
1

1

CMSC 330: Organization of
Programming Languages

http://www.cs.umd.edu/~atif/Teaching/Fall2007

Introduction

Instructor: Atif M Memon

TAs: Guilherme Fonseca,
Michael Lam, Xun Yuan

CMSC 330 2

Calendar / Course Overview
• Final Exam (25%)
• 2 midterms (30%)
• One project every few weeks (5 total) (40%)

– Project 1 - Write a web server log analysis tool.
• Will be posted next week.

– Project 2 - Write a unit testing framework in Ruby.
– Project 3 - Write some OCaml code.
– Project 4 - NFAs and reg exps in OCaml.
– Project 5 - Write a threaded bank simulation.

• Two homework assignments (one before each exam) (5%)

• Ruby
• OCaml
• Java

2

CMSC 330 3

Academic Integrity

• All written work (including projects) must be
done on your own

• Work together on practice questions for the
exams

• Work together on high-level project questions
– Never see another student’s code
– If unsure, ask instructor!

What if…?

CMSC 330 4

Rules and Reminders
• Quiet cell phones
• Be on time
• Come to class and discussion section
• Laptops in class only if really needed
• Use lecture notes as the book
• Stay organized and ahead of your work
• Get help as soon as you need it (but not when you

don’t)
– Office hours

• http://www.cs.umd.edu/~atif/Teaching/Fall2007/office-hours.shtml

• Use internet resources

3

CMSC 330 5

Syllabus

• Scripting Languages (Ruby)
• Regular expressions and finite automata
• Context-free grammars
• Functional programming (OCaml)
• Concurrency
• Object-oriented programming (Java)
• Environments, scoping, and binding
• Advanced Topics

CMSC 330 6

Course Goal

Learn how programming languages “work”

• Broaden your language horizons
– Different programming languages
– Different language features and tradeoffs

• Study how languages are implemented
– What really happens when I write x.foo(…)?

• Study how languages are described
– Mathematical formalisms

4

CMSC 330 7

All Languages Are Equivalent

• A language is Turing complete if it can compute
any function computable by a Turing Machine

• Essentially all general-purpose programming
languages are Turing complete

• Therefore this course is useless!

CMSC 330 8

Why Study Programming Languages?

Introduce yourself to your neighbor(s) and
together write down three of your own
reasons…

5

CMSC 330 9

Why Study Programming Languages?
• Using the right language for a problem may be easier, faster, and

less error-prone
– Programming is a human activity
– Features of a language make it easier or harder to program for

a specific application
• To make you better at learning new languages

– You may need to add code to a legacy system
• E.g., FORTRAN (1954), COBOL (1959), …

– You may need to write code in a new language
• Your boss says, “From now on, all software will be written in

{Ada/C++/Java/…}”

• You may think Java is the ultimate language, but if you are still
programming or managing programmers in 20 years, they probably
won’t be programming in Java!

CMSC 330 10

Why Study Programming Languages?

• To make you better at using languages you
think you already know
– Many “design patterns” in Java are functional

programming techniques
– Understanding what a language is good for will help

you know when it is appropriate to use

6

CMSC 330 11

Changing Language Goals

• 1950s-60s: Compile programs to execute
efficiently
– Language features based on hardware concepts

• Integers, reals, goto statements

– Programmers cheap; machines expensive
• Keep the machine busy

• Today:
– Language features based on design concepts

• Encapsulation, records, inheritance, functionality, assertions

– Processing power and memory very cheap;
programmers expensive

• Ease the programming process

CMSC 330 12

Language Attributes to Consider

• Syntax -- What a program looks like

• Semantics -- What a program means

• Implementation -- How a program executes

7

CMSC 330 13

Imperative Languages

• Also called procedural or von Neumann
• Building blocks are functions and statements

– Programs that write to memory are the norm
int x = 0;

while (x < y) x := x + 1;

– FORTRAN (1954)
– Pascal (1970)
– C (1971)

CMSC 330 14

Functional Languages

• Also called applicative languages
• No or few writes to memory

– Functions are higher-order
let rec map f = function [] -> []

| x::l -> (f x)::(map f l)

– LISP (1958)
– ML (1973)
– Scheme (1975)
– Haskell (1987)
– OCaml (1987)

8

CMSC 330 15

Logical Languages

• Also called rule-based or constraint-based
• Program consists of a set of rules

– “A :- B” – If B holds, then A holds
• append([], L2, L2).

• append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

– PROLOG (1970)
– Various expert systems

CMSC 330 16

Object-Oriented Languages

• Programs are built from objects
– Objects combine functions and data
– Often have classes and inheritance
– “Base” may be either imperative or functional

class C { int x; int getX() {return x;} … }

class D extends C { … }

– Smalltalk (1969)
– C++ (1986)
– OCaml (1987)
– Java (1995)

9

CMSC 330 17

Scripting Languages
• Rapid prototyping languages for “little” tasks

– Typically with rich text processing abilities
– Generally very easy to use
– “Base” may be imperative or functional; may be OO

#!/usr/bin/perl

for ($j = 0; $j < 2*$lc; $j++) {

$a = int(rand($lc));

…

• sh (1971)
• perl (1987)
• Python (1991)
• Ruby (1993)

CMSC 330 18

“Other” Languages
• There are lots of other languages around with various

features
– COBOL (1959) – Business applications

• Imperative, rich file structure
– BASIC (1964) – MS Visual Basic widely used

• Originally an extremely simple language
• Now a single word oxymoron

– Logo (1968) – Introduction to programming
– Forth (1969) – Mac Open Firmware

• Extremely simple stack-based language for PDP-8
– Ada (1979) – The DoD language

• Realtime
– Postscript (1982) – Printers- Based on Forth
– …

10

CMSC 330 19

Attributes of a Good Language
1. Clarity, simplicity, and unity

• Provides both a framework for thinking about algorithms and a
means of expressing those algorithms

2. Orthogonality
• Every combination of features is meaningful
• Features work independently

What if, instead of working independently, adjusting
the volume on your radio also changed the station?
You would have to carefully change both
simultaneously and it would become difficult to find
the right station and keep it at the right volume. Your
radio and tuning work orthogonally.
And aren’t you glad they do!

CMSC 330 20

Attributes of a Good Language

3. Naturalness for the application
• Program structure reflects the logical structure of

algorithm
4. Support for abstraction

• Program data reflects problem being solved
5. Ease of program verification

• Verifying that program correctly performs its
required function

11

CMSC 330 21

Attributes of a Good Language
6. Programming environment

• External support for the language

7. Portability of programs
• Transportability of the resulting programs from the computer

on which they are developed to other computer systems

8. Cost of use
• Program execution, program translation, program creation,

and program maintenance

CMSC 330 22

Executing Languages

• Suppose we have a program P written in a
high-level language (i.e., not machine code)

• There are two main ways to run P
1. Compilation
2. Interpretation

12

CMSC 330 23

Compilation or Translation

• Source program translated to another language
– Often machine code, which can be directly executed
– Advantages? Disadvantages?

def greet(s)
print("Hello, ”)
print(s)
print("!\n”)

end

11230452
23230456
01200312
…

“world” “Hello, world”

CMSC 330 24

Steps of Compilation

1. Lexical Analysis (Scanning) – Break up source
code into tokens such as numbers, identifiers,
keywords, and operators

FOR
ID:i
LESSTHAN
NUM:6

13

CMSC 330 25

Steps of Compilation

2. Parsing (Syntax Analysis) – Group tokens
together into higher-level language constructs
(conditionals, assignment statements, functions,
…)

For loop

CMSC 330 26

Steps of Compilation

3. Intermediate Code Generation – Verify that the
source program is valid and translate it into an
internal representation
– May have more than one intermediate rep

for 0:i:6

or

Load 0

Load i

Etc…

14

CMSC 330 27

Steps of Compilation

4. Optimization (optional) – Improve the efficiency of the
generated code
– Eliminate dead code, redundant code, etc.
– Change algorithm without changing functionality

(e.g., X=Y+Y+Y+Y � X=4*Y � X = Y shift left 2)

[If interested in compilation, take CMSC 430]

CMSC 330 28

Interpretation

• Interpreter executes each instruction in source
program one step at a time
– No separate executable
– Advantages? Disadvantages?

def greet(s)
print("Hello, ”)
print(s)
print("!\n”)

end

“world”

“Hello, world”

15

CMSC 330 29

Compiler or Intepreter?
gcc

• Compiler – C code translated to object code, executed
directly on hardware

javac
• Compiler – Java source code translated to Java byte code

tcsh/bash
• Interpreter – commands executed by shell program

java
• Interpreter – Java byte code executed by virtual machine

CMSC 330 30

Compilation or Interpretation – Not so simple today

• Previously
– Build program to use hardware efficiently
– Often use of machine language for efficiency

• Today
– No longer write directly in machine language
– Use of layers of software
– Concept of virtual machines

• Each layer is a machine that provides functions for the next
layer (e.g., javac/java distinction)

• This is an example of abstraction, a basic building-block in
computer science

16

CMSC 330 31

Who defines a language?
Is: I = 1 && 2 + 3 | 4; legal in C?

– What is assigned to I if it is?
– Who makes this determination?

3 ways typically to answer this:
1. Read language manual (Problem: Can you find one?)
2. Read language standard (Problem: Have you ever
seen it?)
3. Write a program to see what happens. (Easy to do!)

Most programmers do 3, but current compilers may not
give correct answer

CMSC 330 32

Creation of standards
Language standards defined by national standards bodies:
• ISO - International Standards organization
• IEEE - Institute of Electrical and Electronics Engineers
• ANSI - American National Standards Institute
All work in a similar way:

1. Working group of volunteers set up to define
standard

2. Agree on features for new standard
3. Vote on standard
4. If approved by working group, submitted to parent

organization for approval

17

CMSC 330 33

Creation of standards
• Standards in the US are voluntary:

– There is no federal standards-making organization.
– NIST - National Institute for Standards and Technology

develops standards that are only required on federal agencies,
not for commercial organizations.

• Consensus is the key to standards making:
– Contentious features often omitted to gain consensus
– Only vendors have a vested interest in the results
– Users don't care until standard approved, and then it is too late!

CMSC 330 34

Standards conforming programs
• Standards define behavior for a standards conforming program -

one that meets the rules of the language standard
• In general (except for Ada), behavior of non-conforming program is

not specified, so any extensions to a standards conforming
compiler may still be standards conforming, even though the
program is not standards conforming.

• Standards supposed to be reviewed every 5 years
– Examples:
– FORTRAN 1966, 1977, 1990
– Ada 1983, 1995

• Not quite 5 years, but at least periodically

18

CMSC 330 35

When to standardize a language?
• Problem: When to standardize a language?

– If too late - many incompatible versions
• FORTRAN in 1960s was already a de facto standard, but no two were the

same
• LISP in 1994, about 35 years after developed.

– If too early - no experience with language - Ada in 1983 had no running
compilers

– Just right - Probably Pascal in 1983, although it is now mostly a dead
language

• Other languages:
– C in 1988
– De facto standards: ML, SML, OCaml, Ruby
– Smalltalk - none
– Prolog - none

CMSC 330 36

Internationalization
• Programming has become international

– I18N issue - Internationalization - How to specify languages useful
in a global economy?

• Character sets:
– 1950s1960s – 6 bit sufficient (upper case, digits, special symbols

…)
– ASCII is a 7 bit 128 character code
– Single 8-bit byte; usual format today - 256 character values. A lot

in 1963, but insufficient today
• What about other languages?

– Additional letters: German umlaut-ä, French accent-é,
Scandanavian symbols-ö,

– Russian, other alphabets (Greek, Arabic, Hebrew), ideographs
(Chinese, Korean)?

– Unicode - 16 bit code allows for 65K symbols. 8-bit byte is
insufficient

internationalization vs. internationalisation

19

CMSC 330 37

Internationalization
• Some of the internationali*ation issues:

– What character codes to use?
– Collating sequences? - How do you alphabetize various

languages?
– Dates? – If I said your exam was on 10/12/07 when would you

show up?

• Time? - How do you handle time zones, summer time in
Europe, daylight savings time in US, Southern
hemisphere is 6 months out of phase with northern
hemisphere, Date to change from summer to standard
time is not consistent. Some zones 30 minutes off.

• Currency? - How to handle dollars, pounds, euros, etc.

CMSC 330 38

Summary

• Language design today must:
– Allow program solution to match physical structure of

problem
– Allow for world-wide use
– Be easy to prove solution correct

20

CMSC 330 39

Ruby

• An imperative, object-oriented scripting
language
– Created in 1993 by Yukihiro Matsumoto
– Similar in flavor to many other scripting languages

(e.g., perl, python)
– Much cleaner than perl
– Full object-orientation (even primitives are objects!)

CMSC 330 40

A Small Ruby Example
def greet(s)

print("Hello, ”)
print(s)
print("!\n”)

end

% irb # you’ll usually use “ruby” instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world")
Hello, world!
=> nil

intro.rb:

21

CMSC 330 41

OCaml

• A mostly-functional language
– Has objects, but won’t discuss (much)
– Developed in 1987 at INRIA in France
– Dialect of ML (1973)

• Natural support for pattern matching
– Makes writing certain programs very elegant

• Has a really nice module system
– Much richer than interfaces in Java or headers in C

• Includes type inference
– Types checked at compile time, but no annotations

CMSC 330 42

A Small OCaml Example
let greet s =

begin
print_string "Hello, ";
print_string s;
print_string "!\n"

end

$ ocaml
Objective Caml version 3.08.3

#use "intro.ml";;
val greet : string -> unit = <fun>
greet "world";;
Hello, world!
- : unit = ()

intro.ml:

