CMSC 330: Organization of Programming Languages

Theory of Regular Expressions

The Theory Behind r.e.’s

• That’s it for the basics of Ruby
 – If you need other material for your project, come to office hours or check out the documentation

• Next up: How do r.e.’s really work?
 – Mixture of a very practical tool (string matching with r.e.’s) and some nice theory
 – A great computer science result
A Few Questions about Regular Expressions

- What does a regular expression represent?
 - Just a set of strings
- What are the basic components of r.e.'s?
 - E.g., we saw that e^+ is the same as ee^*
- How are r.e.'s implemented?
 - We'll see how to build a structure to parse r.e.'s

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ϵ is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$
 - Note: \emptyset is the empty set (with 0 elements); $\emptyset \neq \{ \epsilon \}$

- Example strings:
 - $0101 \in \Sigma = \{0,1\}$ (binary)
 - $0101 \in \Sigma = \text{decimal}$
 - $0101 \in \Sigma = \text{alphanumeric}$

Definition: Concatenation

- Concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $\epsilon s = \epsilon = s $
 - You can concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h,e,r,o\}$, then $s_1s_2 = \text{superhero} \in \Sigma_3 = \{e,h,o,p,r,s,u\}$
Definition: Language

• A language is a set of strings over an alphabet.

Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 – Give an example element of this language: (123) 456-7890
 – Are all strings over the alphabet in the language? No
 – Is there a Ruby regular expression for this language? No

Example: The set of all strings over Σ – Often written Σ^*

Languages (cont’d)

• Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 – $\{s \mid s \in \Sigma^* \text{ and } |s| = 0\} = \{\} \neq \emptyset$

• Example: The set of all valid Ruby programs
 – Is there a Ruby regular expression for this language?

No. Matching brackets so they are balanced is impossible. $\{\{\}\}$ or $\{3\}^3$ or, in general, $\{n\}^n$

• Can r.e.’s represent all possible languages?
 – The answer turns out to be no!
 – The languages represented by regular expressions are called, appropriately, the regular languages.
Operations on Languages

• Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ
• Concatenation L_1L_2 is defined as
 - $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
 - Example: $L_1 = \{\text{“hi”}, \text{“bye”}\}$, $L_2 = \{\text{“1”}, \text{“2”}\}$
 • $L_1L_2 = \{\text{“hi1”}, \text{“hi2”}, \text{“bye1”}, \text{“bye2”}\}$
• Union is defined as
 - $L_1\cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
 - Example: $L_1 = \{\text{“hi”}, \text{“bye”}\}$, $L_2 = \{\text{“1”}, \text{“2”}\}$
 • $L_1\cup L_2 = \{\text{“hi”}, \text{“bye”}, \text{“1”}, \text{“2”}\}$

Operations on Languages (cont’d)

• Define L^n inductively as
 - $L^0 = \{\epsilon\}$
 - $L^n = LL^{n-1}$ for $n > 0$
• In other words,
 - $L^1 = LL^0 = L\{\epsilon\} = L$
 - $L^2 = LL^1 = LL$
 - $L^3 = LL^2 = LLL$
 - ...
Examples of L^n

- Let $L = \{a, b, c\}$
- Then
 - $L^0 = \{\epsilon\}$
 - $L^1 = \{a, b, c\}$
 - $L^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$

Operations on Languages (cont’d)

- **Kleene closure** is defined as
 \[L^* = \bigcup_{i=0}^{\infty} L^i \]
- In other words...
 \[L^* \text{ is the language (set of all strings) formed by concatenating together zero or more strings from } L \]
Definition of Regexps

• Given an alphabet Σ, the *regular expressions* over Σ are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ϵ</td>
<td>${\epsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

• ...
The Language Denoted by an r.e.

- For a regular expression e, we will write $[[e]]$ to mean the language denoted by e
 - $[[a]] = \{a\}$
 - $[[a|b]] = \{a, b\}$

- If $s \in [[re]]$, we say that re accepts, describes, or recognizes s.

Example 1

- All strings over $\Sigma = \{a, b, c\}$ such that all the a's are first, the b's are next, and the c's last
 - Example: aaabbbcccc but not abcb

- Regexp: $a^*b^*c^*$
 - This is a valid regexp because:
 - a is a regexp ($[[a]] = \{a\}$)
 - a^* is a regexp ($[[a^*]] = \{\varepsilon, a, aa, \ldots\}$)
 - Similarly for b^* and c^*
 - So $a^*b^*c^*$ is a regular expression

(Remember that we need to check this way because regular expressions are defined inductively.)
Which Strings Does a*b*c* Recognize?

<table>
<thead>
<tr>
<th>String</th>
<th>Recognized</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabbbcc</td>
<td>Yes; aa ∈ [[a*]], bbb ∈ [[b*]], and cc ∈ [[c*]], so entire string is in [[abc*]]</td>
</tr>
<tr>
<td>abb</td>
<td>Yes, abb = abbε, and ε ∈ [[c*]]</td>
</tr>
<tr>
<td>ac</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>Yes</td>
</tr>
<tr>
<td>aacbc</td>
<td>No</td>
</tr>
<tr>
<td>abcd</td>
<td>No -- outside the language</td>
</tr>
</tbody>
</table>

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- Regexp: $(a|b|c)^*$
- Other regular expressions for the same language?
 - $(c|b|a)^*$
 - $(a^*|b^*|c^*)^*$
 - $(a*b*c^*)^*$
 - $((a|b|c)^*|abc)$
 - etc.
Example 3

- All whole numbers containing the substring 330
- Regular expression: \((0|1|...|9)*330(0|1|...|9)*\)
- What if we want to get rid of leading 0’s?
- \((1|...|9)(0|1|...|9)*330(0|1|...|9)* | 330(0|1|...|9)*\)
- Any other solutions?

- Challenge: What about all whole numbers not containing the substring 330?
 - Is it recognized by a regexp? Yes. We'll see how to find it later…

Example 4

- What is the English description for the language that \((10|0)^*(10|1)^*\) denotes?
 - \((10|0)^*\)
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - \((10|1)^*\)
 - 1 may appear anywhere
 - 0 must always be preceded by 1
 - Put together, all strings of 0’s and 1’s where every pair of adjacent 0’s precedes any pair of adjacent 1’s
What Strings are in \((10|0)^*(10|1)^*\) ?

00101000 110111101
 First part in \([(10|0)^*]\)
 Second part in \([(10|1)^*]\)
 Notice that 0010 also in \([(10|0)^*]\)
 But remainder of string is not in \([(10|1)^*]\)

0010101
 Yes

101
 Yes

011001
 No

Example 5

- What language does this regular expression recognize?
 \(\left((1|\epsilon)(0|1|...|9) \mid (2(0|1|2|3)) \right): (0|1|...|5)(0|1|...|9)\)

- All valid times written in 24-hour format
 - 10:17
 - 23:59
 - 0:45
 - 8:30
Two More Examples

- \((000|001)^*\)
 - Any string of 0's and 1's with no single 0's
- \((00|0000)^*\)
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 - \(000000 = 00\cdot00\cdot00 = 00\cdot0000 = 0000\cdot00\)
 - How else could we express this language?
 - \((00)^*\)
 - \((00|000000)^*\)
 - \((00|0000|000000)^*\)
 - etc…

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma\)
 - \(\{a^n b^n \mid n > 0\}\) (\(a^n\) = sequence of \(n a's\))
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

- Almost all of the features we've seen for Ruby r.e.'s can be reduced to this formal definition
 - `/Ruby/` – concatenation of single-character r.e.'s
 - `/Ruby|Regular/` – union
 - `/Ruby*/` – Kleene closure
 - `/Ruby+/` – same as `(Ruby)(Ruby)*`
 - `/Ruby?/` – same as `(ε|(Ruby))` (ε is ε)
 - `/[a-z]/` – same as (a|b|c|...|z)
 - `/[^0-9]/` – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
 - `^, $` – correspond to extra characters in alphabet

Implementing Regular Expressions

- We can implement regular expressions by turning them into a *finite automaton*
 - A “machine” for recognizing a regular language
Example

- Machine starts in start or initial state
- Repeat until the end of the string is reached:
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- The string is accepted if the automaton is in a final or accepting state when the end of the string is reached
Example

What Language is This?

- All strings over \{0, 1\} that end in 1
- What is a regular expression for this language?
 \((0|1)^*1\)
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - the strings recognized by the DFA are over this set
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - How many can there be?
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
 - What's this definition saying that \(\delta\) is?

More on DFAs

- A finite state automata can have more than one final state:

- A string is accepted as long as there is at least one path to a final state
Our Example, Formally

- $\Sigma = \{0, 1\}$
- $Q = \{S_0, S_1\}$
- $q_0 = S_0$
- $F = \{S_1\}$

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>S_0</td>
<td>S_1</td>
</tr>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>S_1</td>
</tr>
</tbody>
</table>

Another Example

(a, b, c notation shorthand for three self loops)
Another Example (cont’d)

What language does this DFA accept? a*b*c*

S3 is a dead state – a nonfinal state with no transition to another state.

Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?

Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit.
What Lang. Does This DFA Accept?

\[a^*b^*c^* \]

again, so DFAs are not unique

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^*\)

 all strings with length a multiple of 5

- \((01)^*|(10)^*|(01)^*0|(10)^*1\)

 all alternating binary strings

all binary strings containing the substring “11”
Practice

Give the regular expressions and DFAs for the following languages:

• You and your neighbors’ names
• All valid DNA strings (including only ACGT and appearing in multiples of 3)
• All binary strings containing an even length substring of all 1’s
• All binary strings containing exactly two 1’s
• All binary strings that start and end with the same number