\[
\begin{align*}
\text{TInt} & \quad \frac{}{\Gamma \vdash n : \text{int}} \\
\text{TVar} & \quad \frac{x : t \in \text{dom}(\Gamma)}{\Gamma \vdash x : t} \\
\text{TFun} & \quad \frac{\Gamma, x : t \vdash e : t'}{\Gamma \vdash \lambda x : t. e : t \rightarrow t'} \\
\text{TApp} & \quad \frac{\Gamma \vdash e_1 : t \rightarrow t' \quad \Gamma \vdash e_2 : t}{\Gamma \vdash e_1 \ e_2 : t'} \\
\text{TApp} & \quad \frac{D \vdash x : \text{int} \rightarrow \text{int} \quad (**) \ D \vdash y : \text{int}}{D \vdash x \ (y \ z) : \text{int}} \\
\text{TFun} & \quad \frac{B \vdash \lambda y : \text{int} \rightarrow \text{int} \quad \lambda z : \text{int} \vdash x \ (y \ z) : (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \rightarrow \text{int}}{A \vdash \lambda x : \text{int} \rightarrow \text{int} \rightarrow \text{int} . \lambda y : \text{int} \rightarrow \text{int} . \lambda z : \text{int} . \ x \ (y \ z) : (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \rightarrow \text{int} \rightarrow \text{int}} \\
(*) & \quad \frac{\text{TVar}}{D \vdash x : \text{int} \rightarrow \text{int} \rightarrow \text{int} \in \text{dom}(D)} \\
** & \quad \frac{\text{TVar}}{D \vdash y : \text{int} \rightarrow \text{int} \in \text{dom}(D)} \\
(**) & \quad \frac{\text{TVar}}{D \vdash z : \text{int} \in \text{dom}(D)} \\
\end{align*}
\]

Where \(B = A, x : \text{int} \rightarrow \text{int} \rightarrow \text{int} \) and \(C = B, y : \text{int} \rightarrow \text{int} \) and \(D = C, z : \text{int} \)