
1

CMSC 330: Organization of
Programming Languages

Context-Free Grammars

CMSC 330 2

Reminders / Announcements

• Project 2 was posted on Sep. 24
• Class participation is part of your grade

CMSC 330 3

Motivation

• Programs are just strings of text
– But they’re strings that have a certain structure

• A C program is a list of declarations and definitions
• A function definition contains parameters and a body
• A function body is a sequence of statements
• A statement is either an expression, an if, a goto, etc.
• An expression may be assignment, addition, subtraction, etc

• We want to solve two problems
– We want to describe programming languages precisely
– We need to describe more than the regular languages

• Recall that regular expressions , DFAs, and NFAs are limited
in their expressiveness

CMSC 330 4

Program structure
Syntax
• What a program looks like
• BNF (context free grammars) - a useful notation

for describing syntax.

Semantics
• Execution behavior

CMSC 330 5

Context-Free Grammars (CFGs)

• A way of generating sets of strings or languages

• They subsume regular expressions (and DFAs
and NFAs)
– There is a CFG that generates any regular language
– (But regular expressions are a better notation for

languages which are regular.)

• They can be used to describe programming
languages
– They (mostly) describe the parsing process

CMSC 330 6

Simple Example

S → 0|1|0S|1S|ε

• This is the same as the regular expression
(0|1)*

• But CFGs can do a lot more!

2

CMSC 330 7

Formal Definition
• A context-free grammar G is a 4-tuple:

– � – a finite set of terminal or alphabet symbols
• Often written in lowercase

– N – a finite, nonempty set of nonterminal symbols
• Often written in uppercase
• It must be that N � � = �

– P – a set of productions of the form N � (�|N)*
• Informally this means that the nonterminal can be replaced

by the string of zero or more terminals or nonterminals to the
right of the �

– S � N – the start symbol

CMSC 330 8

Informal Definition of Acceptance

• A string is accepted by a CFG if there is some
path that can be followed starting at the start
state which generates the string

Example:
S → 0|1|0S|1S|ε

0101:
S →0S →01S →010S →0101

CMSC 330 9

Example: Arithmetic Expressions (Limited)

• E � a | b | c | E+E | E-E | E*E | (E)
– An expression E is either a letter a, b, or c
– Or an E followed by + followed by an E
– etc.

• This describes or generates a set of strings
– {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), …}

• Example strings not in the language
– d, c(a), a+, b**c, etc.

CMSC 330 10

Formal Description of Example

• Formally, the grammar we just showed is
– � = { +, -, *, (,), a, b, c }
– N = { E }
– P = { E � a, E � b, E � c, E � E-E, E � E+E,

E � E*E, E � (E)}
– S = E

CMSC 330 11

Notational Shortcuts

• If not specified, assume the left-hand side of the
first listed production is the start symbol

• Usually productions with the same left-hand
sides are combined with |

• If a production has an empty right-hand side it
means �

CMSC 330 12

Backus-Naur Form
• Context-free grammar production rules are also

called Backus-Naur Form or BNF
– A production like A � B c D is written in BNF as

<A> ::= c <D> (Non-terminals written with angle
brackets and ::= instead of �)

– Often used to describe language syntax
• John Backus

– Chair of the Algol committee in the early 1960s
• Peter Naur

– Secretary of the committee, who used this notation to
describe Algol in 1962

3

CMSC 330 13

Uniqueness of Grammars

• Grammars are not unique. Different grammars
can generate the same set of strings.

• The following grammar generates the same set
of strings as the previous grammar:

E � E+T | E-T | T
T � T*P | P
P � (E) | a | b | c

CMSC 330 14

Another Example Grammar

• S � aS | T
T � bT | U
U � cU | �

What are some strings in the language?

CMSC 330 15

Practice

Try to make a grammar which accepts…
• 0*|1*
• anbn

Give some example strings from this language:
• S →0|1S

What language is it?

CMSC 330 16

Sentential Forms

A sentential form is a string of terminals and
nonterminals produced from the start symbol

Inductively:
– The start symbol
– If �A� is a sentential form for a grammar, where (� and
� � (N|�)*), and A � � is a production, then ��� is a
sentential form for the grammar

• In this case, we say that �A� derives ��� in one step, which is
written as �A� � ���

CMSC 330 17

Derivations
• � is used to indicate a derivation of one step
• �+ is used to indicate a derivation of one or more steps
• �* indicates a derivation of zero or more steps

Example:
S → 0|1|0S|1S|ε

0101:
S � 0S � 01S � 010S � 0101
S �+ 0101
S �* S

CMSC 330 18

Language Generated by Grammar
A slightly more formal definition…
• The language defined by a CFG is the set of all

sentential forms made up of only terminals.

Example:
S → 0|1|0S|1S|ε

In language: Not in language:
01, 000, 11, ε … 0S, a, 11S, …

4

CMSC 330 19

Example
S � aS | T
T � bT | U
U � cU | �

• A derivation:
– S � aS � aT � aU � acU � ac

• Abbreviated as S �+ ac
• So S, aS, aT, aU, acU, ac are all sentential forms for this

grammar

– S � T � U � �

• Is there any derivation
– S �+ ccc ? S �+ Sa ?
– S �+ bab ? S �+ bU ?

CMSC 330 20

The Language Generated by a CFG

• The language generated by a grammar G is

L(G) = { 	 | 	 � �* and S �+ 	 }

– (where S is the start symbol of the grammar and � is
the alphabet for that grammar)

• I.e., all sentential forms with only terminals
• I.e., all strings over � that can be derived from

the start symbol via one or more productions

CMSC 330 21

Example (cont’d)
S � aS | T
T � bT | U
U � cU | �

• Generates what language?

• Do other grammars generate this language?
S � ABC
A � aA | �
B � bB | �
C � cC | �

– So grammars are not unique
CMSC 330 22

Parse Trees

• A parse tree shows how a string is produced by
a grammar
– The root node is the start symbol
– Each interior node is a nonterminal
– Children of node are symbols on r.h.s of production

applied to that nonterminal
– Leaves are all terminal symbols

• Reading the leaves left-to-right shows the string
corresponding to the tree

CMSC 330 23

Example

S � aS | T
T � bT | U
U � cU | �

S � aS � aT � aU � acU � ac

CMSC 330 24

Parse Trees for Expressions
• A parse tree shows the structure of an

expression as it corresponds to a grammar
E � a | b | c | d | E+E | E-E | E*E | (E)

a a*c c*(b+d)

5

CMSC 330 25

Practice

E � a | b | c | d | E+E | E-E | E*E | (E)

Make a parse tree for…
• a*b
• a+(b-c)
• d*(d+b)-a
• (a+b)*(c-d)
• a+(b-c)*d

