CMSC 330: Organization of Programming Languages

Theory of Regular Expressions
NFA → DFA

Reminders
- Homework 1 due Sep. 20
- Project 1 due Sep. 24
- Exam 1 on Sep. 25
 - Study this weekend!

- Project 2 given out on Sep. 24.
 - Start soon!
Review

- How are DFAs and NFAs different?
- When does an NFA accept a string?
- How do we convert from a regular expression to an NFA?
- What is the ε-closure of a state?

Relating R.E.'s to DFAs and NFAs

(we’ll discuss this next)
Reduction Complexity

- Regular expression to NFA reduction:
 - $O(n)$

- NFA to DFA reduction
 - Intuition: Build DFA where each DFA state represents a set of NFA states
 - How many states could there be in the DFA?
 - Given NFA with n states, DFA may have 2^n states
 - Not so good, since DFAs are what we can implement easily

NFA \rightarrow DFA reduction

Example:
NFA → DFA reduction Algorithm

- Let \(r_0 \) be the \(\epsilon \)-closure of \(q_0 \), add it to \(R \)
- While there is an unmarked state \(r_i \) in \(R \)
 - Mark \(r_i \)
 - For each \(a \in \Sigma \)
 - Let \(S = \{ s | q \in r_i \text{ and for } \{ q, a, B \} \in \delta, s \in B \} \)
 - Let \(E = \epsilon\)-closure(\(S \))
 - If \(E \notin R \)
 - \(R = E \cup R \)
 - \(\delta = \delta \cup \{ r_i, a, E \} \)
- Let \(r_f = \{ r_i | \exists s \in r_i \text{ with } s \in q_f \} \)

Notes: Let \(Q \) be the set of states for the NFA and \(R \) be the set of states for the DFA. All states are unmarked at creation.

NFA → DFA example

Language?
All strings that have exactly 1 b and end in b or the string a

Regular expression?
\(a*b|a \)
Practice

Convert the NFA to a DFA:

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\} represents a path from A to D in the original NFA.
Relating R.E.'s to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

Converting from DFAs to REs

- General idea:
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Relating R.E’s to DFAs and NFAs

• Why do we want to convert between these?
 – Can make it easier to express ideas
 – Can be easier to implement

Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '
': printf("rejected
"); return 0;
            default: printf("rejected
"); return 0;
        }
    }
    break;
    case 1: switch (symbol) {
        case '0': cur_state = 0; break;
        case '1': cur_state = 1; break;
        case '
': printf("accepted
"); return 1;
        default: printf("rejected
"); return 0;
    }
    break;
    default: printf("unknown state; I'm confused
");
    break;
}
```
Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(s\) of the input string)
\(q := \delta(q, s);\)
if \(q \in F\) then
accept
else reject

– \(q\) is just an integer
– Represent \(\delta\) using arrays or hash tables
– Represent \(F\) as a set

Run Time of Algorithm

• Given a string \(s\), how long does algorithm take to decide whether \(s\) is accepted?
 – Assume we can compute \(\delta(q_0, c)\) in constant time
 – Then the time per string \(s\) to determine acceptance is \(O(|s|)\)
 – Can’t get much faster!
• But recall that constructing the DFA from the regular expression \(A\) may take \(O(2^{|A|})\) time
 – But this is usually not the case in practice
• So there’s the initial overhead, but then accepting strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the r.e.
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages: nonstandard, plus can have higher complexity

Considering Ruby Again

- Interpreted
- Implicit declarations
- Dynamically typed
 - These three make it quick to write small programs
- Built-in regular expressions and easy string manipulation
 - This and the three above are the hallmark of scripting languages
- Object-oriented
 - Everything (!) is an object
- Code blocks
 - Easy higher-order programming!
 - Get ready for a lot more of this...
Other Scripting Languages

- Perl and Python are also popular scripting languages
 - Also are interpreted, use implicit declarations and dynamic typing, have easy string manipulation
 - Both include optional “compilation” for speed of loading/execution
- Will look fairly familiar to you after Ruby
 - Lots of the same core ideas
 - All three have their proponents and detractors
 - Use whichever one you like best

Practice

Convert to a DFA:

Convert to an NFA and then to a DFA:
- \((0|1)^*11|0^*\)
- strings of alternating 0 and 1
- aba*|(ba|b)
Complement of DFA

Given a DFA accepting language L, how can we create a DFA accepting its complement? (the alphabet = {a,b})

Complement Steps

- Add implicit transitions to a dead state
- Change every accepting state to a non-accepting state and every non-accepting state to an accepting state
- Note: this *only* works with DFAs - Why?
Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

Practice

- Make the DFA which accepts all strings with a substring of 330
- Take the complement of this DFA