
1

CMSC 330: Organization of
Programming Languages

Theory of Regular Expressions
NFAs → DFAs

CMSC 330 2

Reminders

• Homework 1 due Sep. 20
• Project 1 due Sep. 24
• Exam 1 on Sep. 25

– Study this weekend!

• Project 2 given out on Sep. 24.
– Start soon!

2

CMSC 330 3

Review

• How are DFAs and NFAs different?

• When does an NFA accept a string?

• How do we convert from a regular expression to
an NFA?

• What is the ε-closure of a state?

CMSC 330 4

Relating R.E.'s to DFAs and NFAs

DFA NFA

r.e.

can
transform

can
transform

can
transform

(we’ll discuss this next)

3

CMSC 330 5

Reduction Complexity

• Regular expression to NFA reduction:
– O(n)

• NFA to DFA reduction
– Intuition: Build DFA where each DFA state

represents a set of NFA states
– How many states could there be in the DFA?
– Given NFA with n states, DFA may have 2n states
– Not so good, since DFAs are what we can implement

easily

CMSC 330 6

NFA → DFA reduction

Example:

{A}

{B,D}a

b
{C,D}

4

CMSC 330 7

NFA → DFA reduction Algorithm

• Let r0 be the ε-closure of q0, add it to R
• While there is an unmarked state ri in R

– Mark ri

– For each a ∈ Σ
• Let S = {s | q ∈ ri and for {q, a, B} ∈δ, s∈B}
• Let E = ε-closure(S)
• If E∉R

– R = E ∪ R
• δ = δ ∪ {ri, a, E}

• Let rf = {ri | ∃ s ∈ ri with s ∈ qf}
Notes: Let Q be the set of states for the NFA and R be the set of
states for the DFA. All states are unmarked at creation.

CMSC 330 8

NFA → DFA example

{A,E}

R = {{A,E}, }

{B,D,E}
a

{B,D,E},

{C,D}

{C,D},

b

b {E}

a

{E}

b

a

Language?
All strings that

have exactly 1 b and
end in b or the
string a
Regular expression?

a*b|a

5

CMSC 330 9

Practice

Convert the NFA to a DFA:

CMSC 330 10

Equivalence of DFAs and NFAs

• Any string from {A} to either
{D} or {CD} represents a path
from A to D in the original NFA.

6

CMSC 330 11

Relating R.E.'s to DFAs and NFAs

• Regular expressions, NFAs, and DFAs accept
the same languages!

DFA NFA

r.e.

can
transform

can
transform

can
transform

High-level idea next

CMSC 330 12

Converting from DFAs to REs

• General idea:
– Remove states one by one, labeling transitions with

regular expressions
– When two states are left (start and final), the

transition label is the regular expression for the DFA

7

CMSC 330 13

Relating R.E’s to DFAs and NFAs

• Why do we want to convert between these?
– Can make it easier to express ideas
– Can be easier to implement

CMSC 330 14

Implementing DFAs
cur_state = 0;
while (1) {

symbol = getchar();

switch (cur_state) {

case 0: switch (symbol) {
case '0': cur_state = 0; break;
case '1': cur_state = 1; break;
case '\n': printf("rejected\n"); return 0;
default: printf("rejected\n"); return 0;

}
break;

case 1: switch (symbol) {
case '0': cur_state = 0; break;
case '1': cur_state = 1; break;
case '\n': printf("accepted\n"); return 1;
default: printf("rejected\n"); return 0;

}
break;

default: printf("unknown state; I'm confused\n");
break;

}
}

It's easy to build
a program which
mimics a DFA

8

CMSC 330 15

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

– q is just an integer
– Represent � using arrays or hash tables
– Represent F as a set

given components (�, Q, q0, F, �) of a DFA:
let q = q0

while (there exists another symbol s of the input string)
q := �(q, s);

if q�F then
accept

else reject

CMSC 330 16

Run Time of Algorithm

• Given a string s, how long does algorithm take to
decide whether s is accepted?
– Assume we can compute �(q0, c) in constant time
– Then the time per string s to determine acceptance is

O(|s|)
– Can’t get much faster!

• But recall that constructing the DFA from the regular
expression A may take O(2|A|) time
– But this is usually not the case in practice

• So there’s the initial overhead, but then accepting
strings is fast

9

CMSC 330 17

Regular Expressions in Practice

• Regular expressions are typically “compiled”
into tables for the generic algorithm
– Can think of this as a simple byte code interpreter
– But really just a representation of (�, QA, qA, {fA}, �A),

the components of the DFA produced from the r.e.
• Regular expression implementations often have

extra constructs that are non-regular
– I.e., can accept more than the regular languages
– Can be useful in certain cases
– Disadvantages: nonstandard, plus can have higher

complexity

CMSC 330 18

Considering Ruby Again
– Interpreted
– Implicit declarations
– Dynamically typed

• These three make it quick to write small programs

– Built-in regular expressions and easy string manipulation
• This and the three above are the hallmark of scripting languages

– Object-oriented
• Everything (!) is an object

– Code blocks
• Easy higher-order programming!
• Get ready for a lot more of this...

10

CMSC 330 19

Other Scripting Languages

• Perl and Python are also popular scripting
languages
– Also are interpreted, use implicit declarations and

dynamic typing, have easy string manipulation
– Both include optional “compilation” for speed of

loading/execution
• Will look fairly familiar to you after Ruby

– Lots of the same core ideas
– All three have their proponents and detractors
– Use whichever one you like best

CMSC 330 20

Practice

Convert to a DFA:

Convert to an NFA and then to a DFA:
• (0|1)*11|0*
• strings of alternating 0 and 1
• aba*|(ba|b)

11

CMSC 330 21

Complement of DFA

Given a DFA accepting language L, how can we
create a DFA accepting its complement?

(the alphabet = {a,b})

CMSC 330 22

Complement Steps

• Add implicit transitions to a dead state
• Change every accepting state to a non-

accepting state and every non-accepting state
to an accepting state

• Note: this only works with DFAs - Why?

12

CMSC 330 23

Practice

Make the DFA which accepts the complement of
the language accepted by the DFA below.

S3

CMSC 330 24

Practice

• Make the DFA which accepts all strings with a
substring of 330

• Take the complement of this DFA

