
 - Each test case is valuable
- · Approach
 - Repair unusable test cases





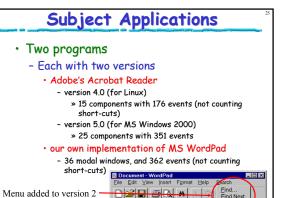



- E is the set of directed edges, showing the follows relationship,
- B is the set of events first available (shown in red),
- I is the set of events that invoke other components (dotted lines).


Classifying Events

·Classification

- -A new classification of events aids in creating the hierarchical model of the GUI
- Opening modal windows
 Restricted-focus events
- Closing modal windows
- Termination events
- Opening modeless windows
- Unrestricted-focus events
- Opening menus
- Menu-open events
- Interacting with underlying software
 - System-interaction events

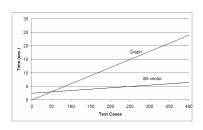


Case Studies

- Questions
 - How many test cases are made unusable by GUI modifications across versions?
 - How many unusable test cases are repairable?
 - How much time does the checker and repairing processes take?

Case Study 1

- Performance and effectiveness of the regression testing technique
 - 400 test cases generated manually using a capture/replay tool for each subject application
 - · Adobe's Acrobat Reader = 7.59 hours
 - changes in the GUI made 296 (74%) test cases unusable
 - time taken for the checker was 6.5 sec
 - remaining 104 (26%) test cases were usable
 - repaired 211 (71.3%) of unusable test cases
 - · total time taken for repairer was 17.76 sec.


Case Study 1

- Comparable results for Wordpad
 - · modifications affected 210 test cases
 - · checker took 6.15 sec
 - · repaired all 210 test cases
 - all that was needed was to replace Edit with Search in each
 - time taken was 18.01 sec

Step	Subject	Time
	Application	Tille
Manual	Reader	7.59 hrs.
Generation	WordPad	5.47 hrs.
Checker	Reader	6.5 sec.
	WordPad	6.15 sec.
Repairer	Reader	17.76 sec.
	WordPad	18.01 sec.

Case Study 2

- · Two different types of checkers
 - Simple, graph traversal based
 - We implemented a bit-vector based algorithm

Conclusions & Future Work

- · Repairing "obsolete" test cases
- · Detailed experiments
 - Different types of test cases
 - Many subject applications
- Use approach for other event-based software
- Repair obsolete test cases for conventional software