CMSC 330: Organization of Programming Languages

Theory of Regular Expressions
DFA and NFAs

Reminders
- Project 1 due Sep. 24
- Homework 1 posted
- Exam 1 on Sep. 25
- Exam topics list posted
- Practice homework (and solutions) posted

Previous Course Review
- \(\{ s \mid s \text{ defined} \} \) means the set of string \(s \) such that \(s \) is chosen or defined as given
- \(s \in A \) means \(s \) is an element of the set \(A \)
- De Morgan’s Laws:
 \[
 (A \cap B)^c = A^c \cup B^c \\
 (A \cup B)^c = A^c \cap B^c
 \]
- There exists and for all symbols
- Etc...

Review
- Basic parts of a regular expression?
 - Concatenation, \(\cdot \), \(* \), \(\epsilon \), \(\emptyset \), \((a) \)
- What does a DFA do?
- Basic parts of a DFA?
 - Alphabet, set of states, start state, final states, transition function \((X, Q, q_0, F, \delta) \)

Example DFA
- \(S_0 = \) “Haven’t seen anything yet” OR “seen zero or more b’s” OR “Last symbol seen was a b”
- \(S_1 = \) “Last symbol seen was an a”
- \(S_2 = \) “Last two symbols seen were ab”
- \(S_3 = \) “Last three symbols seen were abb”
- Language?
 - \((ab)^*abb \)

Notes about the DFA definition
- Can not have more than one transition leaving a state on the same symbol
 - the transition function must be a valid function
- Can not have transitions with no or empty labels
 - the transitions must be labeled by alphabet symbols
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - There may be 0, 1, or many
 - \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions
 - Transitions on \(\epsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Another example DFA

```
DFA

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Language?
- \((ab|aba)*\)

NFA for \((ab|aba)^\star\)

```
NFA

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>
```

- \(aba\) – Has paths to states \(S0, S1\)
- \(ababa\) – Has paths to \(S0, S1\)
 - Need to use \(\epsilon\)-transition

Relating R.E.'s to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(e\), construct NFA: \(<e> = (\Sigma, Q, q_0, F, \delta)\)
 - Remember r.e. defined recursively from primitive r.e. languages
 - Invariant: |\(F| = 1\) in our NFAs
 - Recall \(F\) = set of final states
 - Base case: \(a\)

```
NFA

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
</tbody>
</table>
```

\(<e> = ((a), (S0, S1), S0, (S1), ((S0, a, S1)))\)
Reduction (cont’d)

- Base case: ε

$$\langle \varepsilon \rangle = (\varepsilon, \{S0\}, \{S0\}, \emptyset)$$

- Base case: \emptyset

$$\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, \emptyset, \{\emptyset\}, \emptyset)$$

Induction: AB

$$\langle A \rangle = (S0, QA, qA, \{fA\}, S0)$$

$$\langle B \rangle = (S0, QB, qB, \{fB\}, S0)$$

$$\langle AB \rangle = (S0, QA \cup QB, qA, \{fB\}, S0, \{fA, \varepsilon, qB\})$$

Practice

- Draw the NFA for these regular expressions using exactly the reduction method:
 - ab
 - $hello$

- Write the formal (5-tuple) NFA for the same regular expressions

Induction: $(A|B)$

$$\langle A \rangle = (S0, QA, qA, \{fA\}, S0)$$

$$\langle B \rangle = (S0, QB, qB, \{fB\}, S0)$$

$$\langle (A|B) \rangle = (S0, QA \cup QB, qA, \{fB\}, S0, \{fA, \varepsilon, S1\}, \{fB, \varepsilon, S1\})$$
Practice

- Draw the NFA for these regular expressions using exactly the reduction method:
 - \(a b \mid bc \)
 - \(\text{hello} \mid \text{hi} \)

- Write the formal NFA for the same regular expressions

Reduction (cont’d)

- Induction: \(A^* \)

\[
\begin{align*}
\text{Reduction Complexity} & \quad \text{Practice} \\
\text{Reduction (cont’d)} & \quad \text{Practice}
\end{align*}
\]

Reduction Complexity

- Given a regular expression \(A \) of size \(n \)...
 Size = \# of symbols + \# of operations

- How many states does \(<A> \) have?
 - 2 added for each \(| \), 2 added for each \(* \)
 - \(O(n) \)
 - That’s pretty good!

Practice

Draw NFAs for the following regular expressions and languages:
- \((0|1)^*110^* \)
- \(101^*111 \)
- all binary strings ending in 1 (odd numbers)
- all alphabetic strings which come after “hello” in alphabetic order
- \((ab^*c|d^*a|ab)d \)
Handling ε-transitions

What if we want to remove all those unneeded ε-transitions?

First, some definitions:
- We say: \(p \xrightarrow{\varepsilon} q \)
 - if it is possible to transition from state \(p \) to state \(q \) taking only ε-transitions
 - if \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) (\(p \neq q \)) such that
 \(\{p, \varepsilon, p_1\} \subseteq \delta, \{p_1, \varepsilon, p_2\} \subseteq \delta, \ldots, \{p_n, \varepsilon, q\} \subseteq \delta \)

ε-closure

- For any state \(p \), the ε-closure of \(p \) is defined as the set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \)
- \(\{q \mid p \xrightarrow{\varepsilon} q \} \)

Example

- What’s the ε-closure of \(S_2 \) in this NFA?

 ![NFA Diagram](image)

 - \(\{S_2, S_0\} \)

Example

- Find the ε-closure for each of the states in this NFA:

 ![NFA Diagram](image)

- Make the NFA for the regular expression
 - \((0|1^*)111(0^*1) \)

- Find the epsilon closure for each of the states of your NFA