Is Mutation an Appropriate Tool for Testing Experiments?

J.H. Andrews, L.C. Briand, Y. Labiche
ICSE ’05
Mutants = real faults?

Problem: I want to compare testing techniques, but I don’t have subject programs with lots of known faults.

Workaround: Automatically generate “mutants” of subject programs.

Question: Do results based on mutants generalize to programs with real faults?
What’s a mutant?

A mutant of a program is that program with a small automatic change:

- add/subtract 1 from integer constants
- change * to /
- change TRUE to FALSE
- delete a statement
- other similar changes...

Mutants are easy to create in large numbers.
Experiment (1:3)

1. Take 8 programs with multiple known faulty versions and big pools of test cases.
2. Make mutants.
3. Eliminate mutants not detected by any test case.
4. Run randomly-chosen test suites on faulty versions.
5. Run same test suites on mutants.
Experiment (2:3)

For each faulty version or mutant of a given program:

+-----+ #
|####| #
|####| # -----> # # -----> 8^P
|####| random # apply
+-----+ #

Big 5000 Faulty

test test version

pool suites or mutant
Experiment (3:3)

COMPARE

Mean # of faulty versions detected by each test suite

of faulty versions

WITH

Mean # of mutants detected by each test suite

of mutants

Hypothesis: Detection ratios will be equal.
What is being measured?

| faults not | mutants not | -- not |
| detected | detected | -- tested |

+----------------+----------------+----------------+
faults	mutants	\ tested	
detected	detected		against
by big	by big		subset
test pool	test pool		of pool
+----------------+----------------+

- What if each suite caught every fault?
- What if each suite caught at most one fault?
- Is this what we want?
The test applications

• ESA “space” program, 6KLOC, real faults.
• 7 “Seimens programs” ≤ 500LOC each with hand-seeded faults.
• Experiment treats real and hand-seeded faults as equivalent.

Mutants = real faults needs an experiment.
Hand-seeded faults = real faults can just be assumed?
Empirical Results

• Median detection ratios for “space”:
 – mutants: 75%
 – real faults: 76%

• Median detection ratios for 7 “Seimens” programs:
 – mutants: about 96%
 – hand-seeded faults: about 70%
Extra bonus analysis

Why not just calculate and compare:

of test cases in pool that
Mean over all detected this faulty version
faulty versions: -----------------------------
total number of test cases

WITH

of test cases in pool that
Mean over detected this mutant
all mutants: -----------------------------
total number of test cases

“Ease of detection”
Extra bonus results

<table>
<thead>
<tr>
<th>Program</th>
<th>Faulty Versions</th>
<th>Mutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>others</td>
<td>5%</td>
<td>30%</td>
</tr>
</tbody>
</table>

(Values estimated by eye from paper’s graphs.)
Authors’ conclusions

1. Mutants = real faults
 • Supported by space case in experiment,
 • but what about the other 7 cases?
 • And what about the “ease of detection” calculation?

2. Hand-seeded faults are harder to detect than real faults.
 • Note on page 8 reveals original hand-seeded fault authors discarded any fault detected by 350 or more of their test cases.
And what about this?

Recall the Graves 2001 empirical regression test selection technique study:

- Used same programs as this experiment...
- ... plus one more: the Player program.
- Player was the only example with an actual history of real feature additions.
- Player results said “minimization” technique was good, the other cases said bad.
- Conclusion: minimization bad.