
1

CMSC 330: Organization of
Programming Languages

Ruby Regular Expressions
and other topics

CMSC 330 2

Reminders

• If you have questions about projects or
homework, please use the online forum

• No bragging about project progress

2

CMSC 330 3

Review

• formal parameters vs. actual parameters
• control statement (definition and examples)
• deep vs. shallow copy
• deep vs. shallow equality

CMSC 330 4

Standard Library: String
– "hello".index("l", 0)

• Return index of the first occurrence of string “l” in “hello”,
starting at 0

– "hello".sub("h", "j")
• Replace first occurrence of "h" by "j" in string (not permanent)
• Use gsub ("global" sub) to replace all occurrences

– "r1\tr2\t\tr3".split("\t")
• Return array of substrings delimited by tab

• Consider these three examples again
– All involve searching in a string for a certain pattern
– What if we want to find more complicated patterns?

• Find first occurrence of "a" or "b"
• Split string at tabs, spaces, and newlines

3

CMSC 330 5

Regular Expressions

• A way of describing patterns or sets of strings
– Searching and matching
– Formally describing strings

• The symbols (lexemes or tokens) that make up a language

• Common to lots of languages and tools
– awk, sed, perl, grep, Java, OCaml, C libraries, etc.

• Based on some really elegant theory
– We’ll see that soon

CMSC 330 6

Example Regular Expressions in Ruby

• /Ruby/
– Matches exactly the string "Ruby"
– Regular expressions can be delimited by /’s
– Use \ to escape /’s in regular expressions

• /(Ruby|OCaml|Java)/
– Matches either "Ruby", "OCaml", or "Java"

• /(Ruby|Regular)/ or /R(uby|egular)/
– Matches either "Ruby" or "Regular"
– Use ()’s for grouping; use \ to escape ()’s

4

CMSC 330 7

Using Regular Expressions

• Regular expressions are instances of Regexp
– we’ll see use of a Regexp.new later

• Basic matching using =~ method of String

• Can use regular expressions in index, search, etc.

line = gets # read line from standard input
if line =~ /Ruby/ then # returns nil if not found

puts "Found Ruby"
end

offset = line.index(/(MAX|MIN)/) # search starting from 0
line.sub(/(Perl|Python)/, "Ruby") # replace
line.split(/(\t|\n|)/) # split at tab, space,

newline

CMSC 330 8

Using Regular Expressions (cont’d)

• Invert matching using !~ method of String
– Matches strings that don't contain an instance of the

regular expression

5

CMSC 330 9

Repetition in Regular Expressions

• /(Ruby)*/
– {"", "Ruby", "RubyRuby", "RubyRubyRuby", ...}
– * means zero or more occurrences

• /Ruby+/
– {"Ruby", "Rubyy", "Rubyyy", ... }
– + means one or more occurrence
– so /e+/ is the same as /ee*/

CMSC 330 10

Repetition in Regular Expressions
• /(Ruby)?/

– {"", "Ruby"}
– ? means optional, i.e., zero or one occurrence

• /(Ruby){3}/
– {“RubyRubyRuby”, “RubyRubyRubyRuby”, …}
– {x} means repeat the search for at least x occurrences

• /(Ruby){3, 5}/
– {“RubyRubyRuby”, “RubyRubyRubyRuby”,

“RubyRubyRubyRubyRuby”}
– {x, y} means repeat the search for at least x occurrences and at

most y occurrences

6

CMSC 330 11

Watch Out for Precedence

• /(Ruby)*/ means {"", "Ruby", "RubyRuby", ...}
– But /Ruby*/ matches {"Rub", "Ruby", "Rubyy", ...}

• In general
– * {x} and + bind most tightly
– Then concatenation (adjacency of regular expressions)
– Then |

• Best to use parentheses to disambiguate

CMSC 330 12

Character Classes
• /[abcd]/

– {"a", "b", "c", "d"} (Can you write this another way?)
• /[a-zA-Z0-9]/

– Any upper or lower case letter or digit
• /[^0-9]/

– Any character except 0-9 (the ^ is like not and must
come first)

• /[\t\n]/
– Tab, newline or space

• /[a-zA-Z_\$][a-zA-Z_\$0-9]*/
– Java identifiers ($ escaped...see next slide)

7

CMSC 330 13

Special Characters
. any character
^ beginning of line
$ end of line
\$ just a $
\d digit, [0-9]
\s whitespace, [\t\r\n\f]
\w word character, [A-Za-z0-9_]
\D non-digit, [^0-9]
\S non-space, [^\t\r\n\f]
\W non-word, [^A-Za-z0-9_]

CMSC 330 14

Potential Character Class Confusions
^ inside character classes: not

outside character classes: beginning of line

[] inside regular expressions: character class
outside regular expressions: array

note: [a-z] does not make a valid array,
/(0..2)/ does not mean 012

() inside character classes: literal characters ()
outside character classes: used for grouping

- inside character classes: range (ex: a to z given by [a-z])
outside character classes: subtraction

8

CMSC 330 15

Regular Expression Practice

With a neighbor, make regular expressions
representing the following ideas:

• All lines beginning with a or b
• All lines containing at least two (only alphabetic)

words separated by white-space
• All lines where a and b alternate and appear at

least once
• An expression which would match both of these

lines (but not radically different ones):
CMSC330: Organization of Programming Languages: Fall 2007
CMSC351: Algorithms: Fall 2007

/^(a|b)/

/[a-zA-Z]+\s+[a-zA-Z]+/

/^((ab)+ a?)|(ba)+b?)$/

CMSC 330 16

Regular Expression Coding Readability

What if we want to specify the format of this line
exactly?

> ls -l

drwx------ 2 sorelle sorelle 4096 Feb 18 18:05 bin

-rw------- 1 sorelle sorelle 674 Jun 1 15:27 calendar

drwx------ 3 sorelle sorelle 4096 May 11 12:19 cmsc311

drwx------ 2 sorelle sorelle 4096 Jun 4 17:31 cmsc330

drwx------ 1 sorelle sorelle 4096 May 30 19:19 cmsc630

drwx------ 1 sorelle sorelle 4096 May 30 19:20 cmsc631

This is unreadable!

/^(d|-)(r|-)(w|-)(x|-)(r|-)(w|-)(x|-)(r|-)(w|-)(x|-)
(\s+)(\d+)(\s+)(\w+)(\s+)(\w+)(\s+)(\d+)(\s+)(Jan|Feb
|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)(\s+)(\d\d)
(\s+)(\d\d:\d\d)(\s+)(\S+)$/

9

CMSC 330 17

Regular Expression Coding Readability
Instead, we can do each part of the expression separately and then

combine them:

oneperm_re = '((r|-)(w|-)(x|-))'
permissions_re = '(d|-)' + oneperm_re + '{3}'
month_re = '(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)'
day_re = '\d{1,2}'; time_re = '(\d{2}:\d{2})'
date_re = month_re + '\s+' + day_re + '\s+' + time_re
total_re = '\d+'; user_re = '\w+'; group_re = '\w+'
space_re = '\d+'; filename_re = '\S+'

line_re = Regexp.new('^' + permissions_re + '\s+' + total_re
+ '\s+' + user_re + '\s+' + group_re + '\s+' +
space_re + '\s+' + date_re + '\s+' + filename_re + '$')

if line =~ line_re
puts "found it!"

end

CMSC 330 18

Method 1: Back-references

Two options to extract substrings based on R.E.’s:
• Use back-references

– Ruby remembers which strings matched the
parenthesized parts of r.e.’s

– These parts can be referred to using special variables
called back-references (named $1, $2,…)

10

CMSC 330 19

Back-reference Example

• Extract information from a report

• Warning: Despite their names, $1 etc are local
variables

gets =~ /^Min: (\d+) Max: (\d+)$/
min, max = $1, $2

def m(s)
s =~ /(Foo)/
puts $1 # prints Foo

end
m("Foo")
puts $1 # prints nil

sets min = $1
and max = $2

CMSC 330 20

Another Back-reference Example

• Warning 2: If another search is done, all back-
references are reset to nil

gets =~ /(h)e(ll)o/
puts $1
puts $2
gets =~ /h(e)llo/
puts $1
puts $2
gets =~ /hello/
puts $1

hello
h
ll
hello
e
nil
hello
nil

11

CMSC 330 21

Method 2: String.scan

• Also extracts substrings based on regular
expressions

• Can optionally use parentheses in regular
expression to affect how the extraction is done

• Has two forms which differ in what Ruby does
with the matched substrings
– The first form returns an array
– The second form uses a code block

• We’ll see this later

CMSC 330 22

First Form of the scan Method
• str.scan(regexp)

– If regexp doesn't contain any parenthesized subparts,
returns an array of matches

• An array of all the substrings of str which matched

• Note: these string are chosen sequentially from as yet
unmatched portions of the string, so while “330 Fall” does match
the regular expression above, it is not returned since “330” has
already been matched by a previous substring.

s = "CMSC 330 Fall 2007"
s.scan(/\S+ \S+/)
returns array ["CMSC 330", "Fall 2007"]

12

CMSC 330 23

First Form of the scan Method… part 2
– If regexp contains parenthesized subparts, returns an

array of arrays
• Each sub-array contains the parts of the string which

matched one occurrence of the search

• Each sub-array has the same number of entries as the
number of parenthesized subparts

• All strings that matched the first part of the search (or $1 in
back-reference terms) are located in the first position of each
sub-array

s = "CMSC 330 Fall 2007"
s.scan(/(\S+) (\S+)/) # [["CMSC", "330"],

["Fall", "2007"]]

CMSC 330 24

Practice with scan and back-references
> ls -l

drwx------ 2 sorelle sorelle 4096 Feb 18 18:05 bin

-rw------- 1 sorelle sorelle 674 Jun 1 15:27 calendar

drwx------ 3 sorelle sorelle 4096 May 11 2006 cmsc311

drwx------ 2 sorelle sorelle 4096 Jun 4 17:31 cmsc330

drwx------ 1 sorelle sorelle 4096 May 30 19:19 cmsc630

drwx------ 1 sorelle sorelle 4096 May 30 19:20 cmsc631

Extract just the file or directory name from a line using

• scan

• back-references

name = line.scan(/\S+$/) # [“bin”]

if line =~ /(\S+$)/
name = $1 # “bin”

end

13

CMSC 330 25

Standard Library: Array

• Arrays of objects are instances of class Array
– Arrays may be heterogeneous

a = [1, "foo", 2.14]

– C-like syntax for accessing elements, indexed from 0
x = a[0]; a[1] = 37

• Arrays are growable
– Increase in size automatically as you access elements

irb(main):001:0> b = []; b[0] = 0; b[5] = 0; puts b.inspect
[0, nil, nil, nil, nil, 0]

– [] is the empty array, same as Array.new

CMSC 330 26

Standard Library: Arrays (cont’d)

• Arrays can also shrink
– Contents shift left when you delete elements

a = [1, 2, 3, 4, 5]
a.delete_at(3) # delete at position 3; a = [1,2,3,5]
a.delete(2) # delete element = 2; a = [1,3,5]

• Can use arrays to model stacks and queues
a = [1, 2, 3]
a.push("a") # a = [1, 2, 3, "a"]
x = a.pop # x = "a"
a.unshift("b") # a = ["b", 1, 2, 3]
y = a.shift # y = "b"

note: push, pop,
shift, and unshift
all permanently
modify the array

14

CMSC 330 27

Iterating through Arrays

• It's easy to iterate over an array with while

• Looping through all elements of an array is very
common
– And there’s a better way to do it in Ruby

a = [1,2,3,4,5]
i = 0
while i < a.length

puts a[i]
i = i + 1

end

CMSC 330 28

Iteration and Code Blocks

• The Array class also has an each method,
which takes a code block as an argument

a = [1,2,3,4,5]
a.each { |x| puts x }

code block delimited by
{}’s or do...end parameter name

body

15

CMSC 330 29

More Examples of Code Blocks
• Sum up the elements of an array

• Print out each segment of the string as divided
up by commas (commas are printed trailing
each segment)
– Can use any delimiter

a = [1,2,3,4,5]
sum = 0
a.each { |x| sum = sum + x }
printf("sum is %d\n", sum)

s = "Student,Sally,099112233,A"
s.each(',') { |x| puts x }

(“delimiter” = symbol used to denote boundaries)

CMSC 330 30

Yet More Examples of Code Blocks

– n.times runs code block n times
– n.upto(m) runs code block for integers n..m
– a.find returns first element x of array such that the

block returns true for x
– a.collect applies block to each element of array and

returns new array (a.collect! modifies the original)

3.times { puts "hello"; puts "goodbye" }
5.upto(10) { |x| puts(x + 1) }
[1,2,3,4,5].find { |y| y % 2 == 0 }
[5,4,3].collect { |x| -x }

16

CMSC 330 31

Still Another Example of Code Blocks

– open method takes code block with file argument
• File automatically closed after block executed

– readlines reads all lines from a file and returns an
array of the lines read

• Use each to iterate

File.open("test.txt", "r") do |f|
f.readlines.each { |line| puts line }

end

CMSC 330 32

Using Yield to Call Code Blocks
• Any method can be called with a code block.

Inside the method, the block is called with yield.
• After the code block completes, control returns

to the caller after the yield instruction.
def countx(x)
for i in (1..x)

puts i
yield

end
end

countx(4) { puts "foo" }

1
foo
2
foo
3
foo
4
foo

17

CMSC 330 33

So What are Code Blocks?
• A code block is just a special kind of method

– { |y| x = y + 1; puts x } is almost the same as
– def m(y) x = y + 1; puts x end

• The each method takes a code block as an
argument
– This is called higher-order programming

• In other words, methods take other methods as arguments
• We’ll see a lot more of this in OCaml

• We’ll see other library classes with each methods
– And other methods that take code blocks as arguments
– As we saw, your methods can use code blocks too!

CMSC 330 34

Second Form of the scan Method

• Remember the scan method?
– Gave back an array of matches
– Can also take a code block as an argument

• str.scan(regexp) { |match| block }
– Applies the code block to each match
– Short for str.scan(regexp).each { |match| block }
– The regular expression can also contain

parenthesized subparts

18

CMSC 330 35

Example of Second Form of scan

Sums up three columns of numbers

sum_a = sum_b = sum_c = 0
while (line = gets)

line.scan(/(\d+)\s+(\d+)\s+(\d+)/) { |a,b,c|
sum_a += a.to_i
sum_b += b.to_i
sum_c += c.to_i

}
end
printf("Total: %d %d %d\n", sum_a, sum_b, sum_c)

12 34 23
19 77 87
11 98 3
2 45 0

input file:
will be read line by line, but
column summation is desired

converts the string
to an integer

CMSC 330 36

Standard Library: Hash

• A hash acts like an associative array
– Elements can be indexed by any kind of values
– Every Ruby object can be used as a hash key,

because the Object class has a hash method

• Elements are referred to using [] like array
elements, but Hash.new is the Hash constructor
italy["population"] = 58103033

italy["continent"] = "europe"

italy[1861] = "independence"

19

CMSC 330 37

Hash (cont’d)

• The Hash method values returns an array of a
hash’s values (in some order)

• And keys returns an array of a hash’s keys (in
some order)

• Iterating over a hash:
italy.keys.each {

|key| puts("key: #{key}, value: #{italy[key]}")

}

CMSC 330 38

Hash (cont’d)

Convenient syntax for creating literal hashes
– Use { key => value, ... } to create hash table

credits = {
"cmsc131" => 4,
"cmsc330" => 3,

}

x = credits["cmsc330"] # x now 3
credits["cmsc311"] = 3

20

CMSC 330 39

Standard Library: File

• Lots of convenient methods for IO
File.new("file.txt", "rw") # open for rw access
f.readline # reads the next line from a file
f.readlines # returns an array of all file lines
f.eof # return true if at end of file
f.close # close file
f << object # convert object to string and write to f
$stdin, $stdout, $stderr # global variables for standard UNIX IO

By default stdin reads from keyboard, and stdout and stderr both
write to terminal

• File inherits some of these methods from IO

CMSC 330 40

Exceptions

• Use begin...rescue...ensure...end
– Like try...catch...finally in Java

begin
f = File.open("test.txt", "r")
while !f.eof

line = f.readline
puts line

end
rescue Exception => e

puts "Exception:" + e.to_s +
" (class " + e.class.to_s + ")”

ensure
f.close

end

Class of exception
to catch

Local name
for exception

Always happens

21

CMSC 330 41

Practice: Amino Acid counting in DNA

Write a function that will take a filename and read
through that file counting the number of times
each group of three letters appears so these
numbers can be accessed from a hash.

(assume: the number of chars per line is a multiple of 3)

gcggcattcagcacccgtatactgttaagcaatccagatttttgtgtataacataccggc
catactgaagcattcattgaggctagcgctgataacagtagcgctaacaatgggggaatg
tggcaatacggtgcgattactaagagccgggaccacacaccccgtaaggatggagcgtgg
taacataataatccgttcaagcagtgggcgaaggtggagatgttccagtaagaatagtgg
gggcctactacccatggtacataattaagagatcgtcaatcttgagacggtcaatggtac
cgagactatatcactcaactccggacgtatgcgcttactggtcacctcgttactgacgga

CMSC 330 42

Practice: Amino Acid counting in DNA

def countaa(filename)
file = File.new(filename, "r")
arr = file.readlines
hash = Hash.new
arr.each{ |line|

acids = line.scan(/.../)
acids.each{ |aa|

if hash[aa] == nil
hash[aa] = 1

else
hash[aa] += 1

end
}

}
end

initialize
the hash, or
you will get
an error
about trying
to index into
an array with
a string

get the
file
handle

array of
lines
from the
file

for each
line in
the file

for each
triplet
in the
line

get an array
of triplets
in the line

