
1

CMSC 330: Organization of
Programming Languages

Theory of Regular Expressions
DFAs and NFAs

CMSC 330 2

Reminders

• Project 1 due Sep. 24
• Homework 1 posted
• Exam 1 on Sep. 25

• Exam topics list posted
• Practice homework (and solutions) posted

CMSC 330 3

Previous Course Review

• {s | s defined} means the set of string s such
that s is chosen or defined as given

• s ∈ A means s is an element of the set A
• De Morgan’s Laws:

• There exists and for all symbols
• Etc…

CMSC 330 4

Review

• Basic parts of a regular expression?

• What does a DFA do?

• Basic parts of a DFA?

concatenation, |, *, εεεε, ∅∅∅∅, {a}

alphabet, set of states, start state, final states,

transition function (����, Q, q0, F, ����)

CMSC 330 5

Example DFA

– S0 = “Haven’t seen anything yet” OR “seen zero or more b’s” OR
“Last symbol seen was a b”

– S1 = “Last symbol seen was an a”
– S2 = “Last two symbols seen were ab”
– S3 = “Last three symbols seen were abb”

• Language?
• (a|b)*abb

CMSC 330 6

Notes about the DFA definition

• Can not have more than one transition leaving a
state on the same symbol
– the transition function must be a valid function)

• Can not have transitions with no or empty labels
– the transitions must be labeled by alphabet symbols

2

CMSC 330 7

Nondeterministic Finite Automata (NFA)

• An NFA is a 5-tuple (�, Q, q0, F, �) where
– � is an alphabet
– Q is a nonempty set of states
– q0� Q is the start state
– F � Q is the set of final states

• There may be 0, 1, or many

– � � Q x (� � {�}) x Q specifies the NFA's transitions
• Transitions on � are allowed – can optionally take these

transitions without consuming any input
• Can have more than one transition for a given state and symbol

• An NFA accepts s if there is at least one path from
its start to final state on s

CMSC 330 8

NFA for (a|b)*abb

• ba
– Has paths to either S0 or S1
– Neither is final, so rejected

• babaabb
– Has paths to different states
– One leads to S3, so accepted

CMSC 330 9

• Language?
• (ab|aba)*

Another example DFA

CMSC 330 10

NFA for (ab|aba)*

• aba
– Has paths to states S0, S1

• ababa
– Has paths to S0, S1
– Need to use �-transition

CMSC 330 11

Relating R.E.'s to DFAs and NFAs

• Regular expressions, NFAs, and DFAs accept
the same languages!

DFA NFA

r.e.

can
transform

can
transform

can
transform

(we’ll discuss this next)

CMSC 330 12

Reducing Regular Expressions to NFAs

• Goal: Given regular expression e, construct NFA: <e> =
(�, Q, q0, F, �)
– Remember r.e. defined recursively from primitive r.e. languages
– Invariant: |F| = 1 in our NFAs

• Recall F = set of final states

• Base case: a

<a> = ({a}, {S0, S1}, S0, {S1}, {(S0, a, S1)})

3

CMSC 330 13

Reduction (cont’d)

• Base case: �

<�> = (�, {S0}, S0, {S0}, �)

• Base case: �

<�> = (�, {S0, S1}, S0, {S1}, �)
CMSC 330 14

Reduction (cont’d)

• Induction: AB

<A>

CMSC 330 15

Reduction (cont’d)

• Induction: AB

– <A> = (�A, QA, qA, {fA}, �A)
– = (�B, QB, qB, {fB}, �B)
– <AB> = (�A��B, QA�QB, qA, {fB}, �A� �B�{(fA, �, qB)})

<A>

CMSC 330 16

Practice

• Draw the NFA for these regular expressions
using exactly the reduction method:
– ab
– hello

• Write the formal (5-tuple) NFA for the same
regular expressions

CMSC 330 17

Reduction (cont’d)

• Induction: (A|B)

CMSC 330 18

• Induction: (A|B)

– <A> = (�A, QA, qA, {fA}, �A)
– = (�B, QB, qB, {fB}, �B)
– <(A|B)> = (�A��B, QA�QB�{S0,S1}, S0, {S1},

�A� �B�{(S0,�,qA), (S0,�,qB), (fA,�,S1), (fB,�,S1)})

Reduction (cont’d)

4

CMSC 330 19

Practice

• Draw the NFA for these regular expressions
using exactly the reduction method:
– ab | bc
– hello | hi

• Write the formal NFA for the same regular
expressions

CMSC 330 20

Reduction (cont’d)

• Induction: A*

CMSC 330 21

Reduction (cont’d)

• Induction: A*

– <A> = (�A, QA, qA, {fA}, �A)
– <A*> = (�A, QA�{S0,S1}, S0, {S1},

�A�{(fA,�,S1), (S0,�,qA), (S0,�,S1), (S1,�,S0)})

CMSC 330 22

Practice

• Draw the NFA for these regular expressions
using exactly the reduction method:
– (ab | bc*)*
– hello | (hi)*

• Write the formal NFA for the same regular
expressions

CMSC 330 23

Reduction Complexity

• Given a regular expression A of size n...
Size = # of symbols + # of operations

• How many states does <A> have?
– 2 added for each |, 2 added for each *
– O(n)
– That’s pretty good!

CMSC 330 24

Practice

Draw NFAs for the following regular expressions
and languages:

• (0|1)*110*
• 101*|111
• all binary strings ending in 1 (odd numbers)
• all alphabetic strings which come after “hello” in

alphabetic order
• (ab*c|d*a|ab)d

5

CMSC 330 25

Handling ε-transitions

What if we want to remove all those unneeded ε-
transitions?

First, some definitions:
• We say:

– if it is possible to transition from state p to state q
taking only ε-transitions

– if ∃ p, p1, p2, … pn, q ∈ Q (p ≠ q) such that

CMSC 330 26

ε-closure

• For any state p, the ε-closure of p is defined as
the set of states q such that

• {q | }

CMSC 330 27

Example

• What’s the ε-closure of S2 in this NFA?

• {S2, S0}

CMSC 330 28

Example

• Find the ε-closure for each of the states in this
NFA:

CMSC 330 29

Example

• Make the NFA for the regular expression
– (0|1*)111(0*|1)

• Find the epsilon closure for each of the states of
your NFA

