Heuristic Approach to TCG

- Heuristic
 - Webster dictionary
 - involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods
- Examples
 - Discussion

Search Examples

- Looking for a solution in a search space
- Known techniques
 - Depth-first
 - Breadth-first
 - Binary search for certain structures
- Others?
 - Large branching factor
 - Very deep
Do we need a Heuristic?

- To generate test cases that achieve maximal branch coverage

Example Flow-chart

![Flow-chart](image)
Observations

- 1T, 1F, 2T, 2F have been covered
- 3T has been covered
- To cover 3F, can we tweak the test case for 3T?
- Also, what do we do when multiple test cases are available for tweaking?
 - Need a way to compare

“Best Test Case”

- If (Exp) THEN ___ ELSE ___;
- Exp can be (LHS <op> RHS)
- The “goodness” of a test case t1
 \[\frac{|LHS(t1) - RHS(t1)|}{(2*\text{MAX}(|LHS(t1)|,|RHS(t1)|))} \]
- Should we rely on only local information?
 - What are the risks?
Better "Best Test Case"

\[G(t,D) = w \times L(t,D) + (1-w) \times P(t,D) \] \hspace{1cm} (2)

where:
- \(G(t,D) \) : Goodness of test case \(t \) at condition \(D \).
- \(L(t,D) \) : Freedom space of \(t \) at \(D \).
- \(P(t,D) \) : Sum of freedom space reciprocals of \(t \) along the path toward \(D \).
- \(w \) : Weighting factor between \(L(t,D) \) and \(P(t,D) \), \(0 < w < 1 \).

\(L(t,D) \) is defined as in formula (1), and \(P(t,D) \) is defined as:

\[P(t,D) = \sum_{\text{all } D_i} \frac{1}{(n \times L(t,D))} \] \hspace{1cm} (3)

• Smallest value indicates the best test case