CMSC 330: Organization of Programming Languages

Context-Free Grammars

Review

Why should we study CFGs?
What are the four parts of a CFG?
How do we tell if a string is accepted by a CFG?
What's a parse tree?

A sentential form is a string of terminals and non-terminals produced from the start symbol inductively:
- The start symbol
- If $\alpha A \delta$ is a sentential form for a grammar, where α and $\delta = (N|S)^*$, and $A \rightarrow \gamma$ is a production, then $\alpha \gamma \delta$ is a sentential form for the grammar
 - In this case, we say that $\alpha A \delta$ derives $\alpha \gamma \delta$ in one step, which is written as $\alpha A \delta \Rightarrow \alpha \gamma \delta$

Leftmost and Rightmost Derivation

- Example: $S \rightarrow a | SBs$ String: aba

<table>
<thead>
<tr>
<th>S</th>
<th>B</th>
<th>a</th>
<th>b</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>B</td>
<td>a</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td>S</td>
<td>B</td>
<td>a</td>
<td>a</td>
<td>S</td>
</tr>
</tbody>
</table>

At every step, apply production to leftmost non-terminal
Both derivations happen to have the same parse tree
- A parse tree has a unique leftmost and a unique rightmost derivation
- Not every string has a unique parse tree
- Parse trees don’t show the order productions are applied

Another Example (cont’d)

$S \rightarrow a | SBs$

<table>
<thead>
<tr>
<th>S</th>
<th>S</th>
<th>a</th>
<th>b</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>b</td>
<td>S</td>
<td>a</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>a</td>
<td>a</td>
<td>S</td>
</tr>
</tbody>
</table>

Is $ababa$ in this language?

A leftmost derivation
$S \Rightarrow SBs = abS = aSbS = aBabS = ababa$

Another leftmost derivation
$S \Rightarrow SBs = SBs = Saba$ = $ababa$

Ambiguity

- A string is ambiguous for a grammar if it has more than one parse tree
- Equivalent to more than one leftmost (or more than one rightmost) derivation
- A grammar is ambiguous if it generates an ambiguous string
- It’s can be hard to see this with manual inspection
- Exercise: can you create an unambiguous grammar for $S \rightarrow a | SBs$?
Are these Grammars Ambiguous?

(1) \[S \rightarrow aS \mid T \]
\[T \rightarrow bT \mid U \]
\[U \rightarrow cU \mid \epsilon \]

(2) \[S \rightarrow T \mid T \]
\[T \rightarrow Tx \mid Tx \mid x \mid x \]

(3) \[S \rightarrow SS \mid () \mid (S) \]

Ambiguity of Grammar (Example 3)

- 2 different parse trees for the same string: ()()()
- 2 distinct leftmost derivations:
 \[S \Rightarrow SS \Rightarrow SSSS \Rightarrow ()()S \Rightarrow ()() \]
 \[S \Rightarrow SS \Rightarrow ()S \Rightarrow ()SS \Rightarrow ()S \Rightarrow ()() \]

More on Leftmost/Rightmost Derivations

- Is the following derivation leftmost or rightmost?
 \[S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac \]
 - There’s at most one non-terminal in each sentential form, so there’s no choice between left or right non-terminals to expand

- How about the following derivation?
 \[S \Rightarrow SaS \Rightarrow SaSb \Rightarrow aSbb \Rightarrow abab \]

Tips for Designing Grammars

1. Use recursive productions to generate an arbitrary number of symbols
 - Zero or more x’s
 - One or more y’s

2. Use separate non-terminals to generate disjoint parts of a language, and then combine in a production
 \[G = S \rightarrow AB \]
 \[A \rightarrow aA \mid \epsilon \]
 \[B \rightarrow bB \mid \epsilon \]
 \[L(G) = a^*b^* \]

Tips for Designing Grammars (cont’d)

3. To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle
 \[\{a^n b^n \mid n \geq 0\} \]
 \[S \rightarrow aSb \mid \epsilon \]
 - Example: \[S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb \]

Tips for Designing Grammars (cont’d)

\[\{a^n b^n \mid m \geq 2n, n \geq 0\} \]
\[S \rightarrow aSbb \mid B \mid \epsilon \]
\[B \rightarrow bB \mid b \]

The following grammar also works:
\[S \rightarrow aSbb \mid B \]
\[B \rightarrow bB \mid \epsilon \]

How about the following?
\[S \rightarrow aSbb \mid bS \mid \epsilon \]
Tips for Designing Grammars (cont’d)

{a^n b^m | n \geq 0, m \geq 0}

Rewrite as a^n b^m a^n a^n, which now has matching superscripts (two pairs)

Would this grammar work?

S \rightarrow aSa | B
B \rightarrow bBa | \epsilon

Corrected:
S \rightarrow aSa | B
B \rightarrow bBa | \epsilon

The outer a^n a^n are generated first, then the inner b^m a^n

Doesn’t allow m = 0

Tips for Designing Grammars (cont’d)

4. For a language that’s the union of other languages, use separate nonterminals for each part of the union and then combine

\{ a^n (b^m | c^m) | m > n \geq 0 \}

Can be rewritten as

\{ a^n b^m | m > n \geq 0 \} U \{ a^n c^m | m > n \geq 0 \}

Tips for Designing Grammars (cont’d)

{ a^n b^m | m > n \geq 0 } \cup { a^n c^m | m > n \geq 0 }

S \rightarrow T | U
T \rightarrow aTb | Tb | b
U \rightarrow aUb | Ub | c

Doesn’t allow m = 0

Corrected:
S \rightarrow T | U
T \rightarrow aTb | bT | b
U \rightarrow aUb | cU | c

The outer a^n a^n are generated first, then the inner b^m a^n

What’s the parse tree for string abbb?

Ambiguous!

Tips for Designing Grammars (cont’d)

{ a^n b^m | m > n \geq 0 } \cup { a^n c^m | m > n \geq 0 }

Will this fix the ambiguity?

S \rightarrow T | U
T \rightarrow aTb | bT | b
U \rightarrow aUb | cU | c

It’s not ambiguous, but it can generate invalid strings such as babb

Tips for Designing Grammars (cont’d)

\{ a^n b^m | m > n \geq 0 \} \cup \{ a^n c^m | m > n \geq 0 \}

Unambiguous version

S \rightarrow T | V
T \rightarrow aTb | U
U \rightarrow Ub | b
V \rightarrow aVc | W
W \rightarrow Wc | c

CFGs for Languages

• Recall that our goal is to describe programming languages with CFGs

• We had the following example which describes limited arithmetic expressions

 E \rightarrow a | b | c | E+E | E-E | E*E | (E)

• What’s wrong with using this grammar?
 – It’s ambiguous!
The Issue: Associativity

- Ambiguity is bad here because if the compiler needs to generate code for this expression, it doesn’t know what the programmer intended.

So what do we mean when we write \(a-b-c \)?
- In mathematics, this only has one possible meaning
 - It’s \((a-b)-c\), since subtraction is left-associative
 - \(a-(b-c)\) would be the meaning if subtraction was right-associative

Another Example: If-Then-Else

- Consider the following program fragment:
  ```
  if (x > y)
    if (x < z)
      a = 1;
    else a = 2;
  ```
- Note: Ignore newlines

Parse Tree #1

- Else belongs to inner if

Parse Tree #2

- Else belongs to outer if

Fixing the Expression Grammar

- Idea: Require that the right operand of all of the operators is not a bare expression

 \(E \rightarrow E+T \mid E-T \mid E^*T \mid T \)

 \(T \rightarrow a \mid b \mid c \mid (E) \)

- Now there’s only one parse tree for \(a-b-c \)
 - Exercise: Give a derivation for the string \(a-(b-c) \)
What if We Wanted Right-Associativity?

- Left-recursive productions are used for left-associative operators
- Right-recursive productions are used for right-associative operators
- Left:
 \[E \rightarrow E+T \mid E-T \mid E^*T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
- Right:
 \[E \rightarrow T+E \mid T-E \mid T^*E \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]

Parse Tree Shape

- The kind of recursion/associativity determines the shape of the parse tree
 - Exercise: draw a parse tree for \(a-b-c\) in the prior grammar in which subtraction is right-associative

A Different Problem

- How about the string \(a+b*c\)?
 \[E \rightarrow E+T \mid E-T \mid E^*T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
- Doesn’t have correct precedence for *
 - When a nonterminal has productions for several operators, they effectively have the same precedence
- How can we fix this?

Final Expression Grammar

- \[E \rightarrow E+T \mid E-T \mid T \]
 - lowest precedence operators
- \[T \rightarrow T^*P \mid P \]
 - higher precedence
- \[P \rightarrow a \mid b \mid c \mid (E) \]
 - highest precedence (parentheses)

- Exercises:
 - Construct tree and left and right derivations for \(a+b+c\) \(a^*(b+c)\) \(a^*b+c\) \(a-b-c\)
 - See what happens if you change the last set of productions to \(P \rightarrow a \mid b \mid c \mid E \mid (E)\)
 - See what happens if you change the first set of productions to \(E \rightarrow E+T \mid E-T \mid T \mid P\)