CMSC 330: Organization of
Programming Languages

Theory of Regular Expressions
DFAs and NFAs

Reminders

* Project 1 due Sep. 24
* Homework 1 posted
» Exam 1 on Sep. 25

» Exam topics list posted
* Practice homework (and solutions) posted

CMSC 330 2

Previous Course Review

Review

* {s | s defined} means the set of string s such
that s is chosen or defined as given

* s € Ameans s is an element of the set A
» De Morgan’s Laws:

(AN B)¢ = A° U B¢

(AUB)Y = AN B¢

» There exists and for all symbols
» Etc...

CMSC 330 3

+ Basic parts of a regular expression?

concatenation, |, *, & @, {a}

* What does a DFA do?

» Basic parts of a DFA?
alphabet, set of states, start state, final states,

transition function (X, Q, q,, F, &)

CMSC 330 4

Example DFA

Notes about the DFA definition

b

— S0 = “Haven'’t seen anything yet” OR “seen zero or more b’s” OR
“Last symbol seen was a b”

— S1="“Last symbol seen was an a”

— S2 = “Last two symbols seen were ab”

— S3 = “Last three symbols seen were abb”
» Language?
+ (alb)*abb

CMSC 330 5

+ Can not have more than one transition leaving a
state on the same symbol
— the transition function must be a valid function)

» Can not have transitions with no or empty labels
— the transitions must be labeled by alphabet symbols

CMSC 330 6

Nondeterministic Finite Automata (NFA)

» An NFAis a 5-tuple (Z, Q, qq, F, 8) where
— X is an alphabet
— Qs a nonempty set of states
— qoe Q is the start state
— F € Qis the set of final states
« There may be 0, 1, or many
-8 < Qx(Xu{e}) x Q specifies the NFA's transitions

« Transitions on ¢ are allowed — can optionally take these
transitions without consuming any input

« Can have more than one transition for a given state and symbol
* An NFA accepts s if there is at least one path from
its start to final state on s

CMSC 330 7

NFA for (a|b)*abb

ab
* ba
— Has paths to either SO or S1
— Neither is final, so rejected
* babaabb

— Has paths to different states
— One leads to S3, so accepted

CMSC 330 8

Another example DFA

* Language?
* (ablaba)*

CMSC 330 9

NFA for (ablaba)*

* aba

— Has paths to states SO, S1
* ababa

— Has paths to S0, S1

— Need to use e-transition

CMSC 330 10

Relating R.E.'s to DFAs and NFAs

* Regular expressions, NFAs, and DFAs accept
the same languages!

can

transform
DFA NFA
can can
transform transform
r.e. (we'll discuss this next)
CMSC 330 1

Reducing Regular Expressions to NFAs

* Goal: Given regular expression e, construct NFA: <e> =
(2,Q, a0 F, %)
— Remember r.e. defined recursively from primitive r.e. languages
— Invariant: |F| =1 in our NFAs
* Recall F = set of final states

<a> = ({a}, {SO, S1}, SO, {S1}, {(S0, a, S1)})

+ Base case: a

CMSC 330 12

Reduction (cont’d)

Reduction (cont’d)

* Base case: ¢

<e> = (¢, {S0}, SO, {S0}, @)

v e

<> = (, {80, $1}, S0, {S1}, @)

CMSC 330 13

» Base case:

* Induction: AB

IeLacier:

<A>

CMSC 330 14

Reduction (cont’d)

Practice

* Induction: AB

CASACRCARAS

<A>

— <A> = (Z,, Qu, G, {fa), B)
- = (%5, Qg, 9, {fg}, Os)
— <AB> = (ZpUZg, QuUQg, . {fa}, 5aUBU{(fa, €, G})

CMSC 330 15

+ Draw the NFA for these regular expressions
using exactly the reduction method:
—ab
— hello

» Write the formal (5-tuple) NFA for the same
regular expressions

CMSC 330 16

Reduction (cont’d)

Reduction (cont’d)

* Induction: (A|B)

O 30
o @

CMSC 330 17

* Induction: (A|B) .@ °

— <A>= (Z,, Qo (fA}, 8p)
- = (Zg, Qg, 9, {fs}, Os)
- <(AIB)> = (ZAUZs, QuUQEU{SO,S1}, SO, {S1},
BaU BgU{(S0.€,0n), (SO,¢,0p), (fae.S1), (fa.e.S1)})

CMSC 330 18

Practice

Reduction (cont’d)

+ Draw the NFA for these regular expressions
using exactly the reduction method:
—ab|bc
— hello | hi

» Write the formal NFA for the same regular
expressions

CMSC 330 19

e Induction: A*

O @

CMSC 330 20

Reduction (cont’d)

Practice

e Induction: A*

— <A>= (Z,, Qa, Qa, {fa}, O4)
— <A*> = (Z,, Q,U{S0,S1}, SO, {S1},
BaU{(fA£,51), (S0,£,04), (SO,£,81), (S1,£,S0)})

CMSC 330 21

+ Draw the NFA for these regular expressions
using exactly the reduction method:
— (ab | bc*)*
— hello | (hi)*

» Write the formal NFA for the same regular
expressions

CMSC 330 22

Reduction Complexity

Practice

» Given a regular expression A of size n...
Size = # of symbols + # of operations

* How many states does <A> have?
— 2 added for each |, 2 added for each *
- O(n)
— That's pretty good!

CMSC 330 23

Draw NFAs for the following regular expressions
and languages:

« (O|1)*110*
« 101*]111
« all binary strings ending in 1 (odd numbers)

« all alphabetic strings which come after “hello” in
alphabetic order

* (ab*c|d*alab)d

CMSC 330 24

Handling e-transitions

e-closure

What if we want to remove all those unneeded ¢-
transitions?

First, some definitions:
* Wesay: p Sq
— if it is possible to transition from state p to state q
taking only e-transitions

—if3p, Py, Pas --- Py G € Q (p #Qq) such that
{paﬁapl} EJ) {plafapQ} € 5,---,{?11;5;'7} €d

CMSC 330 25

» For any state p, the g-closure of p is defined as
the set of states q such that p = g

{9l p5q}

CMSC 330 26

Example

Example

* What's the e-closure of S2 in this NFA?

. {S2, S0}

CMSC 330 27

» Find the e-closure for each of the states in this
NFA:

CMSC 330 28

Example

+ Make the NFA for the regular expression
—(0]1*)111(0*|1)

» Find the epsilon closure for each of the states of
your NFA

CMSC 330 29

